Data Analysis and
Visualization
Using Python

Analyze Data to Create
Visualizations for Bl Systems

Dr. Ossama Embarak

APress’

Data Analysis and
Visualization Using
Python

Analyze Data to Create
Visualizations for Bl Systems

Dr. Ossama Embarak

Apress’

Data Analysis and Visualization Using Python

Dr. Ossama Embarak
Higher Colleges of Technology, Abu Dhabi, United Arab Emirates

ISBN-13 (pbk): 978-1-4842-4108-0 ISBN-13 (electronic): 978-1-4842-4109-7
https://doi.org/10.1007/978-1-4842-4109-7

Library of Congress Control Number: 2018964118
Copyright © 2018 by Dr. Ossama Embarak

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Nikhil Karkal

Development Editor: Matthew Moodie

Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at www.apress.com/978-1-
4842-4108-0. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-4109-7

This book is dedicated to my family—my mother,
my father, and all my brothers—for their endless support.

Table of Contents

About the Authorccciisssmmmmmmsssssnmmmssssnmmsssssnms s ———————— xiii
About the Technical REVIEWErSc.ucccemmrmsssnnnsmsssssnnssssssnssssssssssssssssnns XV
Introductioncccivissemmmmnssssnnnmmssssssnmsssssnnnnsssssnnnessssannnesssnnnnnenssnnnnnns Xvii
Chapter 1: Introduction to Data Science with Pythonccecceeenins 1
The Stages of Data SCIENCEc.cvcevrverererernesrr s 1
WRY PYENON? ...t s st s s e s s e 2
Basic Features of PYthon..........ccccocvvvrvninn v 3
Python Learning RESOUICES........ccvevererrererenessensesessssessessesssssssessessessssessessenes 4
Python Environment and EditOrs.........coovvvvrverievnsniene s sessessessessesessessesees 6
Portable Python Editors (No Installation Required).........cccvrvrerrerierrerenserseraens 6
Azure NotehOOKS ..o 8
Offline and Desktop Python Editors.........coevvvvvnennnnsensensnessessesesessesessenns 13

The Basics of Python Programming..........ccceeevevervrsennenieniessessesessesseessesennens 13
372 TS (oY] O O 14
Declaring Variables and Assigning Valuesccccoeevinvnvnnenensensensesessenns 19
Basic Operators in PYthON ... s ssesesesaesees 22
PYthon COMMENTSccecererreririerere s s e s sse e s e s s sse e s e saesaesessesaesaes 25
Formatting StringS......ccccveerevriniererr e s s enes 25
CONVEISION TYPES...vecererrerrerersersersessssersessessessssessessesssssssessesssssssessessessensssesseres 26

The Replacement Field, {J.......ccccvrerernrnierennrerseseseesessesessesessessessessssessessens 27

The Date and Time MOdUIE..........ccvccrererriinssr e 28

TABLE OF CONTENTS

Time Module Methodscccceeerrererereresere e 29
Python Calendar MOdUIEccceeerueeerrrenrerere s 30
Fundamental Python Programming Techniques..........cccooeererrncnnsenenencrenscnens 32
Selection Statements ... 32
Iteration Statements ... 35
The Use of Break, Continues, and Pass Statements.............ccoovnnniinninennns 39
Ty @Nd EXCEPL.....oceie e —————— 41
StriNG ProCeSSINGcccveveiiriircre s se s s 42
Tabular Data and Data FOrmats..........c.ccocoeernnennesenescsnsesesese e 54
Python Pandas Data Science Library.........ccccocnvriennsnnnnnnsnsessesesessesennns 55
Python Lambdas and the Numpy Librarycccccoovvinininnsnnsnsnesnsenennn, 60
Data Cleaning and Manipulation Techniquescccccvvvnvnininnnniniesnseniennens 64
Abstraction of the Series and Data Frame...........cccoceevvvnnnennnesesssesessesesesenenns 64
Running Basic Inferential ANalySes.........c.coverrnnernsesnesnsesesssesesesesssessssesenns 69
1] 4= O 74
EXErciSes and ANSWENSccoueierierinesisess s s s 74

Chapter 2: The Importance of Data Visualization in Business

INtelligencCe....ccuicmmmrrnsssnnnmmssssnnnsmssssnnnsnssssnnnsessssnnnsessssnnnessssnnnnesssnnnnnnsssn 85
Shifting from Input t0 QULPULccevvreer 86
Why Is Data Visualization Important?...........ccocvvvvninnnnnniennennsnssessesesessessessenns 86
Why Do Modern Businesses Need Data Visualization?..........c.ccocvvvverevensenieraenns 87
The Future of Data Visualizationcocovenreenneserese e 88
How Data Visualization Is Used for Business Decision-Makingcc.cceueeune. 89

Faster RESPONSES ..ot s 89
SIMPICITY .vveerer e s 90
Easier Pattern Visualization.............coccooreerenresnnscrenese e 90

TEAM INVOIVEMENTeeevceerceer s e s s ssr e sse e resr e s e e s s ne s sne e s reesennensanenss 90

TABLE OF CONTENTS

Unify INterpretation...........cooooveernesrere e 90
Introducing Data Visualization TeChNiqQUES........c.ccovrerrenrercrrccrereee e 92
(Lo T I o] TR 93
Popular Libraries for Data Visualization in Python............ccccovvennenneicnnnne. 94
Introducing Plots in Python...........ccnccncns e 109
SUMMANY....eveerirereree e e e e 116
EXErciSes and ANSWENSccccvurerrnsmsrsesssssessssessssssss e sssssssssesssssssssssessssssessanes 117
Chapter 3: Data Collection Structurescccousnmmmmmmnnnnssmssssssssssnnnnns 125
R TN 125
Creating LiStS......iuvvrrreriernserseresesessesesessssesessessesessessessessssessessesassessensesaes 126
Accessing Values in LIStcovvvcvcerievnsensere s sese s e sessessessens 126
Adding and Updating LiStS.........cccccvreriernnnnnienienssensenesesessessesessesessessessens 127
Deleting List EIEMENTS........ccccvvrierenrseriere e sessesse s e ssessessssessessens 128
Basic List OPerations..........ccccvvrrererersenieniessnsenesessssessessessesessessessessssessessens 129
Indexing, Slicing, and MatriCeS.........ccevrervrrrrierierr e 130
Built-in List Functions and Methods............ccccovnnnnnnnnssennnes 130
List Sorting and Traversing........cccevvvevrerievnsensessessessssessesessssessessessssessessesaes 133
Lists and SINQS......ccucrivinnire s s s 134
Parsing LINES.......cccucerrererrnenisisessnsesessesesss s sssseses s ssssesssssssssssessnssssssenens 135
AlIASING.....eeoerrierrierrse s e 136
DICHIONAIESvccererrsee s 137
Creating DiCtioNAriescccvverererr e 138
Updating and Accessing Values in Dictionaries..........ccecvvevvnnvenienenenseniennn 139
Deleting Dictionary EIBMENTSccccvvvverevnieniene s ses s ssessssessessens 141
Built-in Dictionary FUNCLIONScccovvviviererinserere s se e ssesessessesnens 141
Built-in Dictionary Methods.........ccouvvvrirenninien s sessssesessens 143

vii

TABLE OF CONTENTS

TUPIES et e 145
Creating TUPIESco et 146
Concatenating TUPIEScccouvevererereccrr et 148
Accessing Values in TUPIES.........cccvvrereinsnie s snens 148
Basic Tuples OPerationsccuvvnennnnninsesnesesssessse s ssssesessenens 150

3] 1= 151
Creating a Series With iNdeX.........cccccvvririnnininisn e 151
Creating a Series from a Dictionaryc.cccccvvrinnnnnnnnsnsne e 154
Creating a Series from a Scalar Value..........c.cccvvevnnnininnsnsnenesessenennn 155
Vectorized Operations and Label Alignment with Series.........cccoevvviniennns 156
NAME ATFDULE ... 157

DAta Frames.......ccoverererrerereserese s e e 158
Creating Data Frames from a Dict of Series or DiCts...........couvvrererereniincnes 158
Creating Data Frames from a Dict of Ndarrays/Lists...........ccccvrereriencrnnne. 160
Creating Data Frames from a Structured or Record Array........c.cccceevvernenne. 161
Creating Data Frames from a List of DiCtS..........coouerrreneriencrescrncreseeneene 161
Creating Data Frames from a Dict of Tuples.......cccocvvvvrinnsnsncnsnensenennn, 162
Selecting, Adding, and Deleting Data Frame Columns...........c.ccocvvvvnienene. 163
Assigning New Columns in Method Chains.........c.ccccoveiresnnncneneserencnene 165
Indexing and Selecting Data Frames...........cccccvvviivnrninnennsnsness s 166
Transposing a Data Frame.........ccccvvvinsninenssnsnne s sessesnens 170
Data Frame Interoperability with Numpy Functions........cccccocvcnievncnicnnens 171

o 141 SR 172
Creating a Panel from a 3D NAarray.........c.ccoveererrercrennenereseresesesseneseseseens 172
Creating a Panel from a Dict of Data Frame Objects...........cccecrverivrrcerennen 173
Selecting, Adding, and Deleting tems ..o 175

SUMMANY....eeeerirereree e sr e s e nr e e 176

EXErcisSes and ANSWENSccccvurerrnseressessssssessssessssesssessssssssssssssssesessssesssssssssanes 177

viii

TABLE OF CONTENTS

Chapter 4: File 1/0 Processing and Regular EXpressionsccuussees 183
File 1/0 PrOCESSINGciveerererirreerisserise s sssse e st sesse s stssesesnssessnnes 183
Data Input and QULPUL ..o 183
Opening and Closing FileSccovcrninnennnens s eeseenes 184
File ODJECt AHFDULES ...vevverrererrerere s v ses e sre s sae e ssesrese s e snesaens 185
Reading and Writing 10 FileS.......ccccvvrvrinnericrcerree s 186
Directories in PYtNON ... 187
Regular EXPreSSIONSccccuevirirsneressnsessese s ses s sssssssessessssssssssessesssssssessenns 188
Regular Expression Patterns ... s sesennens 188
Special Character ClasSes.......ccuuvvrerererernserenerere e ses e sse e seens 197
Repetition CIASSEScccvvererererinierine e se st s se e ses e sesaenens 198
AREINALIVES ... s 198
ANCROIS ... s 199
SUMMANY....eitiirire e b e e b e s r e e s b b e e e nne s 201
EXErciSes and ANSWETccovererrenmreresessesesessesesseses e sesssessssessesesessesessssessenes 202
Chapter 5: Data Gathering and Cleaning.........cscsrsssesssssnsssssnsssssnnsnss 205
Cleaning Data........ccccvvrerverieriesinserese s s e e sr e e n e enens 206
Checking for MiSSing ValIUES.........cccvverreriernnensenesesessessesessssesessessssessessesees 207
Handling the MiSSiNg VAIUESccccvvrverernsenieness s sessessessssessessens 209
Reading and Cleaning CSV Dataccccvverevenrenienierssensessesesessesessessssessessenes 212
Merging and Integrating Data............cccccvvrinnerinrnsn e 218
Reading Data from the JSON Format..........c.ccooecvvrininnsnnninn s 223
Reading Data from the HTML Format...........cococovienrennnscnnesesese s 226
Reading Data from the XML Format............ccoovevmienniennnsnneses e 233
SUMMANY ...ttt r e e e e e np e 235
EXErciSes and ANSWENScuuuerereresmsnssssssssssssssssessssssssssss e sssssssssesssssssas 236

ix

TABLE OF CONTENTS

Chapter 6: Data Exploring and AnalysSiscccussssessesssssnssssssssnnssssssnns 243
Series Data STrUCTUIESccccvererereeerere s 243
Creating @ SErES ... 244
Accessing Data from a Series with a Position.........cccccccvvvvinvcnninccnnicnnnn 246
Exploring and Analyzing @ SEMEScceveverrerreriesssenseresessssessessessssessessens 248
0PErations 0N @ SEIEScvvvererererrersererseserse s sessesesessesse s ssesaessssessesaes 251
Data Frame Data STrUCLUIEScccocoreeererer e s 254
Creating a Data Frame...........cccvevnnnininnsnsnc s 255
Updating and Accessing a Data Frame’s Column Selection......................... 258
ColUuMN AAItION ... s 259
ColUMN DEIBLIONceeeerercecser e 260
ROW SEIECHON.......ccuieccrererrere e s 264
ROW AGItION ...t 266
ROW DEIBLIONcovieeeriecrircerce s 267
Exploring and Analyzing a Data Frame..........cccccevvvervnvnneevencensensee e 267
Panel Data STruCUIES.........cccccceererrcc s 273
Creating @ PaAnElccoevvvrverere s sese s s s sae s s sas e e naennes 273
Accessing Data from a Panel with a Position............ccecvvvvrririnsencenieninnns 274
Exploring and Analyzing a Panel...........ccccooervrvnnnneninsensee s sseses e seseeens 275
Data AN@IYSISccoceveriirrre e ———— 277
Statistical ANAIYSISccoveeerereririerre e e 277
Data GrOUPING......ccoeeerrercrirerere s a st sesae e 282
Iterating TArough GroUPS.......ccovevrcrrni s 283
AgOregationscccvreverniriesiesssese s e nne 284
Transformations..........cooeerrenncnre s 285
FIRPALION ... 286
SUMMANY....citicirire e s s s r e e R r e e nne s 287
EXErciSes and ANSWENSccvererrrreresesesesesessesessssessesesesssessssessssssessessssssessenes 288

TABLE OF CONTENTS

Chapter 7: Data Visualizationcccevnsssemnnnnssssnnnmnssssssssssssssssssssnns 293
DireCt PIOHING ... s 294
LiNE PIOL......ceceececeeecrr e s 295
Bar PlOt.......coccrcrcrriress e 298
Pi@ CRAM ...ttt 300
BOX POt ...ttt 301
Histogram PIOt.........ccceoererrcere e 303
SCALE PIOL ..o 303
Seaborn Plotting SYStem.........cccviiiicnin s 304
L3 T8) O 305
310 o (0] TS 309
12U 8) P 313
] 1 08) 315
Matplotlib PIOt........coor e ———————— 321
LiNE PIOL......ceceeeceeceeree e 321
3721 81 o TR 324
Histogram PIOt ... nnens 326
SCAEN PIOL ... s 330

RS 2 T Qo) 332
PiE CRAM ...ttt 334
10T 111 T o 335
EXErciSes and ANSWENScccvererrnseressesmssssesessesssenes 336

TABLE OF CONTENTS

Chapter 8: Case StUMIeS......cuureerrrsssnnnsrsssssnnsssssssnnsssssssnssessssnnnnsssssnns 343
Case Study 1: Cause of Deaths in the United States (1999-2015).........ccccucuue. 343
Data Gathering........ccovvvnernnrns e 343

D L AT 1) 1 344

Data ViSualization ... 349
T 1 o 353

Case Study 2: Analyzing Gun Deaths in the United States (2012-2014)........... 354
Data Gathering.......c.ccccvcrnicnsrr s ———— 355

Data ANalYSIS......ccceeiirierirr e e 356

Data ViSualizationc.eecoeeeeerercrrcrereser e 357
FINAINGS ..o e sr e nnn 364
SUMIMANY....eeeererereree e e e e nae e re e e e 366
INA@X.ueeiiisnnnsssnnnssssnnssssnssssansnssanssssannsssansssssnsssssnnssssnnssssnnssssnnnsssnnnnsnns 367

xii

About the Author

Dr. Ossama Embarak holds a PhD in
computer and information science from
Heriot-Watt University in Scotland, UK.
He has more than two decades of research
and teaching experience with a number of
programming languages including C++, Java,
C#, R, Python, etc. He is currently the lead

. CIS program coordinator for Higher Colleges

of Technology, UAE’s largest applied higher educational institution, with
more than 23,000 students attending campuses throughout the region.

Recently, he received an interdisciplinary research grant of 199,000 to
implement a machine learning system for mining students’ knowledge and
skills.

He has participated in many scholarly activities as a reviewer and
editor for journals in the fields of computer and information science
including artificial intelligence, data mining, machine learning, mobile
and web technologies. He supervised a large number of graduation
projects, as well as he has published numerous papers about data mining,
users online privacy, semantic web structure and knowledge discovery.
Also he participated as a co-chair for numerous regional and international
conferences.

xiii

About the Technical Reviewers

Shankar Rao Pandala is a data scientist at
Cognizant. He has a bachelor’s degree in
computer science and a master’s degree in
financial markets. His work experience spans
finance, healthcare, manufacturing, and
consulting. His area of interest is artificial

intelligence for trading.

Prashant Sahu has a bachelor’s of technology
from NIT Rourkela (2003) and is currently
pursuing a doctorate from the Indian Institute
of Technology, Bombay, in the area of
instrumentation, data analytics, modeling,
and simulation applied to semiconductor
materials and devices. He is currently the head
of training services at Tech Smart Systems in

Pune, India. He is also mentoring the startup
Bharati Robotic Systems (India) as an SVP of innovation. He has more than
15 years of experience in research, automation, simulation and modeling,
data analytics, image processing, control systems, optimization algorithms,
genetic algorithms, cryptography, and more, and he has handled many

ABOUT THE TECHNICAL REVIEWERS

projects in these areas from academia and industry. He has conducted
several faculty development training programs across India and has
conducted corporate training for software companies across India. He
is also an external examiner for B.E./M.E. projects and a member of the
Syllabus Revision Committee at the University of Pune.

Introduction

This book looks at Python from a data science point of view and teaches
the reader proven techniques of data visualization that are used to make
critical business decisions. Starting with an introduction to data science
using Python, the book then covers the Python environment and gets
you acquainted with editors like Jupyter Notebooks and the Spyder
IDE. After going through a primer on Python programming, you will
grasp the fundamental Python programming techniques used in data
science. Moving on to data visualization, you will learn how it caters to
modern business needs and is key to decision-making. You will also take
alook at some popular data visualization libraries in Python. Shifting
focus to collecting data, you will learn about the various aspects of data
collections from a data science perspective and also take a look at Python’s
data collection structures. You will then learn about file I/O processing
and regular expressions in Python, followed by techniques to gather and
clean data. Moving on to exploring and analyzing data, you will look at
the various data structures in Python. Then, you will take a deep dive into
data visualization techniques, going through a number of plotting systems
in Python. In conclusion, you will go through two detailed case studies,
where you'll get a chance to revisit the concepts you've grasped so far.
This book is for people who want to learn Python for the data science
field in order to become data scientists. No specific programming
prerequisites are required besides having basic programming knowledge.

xvii

INTRODUCTION

Specifically, the following list highlights what is covered in the book:

o Chapter 1 introduces the main concepts of data science
and its life cycle. It also demonstrates the importance
of Python programming and its main libraries for data
science processing. You will learn how different Python
data structures are used in data science applications.
You will learn how to implement an abstract series
and a data frame as a main Python data structure. You
will learn how to apply basic Python programming
techniques for data cleaning and manipulation. You
will learn how to run the basic inferential statistical
analyses. In addition, exercises with model answers are
given for practicing real-life scenarios.

o Chapter 2 demonstrates how to implement data
visualization in modern business. You will learn how
to recognize the role of data visualization in decision-
making and how to load and use important Python
libraries for data visualization. In addition, exercises
with model answers are given for practicing real-life

scenarios.

o Chapter 3 illustrates data collection structures in
Python and their implementations. You will learn how
to identify different forms of collection in Python. You
will learn how to create lists and how to manipulate list
content. You will learn about the purpose of creating a
dictionary as a data container and its manipulations.
You will learn how to maintain data in a tuple form
and what the differences are between tuple structures
and dictionary structures, as well as the basic tuples
operations. You will learn how to create a series from

xviii

INTRODUCTION

other data collection forms. You will learn how to create
a data frame from different data collection structures
and from another data frame. You will learn how to
create a panel as a 3D data collection from a series or
data frame. In addition, exercises with model answers
are given for practicing real-life scenarios.

Chapter 4 shows how to read and send data to users,
read and pull data stored in historical files, and open
files for reading, writing, or for both. You will learn

how to access file attributes and manipulate sessions.
You will learn how to read data from users and apply
casting. You will learn how to apply regular expressions
to extract data, use regular expression alternatives,

and use anchors and repetition expressions for data
extractions as well. In addition, exercises with model
answers are given for practicing real-life scenarios.

Chapter 5 covers data gathering and cleaning to have
reliable data for analysis. You will learn how to apply
data cleaning techniques to handle missing values.
You will learn how to read CSV data format offline or
pull it directly from online clouds. You will learn how
to merge and integrate data from different sources.
You will learn how to read and extract data from the
JSON, HTML, and XML formats. In addition, exercises
with model answers are given for practicing real-life

scenarios.

Chapter 6 shows how to use Python scripts to explore
and analyze data in different collection structures.
You will learn how to implement Python techniques
to explore and analyze a series of data, create a series,

Xix

INTRODUCTION

access data from a series with a position, and apply
statistical methods on a series. You will learn how to
explore and analyze data in a data frame, create a data
frame, and update and access data in a data frame
structure. You will learn how to manipulate data in

a data frame such as including columns, selecting
rows, adding, or deleting data, and applying statistical
operations on a data frame. You will learn how to
apply statistical methods on a panel data structure to
explore and analyze stored data. You will learn how

to statistically analyze grouped data, iterate through
groups, and apply aggregations, transformations, and
filtration techniques. In addition, exercises with model

answers are given for practicing real-life scenarios.

o Chapter 7 shows how to visualize data from different
collection structures. You will learn how to plot data
from a series, a data frame, or a panel using Python
plotting tools such as line plots, bar plots, pie charts,
box plots, histograms, and scatter plots. You will learn
how to implement the Seaborn plotting system using
strip plots, box plots, swarm plots, and joint plots. You
will learn how to implement Matplotlib plotting using
line plots, bar charts, histograms, scatter plots, stack
plots, and pie charts. In addition, exercises with model
answers are given for practicing real-life scenarios.

o Chapter 8 investigates two real-life case studies, starting
with data gathering and moving through cleaning, data
exploring, data analysis, and visualizing. Finally, you'll
learn how to discuss the study findings and provide

recommendations for decision-makers.

CHAPTER 1

Introduction to Data
Science with Python

The amount of digital data that exists is growing at a rapid rate, doubling
every two years, and changing the way we live. It is estimated that by 2020,
about 1.7MB of new data will be created every second for every human
being on the planet. This means we need to have the technical tools,
algorithms, and models to clean, process, and understand the available
data in its different forms for decision-making purposes. Data science is
the field that comprises everything related to cleaning, preparing, and
analyzing unstructured, semistructured, and structured data. This field
of science uses a combination of statistics, mathematics, programming,
problem-solving, and data capture to extract insights and information
from data.

The Stages of Data Science

Figure 1-1 shows different stages in the field of data science. Data scientists
use programming tools such as Python, R, SAS, Java, Perl, and C/C++

to extract knowledge from prepared data. To extract this information,

they employ various fit-to-purpose models based on machine leaning
algorithms, statistics, and mathematical methods.

© Dr. Ossama Embarak 2018 1
O. Embarak, Data Analysis and Visualization Using Python,
https://doi.org/10.1007/978-1-4842-4109-7_1

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

Understand
Business
Requirement

Decision-Making Data Acquisition

Data Visualization Data Preparation
Data Modeling Data Exploring

Figure 1-1. Data science project stages

Data science algorithms are used in products such as internet
search engines to deliver the best results for search queries in less time,
in recommendation systems that use a user’s experience to generate
recommendations, in digital advertisements, in education systems, in
healthcare systems, and so on. Data scientists should have in-depth
knowledge of programming tools such as Python, R, SAS, Hadoop
platforms, and SQL databases; good knowledge of semistructured formats
such as JSON, XML, HTML. In addition to the knowledge of how to work
with unstructured data.

Why Python?

Python is a dynamic and general-purpose programming language that is
used in various fields. Python is used for everything from throwaway scripts
to large, scalable web servers that provide uninterrupted service 24/7.

It is used for GUI and database programming, client- and server-side

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

web programming, and application testing. It is used by scientists writing
applications for the world’s fastest supercomputers and by children first
learning to program. It was initially developed in the early 1990s by Guido
van Rossum and is now controlled by the not-for-profit Python Software
Foundation, sponsored by Microsoft, Google, and others.

The first-ever version of Python was introduced in 1991. Python is now
at version 3.x, which was released in February 2011 after a long period
of testing. Many of its major features have also been backported to the
backward-compatible Python 2.6, 2.7, and 3.6.

Basic Features of Python

Python provides numerous features; the following are some of these
important features:

o Easy to learn and use: Python uses an elegant syntax,
making the programs easy to read. It is developer-
friendly and is a high-level programming language.

e Expressive: The Python language is expressive, which
means it is more understandable and readable than
other languages.

o Interpreted: Python is an interpreted language. In other
words, the interpreter executes the code line by line. This
makes debugging easy and thus suitable for beginners.

o Cross-platform: Python can run equally well on
different platforms such as Windows, Linux, Unix,
Macintosh, and so on. So, Python is a portable
language.

o Free and open source: The Python language is freely
available at www.python.org. The source code is also
available.

http://www.python.org

CHAPTER 1

INTRODUCTION TO DATA SCIENCE WITH PYTHON

Object-oriented: Python is an object-oriented language
with concepts of classes and objects.

Extensible: It is easily extended by adding new modules
implemented in a compiled language such as C or C++,
which can be used to compile the code.

Large standard library: It comes with a large standard
library that supports many common programming
tasks such as connecting to web servers, searching text
with regular expressions, and reading and modifying
files.

GUI programming support: Graphical user interfaces
can be developed using Python.

Integrated: It can be easily integrated with languages
such as C, C++, Java, and more.

Python Learning Resources

Numerous amazing Python resources are available to train Python

learners at different learning levels. There are so many resources out
there, though it can be difficult to know how to find all of them. The
following are the best general Python resources with descriptions of what

they provide to learners:

Python Practice Book is a book of Python exercises to
help you learn the basic language syntax. (See https://
anandology.com/python-practice-book/index.html.)

Agile Python Programming: Applied for Everyone provides a
practical demonstration of Python programming as an
agile tool for data cleaning, integration, analysis, and
visualization fits for academics, professionals, and

https://anandology.com/python-practice-book/index.html
https://anandology.com/python-practice-book/index.html

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

researchers. (See http://www.lulu.com/shop/ossama-
embarak/agile-python-programming-applied-for-
everyone/paperback/product-23694020.html.)

“A Python Crash Course” gives an awesome overview of
the history of Python, what drives the programming
community, and example code. You will likely need to
read this in combination with other resources to really let
the syntax sink in, but it’s a great resource to read several
times over as you continue to learn. (See https://www.
grahamwheeler.com/posts/python-crash-course.html.)

“A Byte of Python” is a beginner’s tutorial for the Python
language. (See https://python.swaroopch.com/.)

The O’Reilly book Think Python: How to Think Like a
Computer Scientist is available in HTML form for free
on the Web. (See https://greenteapress.com/wp/
think-python/.)

Python for You and Me is an approachable book with
sections for Python syntax and the major language
constructs. The book also contains a short guide at the
end teaching programmers to write their first Flask web
application. (See https://pymbook.readthedocs.io/
en/latest/.)

Code Academy has a Python track for people completely
new to programming. (See www.codecademy .com/
catalog/language/python.)

Introduction to Programming with Python goes over
the basic syntax and control structures in Python. The
free book has numerous code examples to go along
with each topic. (See www.opentechschool.org/.)

https://www.lulu.com/shop/ossama-embarak/agile-python-programming-applied-for-everyone/paperback/product-23694020.html
https://www.lulu.com/shop/ossama-embarak/agile-python-programming-applied-for-everyone/paperback/product-23694020.html
https://www.lulu.com/shop/ossama-embarak/agile-python-programming-applied-for-everyone/paperback/product-23694020.html
https://www.grahamwheeler.com/posts/python-crash-course.html
https://www.grahamwheeler.com/posts/python-crash-course.html
https://python.swaroopch.com/
https://greenteapress.com/wp/think-python/
https://greenteapress.com/wp/think-python/
https://pymbook.readthedocs.io/en/latest/
https://pymbook.readthedocs.io/en/latest/
https://www.codecademy.com/catalog/language/python
https://www.codecademy.com/catalog/language/python
https://www.opentechschool.org/

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

— Google has a great compilation of material you should
read and learn from if you want to be a professional
programmer. These resources are useful not only for
Python beginners but for any developer who wants to
have a strong professional career in software. (See
techdevguide.withgoogle.com.)

— Looking for ideas about what projects to use to learn to
code? Check out the five programming projects for
Python beginners at knightlab.northwestern.edu.

— There’s a Udacity course by one of the creators of
Reddit that shows how to use Python to build a blog.
It’s a great introduction to web development concepts.
(See mena.udacity.com.)

Python Environment and Editors

Numerous integrated development environments (IDEs) can be used for
creating Python scripts.

Portable Python Editors (No Installation
Required)

These editors require no installation:

Azure Jupyter Notebooks: The open source Jupyter
Notebooks was developed by Microsoft as an
analytic playground for analytics and machine
learning.

https://techdevguide.withgoogle.com
https://knightlab.northwestern.edu
https://mena.udacity.com

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

Python(x,y): Python(x,y) is a free scientific and
engineering development application for numerical
computations, data analysis, and data visualization
based on the Python programming language, Qt
graphical user interfaces, and Spyder interactive
scientific development environment.

WinPython: This is a free Python distribution for the
Windows platform; it includes prebuilt packages for
ScientificPython.

Anaconda: This is a completely free enterprise-
ready Python distribution for large-scale data
processing, predictive analytics, and scientific
computing.

PythonAnywhere: PythonAnywhere makes it easy to
create and run Python programs in the cloud. You
can write your programs in a web-based editor or
justrun a console session from any modern web

browser.

Anaconda Navigator: This is a desktop

graphical user interface (GUI) included in the
Anaconda distribution that allows you to launch
applications and easily manage Anaconda
packages (as shown in Figure 1-2), environments,
and channels without using command-line
commands. Navigator can search for packages
on the Anaconda cloud or in a local Anaconda
repository. It is available for Windows, macOS,
and Linux.

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

o Anaconda Navigator - o EN
File Help
ANACON (i] Sign I to Anacenda Cloud
A Home F =
Applications on I_ rook *| Channels Refresh
@ Environments - % A 2
* — W
— -
& Lewning Jupyter i
b e
glueviz notebock orangel
&% Community a0 A 434 34
iciermensional dats visualizati eb-bused), interactie computing
Fles. Explore relaticathips within ang netebook emircament. BT and run
amaong related datescts, human-readable docs while describing the
elata anatysis,
L] L] L]
3
i Qﬁ
qtcansole rstudio spyder
Az A 10136 A 32
PyQt GAN that supports inline figures, A et of integrated tools designed to help Scientific P¥thon Development
Decumentakion proper multiline editing with syntax you be move productive with B Includes B EmiBonment. Boweeful Sython D with
highlighting, graghical calltips, and more. wszentisls and notabooks. adanced aditing, interactive cesting,
debugging and introspection features
Develoger Blog
Feedbeck Leunch | o
e M
¥y & 7

Figure 1-2. Anaconda Navigator

The following sections demonstrate how to set up and use Azure
Jupyter Notebooks.

Azure Notebooks

The Azure Machine Learning workbench supports interactive data science
experimentation through its integration with Jupyter Notebooks.

Azure Notebooks is available for free at https://notebooks.azure.
com/. After registering and logging into Azure Notebooks, you will get a
menu that looks like this:

https://notebooks.azure.com/
https://notebooks.azure.com/

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

“r00 . - ~9s noBose

OssamaEmbarak Libraries PythonBooky

Once you have created your account, you can create a library for
any Python project you would like to start. All libraries you create can be
displayed and accessed by clicking the Libraries link.

Let’s create a new Python script.

1. Create alibrary.

Click New Library, enter your library details, and click
Create, as shown here:

Create New Library

Mew From GitHub
Library Name
Project 1

Library ID @

Ossamabmbarak/libraries/ | Project]

= Public library

@ Create a READMEmd

Cancel

A new library is created, as shown in Figure 1-3.

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

1Project 1

OssamaEmbarak ~ Libraries > Project]

B Run <+ New & Settings &3 Share EiClone 0 Clones #r Star (0) B3 Terminal M Shotdow
Show hidden items

FILE MAME ¥ FILE TYPE MODIFIED

B READMEmd Markdown Aug 17, 218

Showing 1 file < Ell >

2. Create a project folder container.

Organizing the Python library scripts is important.
You can create folders and subfolders by selecting
+New from the ribbon; then for the item type select
Folder, as shown in Figure 1-3.

Add Items to Library

Item Name
MyProject
Item type Blank File

Elank Fila

Python 2.7 Matebook
Python 3.5 Motchook
Python 2.6 Malebook
R Hatehck

F# Notebook

Figure 1-3. Creating a folder in an Azure project

3. Create a Python project.

Move inside the created folder and create a new Python project.

10

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

Add Items to Library

MNew From computer From UIRL
Item Marme
Hellow World

Item type | Blank File
Blark File

Pyton 2.7 Hatehook Cancel

Your project should look like this:

OssamaEmbarak > Libraries > Projectl = MyProject

B fun i+ Mew @ Sewings © Share PiClone 0Clones % Star (@) B Terminal M shudown & Preview [fditfle 4 Download B Deler
5) 2 || Shew hidden items

FILE RAME v FILE TYPL MODIFICD

10 Hellow Warld ipynt Natebook — Aug 17, 2018

Showing 1 file < BN >
4. Write and run a Python script.

Open the Created Hello World script by clicking it, and start writing
your Python code, as shown in Figure 1-4.

11

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

@ @ hitps/oroject] -ossamaembarainotebooks azure.com/nby/notebosis MyProjectHellow World ioynb e @
= Jupyter [FSIBINGHENL:: chocpon: 10 mistes a0 wnsed cnangss) @ Azure Notebooks --

Fés Edct Miew msen Gel Kemel Deta Widgats Help NotTrusted -)
ISR RRREIS) o) = e s

This is the main header

I In []: |prine (Hellow world®) |
sub header

<htal>
<hl> vhis is HTML format </hl>
<fheal>

Figure 1-4. A Python script file on Azure

In Figure 1-4, all the green icons show the options that can be
applied on the running file. For instance, you can click + to add new
lines to your file script. Also, you can save, cut, and move lines up and
down. To execute any segment of code, press Ctrl+Enter, or click Run
on the ribbon.

@& hetpsyfproject 1 -ossamaem barainotebooks agure.com/nb/notebois My Project/Heliow Worki ipynb - @
7 jupyter Hellow World Last Chckpoint 12 minies ago. (ursaved changss) @ Azure Notebooks myusrsiss a1
File Edt View nsen Cell Komel Data Widgets Help Hot Trusted |Pythen 36 ©
B+ |x @ B 4+ ¥+ HRm B C W cCoce v| | =5 | L EntenExit RISE Skdeshow

This is the main header

In [3]: prims ("Hellow Wozld”)

Kellow World

sub header

This is HTML format

I

12

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

Offline and Desktop Python Editors

There are many offline Python IDEs such as Spyder, PyDev via Eclipse,
NetBeans, Eric, PyCharm, Wing, Komodo, Python Tools for Visual Studio,
and many more.

The following steps demonstrate how to set up and use Spyder. You
can download Anaconda Navigator and then run the Spyder software, as
shown in Figure 1-5.

Soyoes Pyiton 15 - o g

e e] =]
(S 0 wce ok | et - & B

Figure 1-5. Python Spyder IDE

On the left side, you can write Python scripts, and on the right side you
can see the executed script in the console.

The Basics of Python Programming

This section covers basic Python programming.

13

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

Basic Syntax

A Python identifier is a name used to identify a variable, function, class,
module, or other object in the created script. An identifier starts with a
letter from A to Z or from a to z or an underscore (_) followed by zero or
more letters, underscores, and digits (0 to 9).

Python does not allow special characters such as @, $, and % within
identifiers. Python is a case-sensitive programming language. Thus,
Manpower and manpower are two different identifiers in Python.

The following are the rules for naming Python identifiers:

o (lass names start with an uppercase letter. All other
identifiers start with a lowercase letter.

o Starting an identifier with a single leading underscore
indicates that the identifier is private.

e Starting an identifier with two leading underscores
indicates a strongly private identifier.

o Ifthe identifier also ends with two trailing underscores,
the identifier is a language-defined special name.

The help? method can be used to get support from the Python user
manual, as shown in Listing 1-1.

Listing 1-1. Getting Help from Python
In [3]: help?

Signature: help(*args, **kwds)

Type: _Helper

String form: Type help() for interactive help, or help(object)
for help about object.

Namespace: Python builtin

14

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

File: ~/anaconda3_501/1ib/python3.6/ sitebuiltins.py
Docstring:
Define the builtin 'help’.

This is a wrapper around pydoc.help that provides a helpful
message
when 'help' is typed at the Python interactive prompt.

Calling help() at the Python prompt starts an interactive help
session.
Calling help(thing) prints help for the python object 'thing'.

The smallest unit inside a given Python script is known as a foken,
which represents punctuation marks, reserved words, and each individual
word in a statement, which could be keywords, identifiers, literals, and
operators.

Table 1-1 lists the reserved words in Python. Reserved words are the
words that are reserved by the Python language already and can’t be
redefined or declared by the user.

Table 1-1. Python Reserved Keywords

and exec not continue global with yield in
assert finally or def if return else is
break for pass except lambda while try
class from print del import raise elif

Lines and Indentation

Line indentation is important in Python because Python does not depend
on braces to indicate blocks of code for class and function definitions

or flow control. Therefore, a code segment block is denoted by line
indentation, which is rigidly enforced, as shown in Listing 1-2.

15

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON
Listing 1-2. Line Indentation Syntax Error

In [4]:age, mark, code=10,75,"CIS2403"
print (age)
print (mark)
print (code)

File "<ipython-input-4-5e544bb51da0>", line 4
print (code)
IndentationError: unexpected indent

Multiline Statements

Statements in Python typically end with a new line. But a programmer
can use the line continuation character (\) to denote that the line should

continue, as shown in Listing 1-3. Otherwise, a syntax error will occur.

Listing 1-3. Multiline Statements

In [5]:Tv=15
Mobile=20 Tablet = 30
total = TV +
Mobile +
Tablet
print (total)

File "<ipython-input-5-68bc7095f603>", line 5
total = TV +
SyntaxError: invalid syntax

The following is the correct syntax:

In [6]: TV=15
Mobile=20
Tablet = 30
total = TV + \

16

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

Mobile + \
Tablet
print (total)

65

The code segment with statements contained within the [], {}, or ()
brackets does not need to use the line continuation character, as shown in
Listing 1-4.

Listing 1-4. Statements with Quotations

In [7]: days = ['Monday', 'Tuesday', 'Wednesday',
'Thursday', 'Friday']
print (days)

['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']

Quotation Marks in Python

Python accepts single ('), double ("), and triple (" ' ' or """) quotes to
denote string literals, as long as the same type of quote starts and ends the
string. However, triple quotes are used to span the string across multiple

lines, as shown in Listing 1-5.

Listing 1-5. Quotation Marks in Python

In [8]:sms1 = "Hellow World'
sms2 = "Hellow World"
sms3 = """ Hellow World"""
sms4 = """ Hellow
World"""
print (sms1)
print (sms2)
print (sms3)
print (sms4)

17

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

Hellow World
Hellow World
Hellow World
Hellow

World

Multiple Statements on a Single Line

Python allows the use of \n to split line into multiple lines. In addition,
the semicolon (;) allows multiple statements on a single line if neither
statement starts a new code block, as shown in Listing 1-6.

Listing 1-6. The Use of the Semicolon and New Line Delimiter

In [9]: TV=15; name="Nour"; print (name); print ("Welcome
to\nDubai Festival 2018")
Nour

Welcome to
Dubai Festival 2018

Read Data from Users

The line code segment in Listing 1-7 prompts the user to enter a name and
age, converts the age into an integer, and then displays the data.

Listing 1-7. Reading Data from the User

In [10]:name = input("Enter your name ")
age = int (input("Enter your age "))

print ("\nName =", name); print ("\nAge =", age)

18

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

Enter your name Nour
Enter your age 12

Name = Nour

Age = 12

Declaring Variables and Assigning Values

There is no restriction to declaring explicit variables in Python. Once you
assign a value to a variable, Python considers the variable according to
the assigned value. If the assigned value is a string, then the variable is
considered a string. If the assigned value is a real, then Python considers
the variable as a double variable. Therefore, Python does not restrict you
to declaring variables before using them in the application. It allows you to
create variables at the required time.

Python has five standard data types that are used to define the
operations possible on them and the storage method for each of them.

¢ Number

o String
° List
o Tuple

e Dictionary

The equal (=) operator is used to assign a value to a variable, as shown
in Listing 1-8.

19

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

Listing 1-8. Assign Operator

In [11]: age = 11
name ="Nour"
tall=100.50

In [12]: print (age)
print (name)
print (tall)

11
Nour
100.5

Multiple Assigns

Python allows you to assign a value to multiple variables in a single

statement, which is also known as multiple assigns. You can assign a single

value to multiple variables or assign multiple values to multiple variables,

as shown in Listing 1-9.

Listing 1-9. Multiple Assigns

In [13]:age= mark = code =25
print (age)
print (mark)
print (code)

25
25
25

In [14]:age, mark, code=10,75,"CIS2403"
print (age)
print (mark)
print (code)

20

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

10
75
CIS2403

Variable Names and Keywords

A variable is an identifier that allocates specific memory space and
assigns a value that could change during the program runtime. Variable
names should refer to the usage of the variable, so if you want to create

a variable for student age, then you can name it as age or student_age.
There are many rules and restrictions for variable names. It’s not allowed
to use special characters or white spaces in variable naming. For instance,
variable names shouldn’t start with any special character and shouldn’t
be any of the Python reserved keywords. The following example shows
incorrect naming: {?age, lage, age student, and, if, 1 age, etc}.
The following shows correct naming for a variable: {age, agel, age 1,
if age, etc}.

Statements and Expressions

A statement is any unit of code that can be executed by a Python
interpreter to get a specific result or perform a specific task. A program
contains a sequence of statements, each of which has a specific purpose
during program execution. The expression is a combination of values,
variables, and operators that are evaluated by the interpreter to do a
specific task, as shown in Listing 1-10.

Listing 1-10. Expression and Statement Forms

In [16]:# Expressions
x=0.6 # Statement
x=3.9 * x * (1-x) # Expressions
print (round(x, 2))

0.94
21

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

Basic Operators in Python

Operators are the constructs that can manipulate the value of operands. Like
different programming languages, Python supports the following operators:

e Arithmetic operators

e Relational operators

o Assign operators

e Logical operators

e Membership operators
o Identity operators

o Bitwise operators

Arithmetic Operators

Table 1-2 shows examples of arithmetic operators in Python.

Table 1-2. Python Arithmetic Operators

Operators Description Example Output

// Performs floor division (gives the integer print (13//5) 2
value after division)

+ Performs addition print (13+5) 18

- Performs subtraction print (13-5) 8

* Performs multiplication print (2*5) 10

/ Performs division print (13/5) 2.6

% Returns the remainder after division print (13%5) 3
(modulus)

koK Returns an exponent (raises to a power) print (2**3) 8

22

CHAPTER 1

Relational Operators

Table 1-3 shows examples of relational operators in Python.

Table 1-3. Python Relational Operators

INTRODUCTION TO DATA SCIENCE WITH PYTHON

Operators Description Example Output
< Less than print (13<5) False
> Greater than print (13>5) True
<= Less than or equal to print (13<=5) False
>= Greater than or equal to print (2>=5) False
== Equal to print (13==5) False
I= Not equal to print (13! =5) True
Assign Operators
Table 1-4 shows examples of assign operators in Python.
Table 1-4. Python Assign Operators
Operators Description Example Output
= Assigns x=10 10
print (x)
/= Divides and assigns x=10; Xx/=2 5.0
print (x)
+= Adds and assigns X=10; X+=7 17
print (x)
-= Subtracts and assigns Xx=10; X-=6 4
print (x)
(continued)

23

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

Table 1-4. (continued)

Operators Description Example Output

= Multiplies and assigns X=10; x=5 50
print (x)

%= Modulus and assigns X=13; X%=5 3
print (x)

*k= Exponent and assigns X=10; x**=3 1000
print(x)

//= Floor division and assigns x=10; x//=2 5
print(x)

Logical Operators

Table 1-5 shows examples of logical operators in Python.

Table 1-5. Python Logical Operators

Operators Description Example Output

and Logical AND (when both conditions ~ x=10>5 and 4>20 False
are true, the output will be true) print (x)

or Logical OR (if any one condition x=10>5 or 4>20 True
is true, the output will be true) print (x)

not Logical NOT (complements the x=not (10<4) True
condition; i.e., reverses it) print (x)

A Python program is a sequence of Python statements that have
been crafted to do something. It can be one line of code or thousands of
code segments written to perform a specific task by a computer. Python
statements are executed immediately and do not wait for the entire

24

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

program to be executed. Therefore, Python is an interpreted language that
executes line per line. This differs from other languages such as C#, which
is a compiled language that needs to handle the entire program.

Python Comments

There are two types of comments in Python: single-line comments and
multiline comments.

The # symbol is used for single-line comments.

Multiline comments can be given inside triple quotes, as shown in
Listing 1-11.

Listing 1-11. Python Comment Forms

In [18]: # Python single line comment
In [29]: """ This

Is

Multi-line comment

Formatting Strings

The Python special operator % helps to create formatted output. This
operator takes two operands, which are a formatted string and a value. The
following example shows that you pass a string and the 3.14259 value in
string format. It should be clear that the value can be a single value, a tuple
of values, or a dictionary of values.

In [20]: print ("pi=%s"%"3.14159")

pi=3.14159

25

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

Conversion Types

You can convert values using different conversion specifier syntax, as
summarized in Table 1-6.

Table 1-6. Conversion Syntax

Syntax Description

%C Converts to a single character

%d, %1 Converts to a signed decimal integer or long integer
%u Converts to an unsigned decimal integer

%e, hE Converts to a floating point in exponential notation
%t Converts to a floating point in fixed-decimal notation
%g Converts to the value shorter of %f and %e

%G Converts to the value shorter of %f and %E

%0 Converts to an unsigned integer in octal

%Y Converts to a string generated with repr ()

%S Converts to a string using the st () function

%Xy X Converts to an unsigned integer in hexadecimal

For example, the conversion specifier %s says to convert the value to
a string. Therefore, to print a numerical value inside string output, you
can use, for instance, print("pi=%s" % 3.14159). You can use multiple
conversions within the same string, for example, to convert into double,
float, and so on.

In [1]:print("The value of %s is = %02f" % ("pi", 3.14159))

The value of pi is = 3.141590

26

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

You can use a dot (.) followed by a positive integer to specify the
precision. In the following example, you can use a tuple of different data
types and inject the output in a string message:

In [21]:print ("Your name is %s, and your height is %.2f while
your weight is %.2d" % ('Ossama', 172.156783, 75.56647))

Your name is Ossama, and your height is 172.16 while your
weight is 75

In the previous example, you can see that %. 2 is replaced with the
value 172.16 with two decimal fractions after the decimal point, while %2d
is used to display decimal values only but in a two-digit format.

You can display values read directly from a dictionary, as shown next,
where %(name)s says to take as a string the dictionary value of the key Name
and %(height).2f says to take it as a float with two fraction values, which
are the dictionary values of the key height:

In [23]:print ("Hi %(Name)s, your height is %(height).2f"
%{'Name':"Ossama", "height': 172.156783})

Hi Ossama, your height is 172.16

The Replacement Field, {}

You can use the replacement field, {}, as a name (or index). If an index is
provided, it is the index of the list of arguments provided in the field. It’s
not necessary to have indices with the same sequence; they can be in a
random order, such as indices 0, 1, and 2 or indices 2, 1, and 0.

In [24]:x = "price is"
print ("{1} {o} {2}".format(x, "The", 1920.345))

The price is 1920.345

27

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

Also, you can use a mix of values combined from lists, dictionaries,
attributes, or even a singleton variable. In the following example, you
will create a class called A(), which has a single variable called x that is
assigned the value 9.

Then you create an instance (object) called w from the class A().
Then you print values indexed from variable {0} and the {1[2]} value

from the list of values ["a," "or," "is"], where 1 refers to the index
of printing and 2 refers to the index in the given list where the string
index is 0. {2[test]} refers to index 2 in the print string and reads

its value from the passed dictionary from the key test. Finally, {3.x}
refers to the third index, which takes its value from w, which is an

instance of the class A().

In [34]:class A():x=9 w=A()
print ("{o} {1[2]} {2[test]} {3.x}".format("This", ["a",
"or", "is"], {"test": "another"},w))

This is another 9

In [34]:print ("{1[1]} {o} {2[2]} {2[test]}{3.x}".
format("This", ["a", "or", "is"], {"test": "another"},w))

or This is another 9

The Date and Time Module

Python provides a time package to deal with dates and times. You can
retrieve the current date and time and manipulate the date and time using
the built-in methods.

The example in Listing 1-12 imports the time package and calls its
.localtime() function to retrieve the current date and time.

28

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

Listing 1-12. Time Methods

In [42]:import time localtime = time.asctime(time.
localtime(time.time()))
print ("Formatted time
print(time.localtime())
print (time.time())

:", localtime)

Formatted time : Fri Aug 17 19:12:07 2018

time.struct time(tm year=2018, tm mon=8, tm mday=17,
tm_hour=19, tm min=12, tm sec=7, tm wday=4, tm yday=229,
tm_isdst=0)

1534533127.8304486

Time Module Methods

Python provides various built-in time functions, as in Table 1-7, that can be
used for time-related purposes.

Table 1-7. Built-in Time Methods

Methods Description

time() Returns time in seconds since January 1, 1970.
asctime(time) Returns a 24-character string, e.g., Sat Jun 16 21:27:18 2018.
sleep(time) Used to stop time for the given interval of time.

strptime Returns a tuple with nine time attributes. It receives a string
(String,format) of date and a format.
time.struct time(tm year=2018, tm mon=6,
tm mday=16, tm_hour=0, tm min=0, tm sec=0,
tm wday=3, tm yday=177, tm isdst=-1)

(continued)

29

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

Table 1-7. (continued)

Methods Description

gtime()/ Returns struct_time, which contains nine time attributes.
gtime(sec)

mktime() Returns the seconds in floating point since the epoch.
strftime Returns the time in a particular format. If the time is not
(format)/ given, the current time in seconds is fetched.

strftime

(format,time)

Python Calendar Module

Python provides a calendar module, as in Table 1-8, which provides many

functions and methods to work with a calendar.

Table 1-8. Built-in Calendar Module Functions

Methods Description

prcal(year) Prints the whole calendar of the year.

firstweekday() Returns the first weekday. It is by default 0,
which specifies Monday.

isleap(year) Returns a Boolean value, i.e., true or false.

monthcalendar(year,month)

leapdays(year1,year2)

prmonth(year,month)

Returns true in the case the given year is a leap
year; otherwise, false.

Returns the given month with each week as
one list.

Returns the number of leap days from year1
to year2.

Prints the given month of the given year.

30

CHAPTER 1

INTRODUCTION TO DATA SCIENCE WITH PYTHON

You can use the Calendar package to display a 2018 calendar as shown

here:

In [45]:import calendar

Wb

16
23
30

1¢
23
30

Tu

1s
23
30

(=]
(-]

10
17
24

10
17
24
31

Tu

ls
23
30

calendar.prcal(2018)
2018
January February
We Th Pr Sa Su Mo Tu We Th Fr
3 4 5 &6 7 1 2
10 11 12 13 14 5 6 7 8 9
17 18 19 20 21 12 13 14 15 16
24 25 26 27 28 19 20 21 22 23
31 26 27 28
April May
We Th Pr Sa Su Mo Tu We Th Fr
1 1 2 3 4
4 5 6 7 8 7 8§ 910 11
11 12 13 14 15 14 15 16 17 18
18 18 20 21 22 21 22 23 24 25
25 26 27 28 29 28 29 30 31
July ARugust
We Th Fr Sa Su Mo Tu We Th Fr
1 12 3
4 5 & 7 8 6 7 & 910
11 12 13 14 15 13 14 15 1s 17
18 19 20 21 22 20 21 22 23 24
25 26 27 28 29 27 28 2% 30 31
Cctober November
We Th Fr Sa Su Mo Tu We Th Fr
3 4 5 8 17 1 2
10 11 12 13 14 5 &€ 7 8 ¢
17 18 19 20 21 12 13 14 15 16
24 25 26 27 28 19 20 21 22 23
31 26 27 28 29 30

Sa

10
17
24

Sa

12
19
26

11
18
25

Sa

10
17
24

Su

11
18
25

Su

13
20
27

Su

12
19
26

Su

11
18
25

12
19
26

11
18
25

10
17
24

10
17
24
31

19
26

March
We Th Pr
12
7T 8 ¢
14 15 16
21 22 23
28 29 30

June
We Th Pr
1
& 7 8
13 14 135
20 21 22
27 28 2¢

September

Tu

4
11
18
25

We Th Fr

5 & 7
12 13 14
19 20 21
26 27 28

December
We Th Fr

5 & 7
12 13 14
19 20 21
26 27 28

Sa

10
17
24
31

Sa

16
23
30

Sa

15
22
29

Sa

15
22
29

Su

[y
L e

Su

[y
- o W

31

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

Fundamental Python Programming
Techniques

This section demonstrates numerous Python programming syntax
structures.

Selection Statements

The if statement is used to execute a specific statement or set of
statements when the given condition is true. There are various forms of i
structures, as shown in Table 1-9.

Table 1-9. if Statement Structure

Form if statement if-else Statement Nested if Statement
Structure if(condition): if(condition): if (condition):
statements statements statements
else: elif (condition):
statements statements
else:
statements

The if statement is used to make decisions based on specific
conditions occurring during the execution of the program. An action or set
of actions is executed if the outcome is true or false otherwise. Figure 1-6
shows the general form of a typical decision-making structure found in
most programming languages including Python. Any nonzero and non-
null values are considered true in Python, while either zero or null values
are considered false.

32

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

If condition is If Condition is
true false
Conditional v
Code

®

Figure 1-6. Selection statement structure

Listing 1-13 demonstrates two examples of a selection statement,
remember the indentation is important in the Python structure. The first
block shows that the value of x is equal to 5; hence, the condition is testing
whether x equals 5 or not. Therefore, the output implements the statement
when the condition is true.

Listing 1-13. The if-else Statement Structure

In [13]:#Comparison operators

X=5
if x==5:
print ('Equal 5')
elif x»5:
print ('Greater than 5")
elif x<5:

print ('Less than 5")

Equal 5

33

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

In [14]:year=2000
if year%4==0:
print("Year(", year ,")is Leap")
else:
print (year , "Year is not Leap")

Year(2000)is Leap

Indentation determines which statement should be executed. In
Listing 1-14, the if statement condition is false, and hence the outer print
statement is the only executed statement.

Listing 1-14. Indentation of Execution

In [12]:#Indentation
X=2
if x>2:
print ("Bigger than 2")
print (" X Value bigger than 2")
print ("Now we are out of if block\n")

Now we are out of if block

The nested if statement is an if statement that is the target of another
if statement. In other words, a nested if statement is an if statement
inside another if statement, as shown in Listing 1-15.

Listing 1-15. Nested Selection Statements

In [2]:a=10
if a»=20:
print ("Condition is True")
else:
if a»=15:
print ("Checking second value")

34

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

else:
print ("All Conditions are false")

All Conditions are false

Iteration Statements

There are various iteration statement structures in Python. The for
loop is one of these structures; it is used to iterate the elements of
a collection in the order that they appear. In general, statements
are executed sequentially, where the first statement in a function is
executed first, followed by the second, and so on. There may be a
situation when you need to execute a block of code several numbers
of times.

Control structures allow you to execute a statement or group of
statements multiple times, as shown by Figure 1-7.

A

Conditional Code

If condition
is true

If condition
is false

Figure 1-7. A loop statement

35

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

Table 1-10 demonstrates different forms of iteration statements. The
Python programming language provides different types of loop statements
to handle iteration requirements.

Table 1-10. Iteration Statement Structure

1 for loop
Executes a sequence of statements multiple times and abbreviates the
code that manages the loop variable.

2 Nested loops
You can use one or more loop inside any another while, for, or do. .
while loop.

3 while loop
Repeats a statement or group of statements while a given condition is true.
It tests the condition before executing the loop body.

4 do {....} while ()
Repeats a statement or group of statements while a given condition is true.
It tests the condition after executing the loop body.

Python provides various support methods for iteration statements
where it allows you to terminate the iteration, skip a specific iteration,
or pass if you do not want any command or code to execute. Table 1-11
summarizes control statements within the iteration execution.

36

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

Table 1-11. Loop Control Statements

1 Break statement
Terminates the loop statement and transfers execution to the statement
immediately following the loop.

2 Continue statement
Causes the loop to skip the remainder of its body and immediately retests
its condition prior to reiterating.

3 Pass statement
The pass statement is used when a statement is required syntactically but
you do not want any command or code to execute.

The range() statement is used with for loop statements where you
can specify one value. For example, if you specify 4, the loop statement
starts from 1 and ends with 3, which is n-1. Also, you can specify
the start and end values. The following examples demonstrate loop
statements.

Listing 1-16 displays all numerical values starting from 1 up to n-1,
where n=4.

Listing 1-16. for Loop Statement

In [23]:# use the range statement
for a in range (1,4):

print (a)
1
2
3
Listing 1-17 displays all numerical values starting from 0 up to n-1,
where n=4.

37

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

Listing 1-17. Using the range() Method

In [24]:# use the range statement
for a in range (4):
print (a)

w N = O

Listing 1-18 displays the while iteration statement.

Listing 1-18. while Iteration Statement

In [32]:ticket=4
while ticket>0:
print ("Your ticket number is ", ticket)
ticket -=1

Your ticket number is 4
Your ticket number is 3
Your ticket number is 2
Your ticket number is 1

Listing 1-19 iterates all numerical values in a list to find the maximum
value.

Listing 1-19. Using a Selection Statement Inside a Loop Statement

In [2]:1largest = None

print ('Before:', largest)

for val in [30, 45, 12, 90, 74, 15]:
if largest is None or val>largest:

largest = val

print ("Loop", val, largest)
print ("Largest", largest)

38

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

Before: None
Loop 30 30
Loop 45 45
Loop 90 90
Largest 90

In the previous examples, the first and second iterations used the for
loop with a range statement. In the last example, iteration goes through a
list of elements and stops once it reaches the last element of the iterated
list.

A break statement is used to jump statements and transfer the
execution control. It breaks the current execution, and in the case of an
inner loop, the inner loop terminates immediately. However, a continue
statement is a jump statement that skips execution of current iteration.
After skipping, the loop continues with the next iteration. The pass
keyword is used to execute nothing. The following examples demonstrate
how and when to employ each statement.

The Use of Break, Continues, and Pass
Statements

Listing 1-20 shows the break, continue, and pass statements.

Listing 1-20. Break, Continue, and Pass Statements

In [44]:for letter in 'Python3':
if letter == 'o':
break
print (letter)

39

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

P
y
t
h
In [45]: a=0
while a<=5:
a=a+l
if a%2==0:
continue
print (a)
print ("End of Loop")
1
3
5
End of Loop
In [46]: for i in [1,2,3,4,5]:
if i==3:
pass
print ("Pass when value is", i)
print (i)
1
2
Pass when value is 3
3
4
5

As shown, you can iterate over a list of letters, as shown in Listing 1-20,
and you can iterate over the word Python3 and display all the letters. You
stop iteration once you find the condition, which is the letter 0. In addition,

40

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

you can use the pass statement when a statement is required syntactically
but you do not want any command or code to execute. The pass statement
is a null operation; nothing happens when it executes.

try and except

try and except are used to handle unexpected values where you would
like to validate entered values to avoid error occurrence. In the first
example of Listing 1-21, you use try and except to handle the string “Al
Fayoum,” which is not convertible into an integer, while in the second
example, you use try and except to handle the string 12, which is
convertible to an integer value.

Listing 1-21. try and except Statements

In [14]: # Try and Except
astr="Al Fayoum'
errosms=""
try:
istr=int(astr) # error
except:
istr=-1
errosms="\nIncorrect entry"
print ("First Try:", istr , errosms)

First Try: -1
Incorrect entry

In [15]:# Try and Except

astr="12"
errosms=" "'
try:

istr=int(astr) # error
except:

41

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

istr=-1
errosms="\nIncorrect entry"
print ("First Try:", istr , errosms)

First Try: 12

String Processing

A string is a sequence of characters that can be accessed by an expression
in brackets called an index. For instance, if you have a string variable
named var1, which maintains the word PYTHON, then var1[1] will return
the character Y, while var1[-2] will return the character O. Python
considers strings by enclosing text in single as well as double quotes.
Strings are stored in a contiguous memory location that can be accessed
from both directions (forward and backward), as shown in the following
example, where

o Forward indexing starts with 0, 1, 2, 3, and so on.
e Backward indexing starts with -1, -2, -3, -4, and so on.
Forward Indexing

LO 1 2 3 4 5

str [P |Y | T | H o | N
-6 B -4 3 2 -4

Backward Indexing

String Special Operators

Table 1-12 lists the operators used in string processing. Say you have the
two variables a= 'Hello'andb = 'Python'.Then you can implement the
operations shown in Table 1-12.

42

CHAPTER 1

Table 1-12. String Operators

INTRODUCTION TO DATA SCIENCE WITH PYTHON

Operator Description Outputs

+ Concatenation: adds values on either side ofthe ~ a + b will give
operator HelloPython.

* Repetition: creates new strings, concatenating a*2 will give
multiple copies of the same string -HelloHello.

I Slice: gives the character from the given index a[1] will give e.

[:] Range slice: gives the characters from the given a[1:4] will give
range ell.

in Membership: returns true if a character exists in H in a will give
the given string true.

not in Membership: returns true if a character doesnot M not in a will

exist in the given string

give true.

Various symbols are used for string formatting using the operator %.

Table 1-13 gives some simple examples.

Table 1-13. String Format Symbols

Format Symbol Conversion

%c Character

%s String conversion via
stx () prior to formatting

%1 Signed decimal integer

%d Signed decimal integer

%U Unsigned decimal integer

(continued)

43

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

Table 1-13. (continued)

Format Symbol Conversion

%0 Octal integer

%X Hexadecimal integer
(lowercase letters)

%X Hexadecimal integer
(uppercase letters)

%e Exponential notation (with
lowercase e)

%E Exponential notation (with
uppercase E)

e Floating-point real number

%g The shorter of %f and %e

%G The shorter of %f and %E

String Slicing and Concatenation

String slicing refers to a segment of a string that is extracted using

an index or using search methods. In addition, the len() method is

a built-in function that returns the number of characters in a string.
Concatenation enables you to join more than one string together to form
another string.

The operator [n:m] returns the part of the string from the nth character
to the mth character, including the first but excluding the last. If you omit
the first index (before the colon), the slice starts at the beginning of the
string. In addition, if you omit the second index, the slice goes to the
end of the string. The examples in Listing 1-22 show string slicing and
concatenation using the + operator.

44

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

Listing 1-22. String Slicing and Concatenation

In [3]:varl = 'Welcome to Dubai'
var2 = "Python Programming"
print ("vari[o]:", vari[o])
print ("var2[1:5]:", var2[1:5])

vari[o]: W
var2[1:5]: ytho

In [5]:st1="Hello"
st2=" World'
fullst=st1 + st2
print (fullst)

Hello World

In [11]:# looking inside strings
fruit = 'banana'
letter= fruit[1]
print (letter)

index=3
w = fruit[index-1]
print (w)
print (len(fruit))
a
n
6

String Conversions and Formatting Symbols

It is possible to convert a string value into a float, double, or integer if the
string value is applicable for conversion, as shown in Listing 1-23.

45

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

Listing 1-23. String Conversion and Format Symbols

In [14]:#Convert string to int
str3 = '123'
str3= int (str3)+1
print (str3)

124

In [15]:#Read and convert data
name=input('Enter your name: ")
age=input('Enter your age: ")
age= int(age) + 1
print ("Name: %s"% name ,"\t Age:%d"% age)

Enter your name: Omar
Enter your age: 41

Name: Omar Age:42

Loop Through String

You can use iteration statements to go through a string forward or
backward. A lot of computations involve processing a string one character
at a time. String processing can start at the beginning, select each character
in turn, do something to it, and continue until the end. This pattern of
processing is called a traversal. One way to write a traversal is with awhile
loop, as shown in Listing 1-24.

Listing 1-24. Iterations Through Strings

In [30]:# Looking through string
fruit ="banana'
index=0
while index< len(fruit):
letter = fruit [index]

46

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

print (index, letter)
index=index+1

Ui W N B O
v S v S v o

In [31]:print ("\n Implementing iteration with continue")

while True:
line = input('Enter your data>")
if line[0]=="#":

continue
if line =="done':
break
print (line)
print ('End!")

Implementing iteration with continue

Enter your data>Higher Colleges of Technology
Higher Colleges of Technology

Enter your data>#

Enter your data>done
End!

In [32]:print ("\nPrinting in reverse order")
index=len(fruit)-1
while index>=0 :
letter = fruit [index]
print (index, letter)
index=index-1

47

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

Printing in reverse order
5 a
4n
3a
2n
1a
0b

Letterwise iteration
In [33]:Country="Egypt'
for letter in Country:
print (letter)

+ T < 0o m

You can use iterations as well to count letters in a word or to count

words in lines, as shown in Listing 1-25.

Listing 1-25. Iterating and Slicing a String

In [2]:# Looking and counting
word="banana’
count=0
for letter in word:
if letter =='a':

count +=1

print ("Number of a in

Number of a in banana is : 3

48

, word, "is :

, count)

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

In [3]:# String Slicing
s="Welcome to Higher Colleges of Technology"
print (5[0'4])
print (s[6:7])
print (s
print (s[:
print (s[2:
print (s [:
print (s)

Welc

e

e to Higher Co Welcome to H

lcome to Higher Colleges of Technology Welcome to Higher
Colleges of Technology

Welcome to Higher Colleges of Technology

Python String Functions and Methods

Numerous built-in methods and functions can be used for string
processing; Table 1-14 lists these methods.

Table 1-14. Built-in String Methods

Method/Function Description

capitalize() Capitalizes the first character of the string.
count(string, Counts a number of times a substring occurs in a string
begin,end) between the beginning and end indices

endswith(suffix, Returns a Boolean value if the string terminates with a
begin=0,end=n) given suffix between the beginning and end.

(continued)

49

CHAPTER 1

INTRODUCTION TO DATA SCIENCE WITH PYTHON

Table 1-14. (continued)

Method/Function Description

find(substring, Returns the index value of the string where the substring is

beginIndex, found between the begin index and the end index.

endIndex)

index(subsring, Throws an exception if the string is not found and works

beginIndex, same as the find () method.

endIndex)

isalnum() Returns true if the characters in the string are
alphanumeric (i.e., letters or numbers) and there is at least
one character. Otherwise, returns false.

isalpha() Returns true when all the characters are letters and there
is at least one character; otherwise, false.

isdigit() Returns true if all the characters are digits and there is at
least one character; otherwise, false.

islower() Returns true if the characters of a string are in lowercase;
otherwise, false.

isupper() Returns false if the characters of a string are in uppercase;
otherwise, false.

isspace() Returns true if the characters of a string are white space;
otherwise, false.

len(string) Returns the length of a string.

lower() Converts all the characters of a string to lowercase.

upper () Converts all the characters of a string to uppercase.

startswith(str, Returns a Boolean value if the string starts with the given

begin=0,end=n)

str between the beginning and end.

50

(continued)

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

Table 1-14. (continued)

Method/Function Description
swapcase() Inverts the case of all characters in a string.
Istrip() Removes all leading white space of a string and can also

be used to remove a particular character from leading
white spaces.

rstrip() Removes all trailing white space of a string and can also
be used to remove a particular character from trailing
white spaces.

Listing 1-26 shows how to use built-in methods to remove white space
from a string, count specific letters within a string, check whether the
string contains another string, and so on.

Listing 1-26. Implementing String Methods

In [29]:varl =" Higher Colleges of Technology '
var2="'College’
var3='g’
print (vari.upper())
print (vari.lower())
print ('WELCOME TO'.lower())
print (len(vari))
print (vari.count(var3, 2, 29)) # find how many g
letters in vari
print (var2.count(var3))

HIGHER COLLEGES OF TECHNOLOGY
higher colleges of technology
welcome to

51

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

31

1

In [33]:print (vari.endswith('r"))
print (vari.startswith('0"))
print (vari.find('h', 0, 29))
print (vari.lstrip()) # It removes all leading whitespace
of a string in vari
print (vari.rstrip()) # It removes all trailing
whitespace of a string in varil
print (vari.strip()) # It removes all leading and
trailing whitespace
print ("\n")
print (varl.replace('Colleges', 'University'))
False

False

4

Higher Colleges of Technology
Higher Colleges of Technology
Higher Colleges of Technology

Higher University of Technology

The in Operator

The word in is a Boolean operator that takes two strings and returns true if
the first appears as a substring in the second, as shown in Listing 1-27.

Listing 1-27. The in Method in String Processing

In [43]:varl =' Higher Colleges of Technology '
var2="College’
var3='g’

52

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

print (var2 in vari)
print (var2 not in vari)

True
False

Parsing and Extracting Strings

The find operator returns the index of the first occurrence of a substring

in another string, as shown in Listing 1-28. The atpost variable is used to
maintain a returned index of the substring @ as it appears in the Maindata
string variable.

Listing 1-28. Parsing and Extracting Strings

In [39]:# Parsing and Extracting strings
Maindata = 'From ossama.embarak@hct.ac.ae Sunday
Jan 4 09:30:50 2017' atpost = Maindata.find('@")
print ("\NKCCCCCCCLLLLLLEOPOOO>>>>>>>> ")
print (atpost)
print (Maindata[:atpost])
data = Maindata[:atpost]
name=data.split(' ')
print (name)
print (name[1].replace('.', ' ').upper())
print ("\N<<<<<cccc<<<<O>>>>>>>>555™)

CLLLLLLLLLLLLLOIDOOOO0055>>
19

From ossama.embarak
['From', 'ossama.embarak']
OSSAMA EMBARAK
CLLLLLLLLLLLLLODOOOOO00>>>

53

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

In [41]:# Another way to split strings
Maindata = 'From ossama.embarak@hct.ac.ae Sunday
Jan 4 09:30:50 2017'
name= Maindata[:atpost].replace('From',"").upper()
print (name.replace('.'," ").upper().lstrip())
print ("\N<<<<<LLLCC<O>>>>>>>>>555™)
sppos=Maindata.find(' ', atpost)
print (sppos)
print (Maindata[:sppos])
host = Maindata [atpost + 1 : sppos]
print (host)
print ("\NKCCCCCCCLLLLLLOPPOOO>>>>>>> ")

OSSAMA EMBARAK
CLLLLLLLLLLLLLODOOOOOOO00>>
29

From ossama.embarak@hct.ac.ae
hct.ac.ae
CLLLLLLLLLLLLLODOOOOO0000>>

Tabular Data and Data Formats

Data is available in different forms. It can be unstructured data,
semistructured data, or structured data. Python provides different
structures to maintain data and to manipulate it such as variables, lists,
dictionaries, tuples, series, panels, and data frames. Tabular data can be
easily represented in Python using lists of tuples representing the records
of the data set in a data frame structure. Though easy to create, these
kinds of representations typically do not enable important tabular data
manipulations, such as efficient column selection, matrix mathematics, or
spreadsheet-style operations. Tabular is a package of Python modules for
working with tabular data. Its main object is the tabarray class, which is a

54

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

data structure for holding and manipulating tabular data. You can put data
into a tabarray object for more flexible and powerful data processing. The
Pandas library also provides rich data structures and functions designed to
make working with structured data fast, easy, and expressive. In addition,
it provides a powerful and productive data analysis environment.

A Pandas data frame can be created using the following constructor:

pandas.DataFrame(data, index, columns, dtype, copy)

A Pandas data frame can be created using various input forms such as

the following:
o List
o Dictionary
o Series

e Numpy ndarrays
¢ Another data frame

Chapter 3 will demonstrate the creation and manipulation of the data

frame structure in detail.

Python Pandas Data Science Library

Pandas is an open source Python library providing high-performance

data manipulation and analysis tools via its powerful data structures. The
name Pandas is derived from “panel data,” an econometrics term from
multidimensional data. The following are the key features of the Pandas library:

e Provides a mechanism to load data objects from

different formats

o Creates efficient data frame objects with default and

customized indexing

o Reshapes and pivots date sets

55

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

e Provides efficient mechanisms to handle missing data
e Merges, groups by, aggregates, and transforms data

e Manipulates large data sets by implementing various
functionalities such as slicing, indexing, subsetting,
deletion, and insertion

o Provides efficient time series functionality

Sometimes you have to import the Pandas package since the standard
Python distribution doesn’t come bundled with the Pandas module.
A lightweight alternative is to install Numpy using popular the Python
package installer pip. The Pandas library is used to create and process
series, data frames, and panels.

A Pandas Series

A series is a one-dimensional labeled array capable of holding data of any
type (integer, string, float, Python objects, etc.). Listing 1-29 shows how to
create a series using the Pandas library.

Listing 1-29. Creating a Series Using the Pandas Library

In [34]:#Create series from array using pandas and numpy
import pandas as pd
import numpy as np
data = np.array([90,75,50,66])
s = pd.Series(data,index=['A",'B',"'C",'D"])
print (s)

A 90

B 75

C 50

D 66

dtype: int64

56

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON
In [36]:print (s[1])
75

In [37]:#Create series from dictionary using pandas
import pandas as pd
import numpy as np
data = {'Ahmed' : 92, 'Ali' : 55, 'Omar' : 83}
s = pd.Series(data,index=["Ali",'Ahmed', 'Omar'])
print (s)

Ali 55

Ahmed 92
Omar 83
dtype: int64

In [38]:print (s[1:])

Ahmed 92
Omar 83
dtype: int64

A Pandas Data Frame

A data frame is a two-dimensional data structure. In other words, data is
aligned in a tabular fashion in rows and columns. In the following table,
you have two columns and three rows of data. Listing 1-30 shows how to
create a data frame using the Pandas library.

Name Age

Ahmed 35
Ali 17
Omar 25

57

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON
Listing 1-30. Creating a Data Frame Using the Pandas Library

In [39]:import pandas as pd
data = [['Ahmed',35],['Ali',17],['Omar',25]]
DataFramel = pd.DataFrame(data,columns=['Name', 'Age'])
print (DataFrame1)

Name Age
Ahmed 35
Ali 17
Omar 25

You can retrieve data from a data frame starting from index 1 up to the
end of rows.

In [40]: DataFrame1[1:]

Out[40]: Name Age
Ali 17
2 Omar 25

You can create a data frame using a dictionary.

In [41]:import pandas as pd
data = {'Name':['Ahmed', "Ali', 'Omar',
‘Salwa'], 'Age':[35,17,25,30]}
dataframe2 = pd.DataFrame(data, index=[100, 101, 102, 103])
print (dataframe2)

Age Name
100 35 Ahmed
101 17 Ali
102 25 Omar

103 30 Salwa

58

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON
You can select only the first two rows in a data frame.
In [42]: dataframe2[:2]

Out[42]: Age Name
100 35 Ahmed
101 17 Ali

You can select only the name column in a data frame.

In [43]: dataframe2['Name']

Out[43]:100 Ahmed
101 Ali

102 Omar

103 Salwa

Name: Name, dtype: object

A Pandas Panels

A panelis a 3D container of data that can be created from different data
structures such as from a dictionary of data frames, as shown in Listing 1-31.

Listing 1-31. Creating a Panel Using the Pandas Library

In [44]:# Creating a panel
import pandas as pd
import numpy as np
data = {'Temperature Day1l' : pd.DataFrame(np.random.
randn(4, 3)),'Temperature Day2' : pd.DataFrame
(np.random.randn(4, 2))}
p = pd.Panel(data)
print (p['Temperature Day1'])

0 1 2
0 1.152400 -1.298529 1.440522

59

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

1 -1.404988 -0.105308 -0.192273
2 -0.575023 -0.424549 0.146086
3 -1.347784 1.153291 -0.131740

Python Lambdas and the Numpy Library

The lambda operator is a way to create small anonymous functions, in
other words, functions without names. These functions are throwaway
functions; they are just needed where they have been created. The lambda
feature is useful mainly for Lisp programmers. Lambda functions are used
in combination with the functions filter(), map(), and reduce().

Anonymous functions refer to functions that aren’t named and are
created by using the keyword lambda. A lambda is created without using
the def keyword; it takes any number of arguments and returns an
evaluated expression, as shown in Listing 1-32.

Listing 1-32. Anonymous Function

In [34]:# Anonymous Function Definition
summation=lambda val1, val2: vall + val2#Call
summation as a function
print ("The summation of 7 + 10 = ", summation(7,10))

The summation of 7 + 10 = 17

In [46]:result = lambda x, y : x * vy
result(2,5)

Out[46]: 10
In [47]:result(4,10)

Out[47]: 40

60

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

The map() Function

The map() function is used to apply a specific function on a sequence of
data. The map() function has two arguments.

r = map(func, seq)

Here, func is the name of a function to apply, and seq is the sequence
(e.g., alist) that applies the function func to all the elements of the
sequence seq. It returns a new list with the elements changed by func, as
shown in Listing 1-33.

Listing 1-33. Using the map() Function

In [65]:def fahrenheit(T):
return ((float(9)/5)*T + 32)
def celsius(T):
return (float(5)/9)*(T-32)
Temp = (15.8, 25, 30.5,25)
F = list (map(fahrenheit, Temp))
C = list (map(celsius, F))
print (F)
print (C)

[60.44, 77.0, 86.9, 77.0]
[15.799999999999999, 25.0, 30.500000000000004, 25.0]

In [72]:Celsius = [39.2, 36.5, 37.3, 37.8]
Fahrenheit = map(lambda x: (float(9)/5)*x + 32, Celsius)
for x in Fahrenheit:

print(x)

102.56

97.7

99.14
100.03999999999999

61

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

The filter() Function

The filter() function is an elegant way to filter out all elements of a list
for which the applied function returns true.

For instance, the function filter(func, list1) needs a function
called func as its first argument. func returns a Boolean value, in other
words, either true or false. This function will be applied to every element
of the list 1ist1. Only if func returns true will the element of the list be
included in the result list.

The filter() function in Listing 1-34 is used to return only even
values.

Listing 1-34. Using the filter() Function

In [79]:fib = [0,1,1,2,3,5,8,13,21,34,55]
result = filter(lambda x: x % 2==0, fib)
for x in result:
print(x)

34

The reduce () Function

The reduce() function continually applies the function func to a sequence
seq and returns a single value.

The reduce() function is used to find the max value in a sequence of
integers, as shown in Listing 1-35.

62

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

Listing 1-35. Using the reduce() Function

In [81]: f = lambda a,b: a if (a > b) else b
reduce(f, [47,11,42,102,13])

102
In [82]: reduce(lambda x,y: x+y, [47,11,42,13])

113

Python Numpy Package

Numpy is a Python package that stands for “numerical Python.” Itis a
library consisting of multidimensional array objects and a collection of
routines for processing arrays.

The Numpy library is used to apply the following operations:

e Operations related to linear algebra and random

number generation
e Mathematical and logical operations on arrays

e Fourier transforms and routines for shape
manipulation

For instance, you can create arrays and perform various operations

such as adding or subtracting arrays, as shown in Listing 1-36.

Listing 1-36. Example of the Numpy Function

In [83]:a=np.array([[1,2,3],[4,5,6]])
b=np.array([[7,8,9],[10,11,12]])
np.add(a,b)

Out[83]: array([[8, 10, 12], [14, 16, 18]])
In [84]:np.subtract(a,b) #Same as a-b

Out[84]: array([[-6, -6, -6], [-6, -6, -6]])
63

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

Data Cleaning and Manipulation Techniques

Keeping accurate data is highly important for any data scientist.
Developing an accurate model and getting accurate predictions from
the applied model depend on the missing values treatment. Therefore,
handling missing data is important to make models more accurate and
valid.

Numerous techniques and approaches are used to handle missing data
such as the following:

o Fill NA forward

o Fill NA backward

e Drop missing values

o Replace missing (or) generic values
e Replace NaN with a scalar value

The following examples are used to handle the missing values in a
tabular data set:

In [31]: dataset.fillna(0) # Fill missing values with zero value
In [35]: dataset.fillna(method="pad') # Fill methods Forward

In [35]: dataset.fillna(method=" bfill') # Fill methods Backward
In [37]: dataset.dropna() # remove all missing data

Chapter 5 covers different gathering and cleaning techniques.

Abstraction of the Series and Data Frame

A series is one of the main data structures in Pandas. It differs from lists
and dictionaries. An easy way to visualize this is as two columns of data.
The first is the special index, a lot like the dictionary keys, while the

second is your actual data. You can determine an index for a series, or

64

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

Python can automatically assign indices. Different attributes can be used
to retrieve data from a series’ iloc() and loc() attributes. Also, Python
can automatically retrieve data based on the passed value. If you pass an
object, then Python considers that you want to use the index label-based
loc(). However, if you pass an index integer parameter, then Python
considers the iloc() attribute, as indicated in Listing 1-37.

Listing 1-37. Series Structure and Query

In [6]: import pandas as pd
animals = ["Lion", "Tiger", "Bear"]
pd.Series(animals)

Out[6]: 0 Lion
1 Tiger
2 Bear

dtype: object

You can create a series of numerical values.

In [5]: marks = [95, 84, 55, 75]

pd.Series(marks)
Out[5]: 0 95

1 84

2 55

3 75

dtype: int64

You can create a series from a dictionary where indices are the

dictionary keys.

In [11]: quizl = {"Ahmed":75, "Omar": 84, "Salwa": 70}
q = pd.Series(quizl)
q

65

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

Out[11]: Ahmed 75
Omar 84
Salwa 70
dtype: int64

The following examples demonstrate how to query a series.
You can query a series using a series label or the lock() attribute.

In [13]: q.loc['Ahmed']
Out[13]: 75

In [20]: q['Ahmed']

Out[20]: 75
You can query a series using a series index or the ilock() attribute.
In [19]: q.iloc[2]
Out[19]: 70
In [21]: q[2]
Out[21]: 70
You can implement a Numpy operation on a series.

In [25]:s = pd.Series([70,90,65,25, 99])

S

s
Out[25]:0 70
1 90
2 65
3 25
4

dtype: int64

66

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

In [27]:total =0
for val in s:
total += val
print (total)

349
You can get faster results by using Numpy functions on a series.

In [28]: import numpy as np
total = np.sum(s)
print (total)

349

It is possible to alter a series to add new values; it is automatically
detected by Python that the entered values are not in the series, and hence
it adds it to the altered series.

In [29]:s = pd.Series ([99,55,66,88])

.loc['Ahmed'] = 85

Out[29]: 0 99
1 55
2 66
3 88
Ahmed 85

dtype: inté64

You can append two or more series to generate a larger one, as shown
here:

In [32]: test = [95, 84, 55, 75]
marks = pd.Series(test)
s = pd.Series ([99,55,66,88])
s.loc['Ahmed'] = 85

67

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

NewSeries = s.append(marks)

NewSeries
Out[32]: 0 99
1 55
2 66
3 88
Ahmed 85
0 95
1 84
2 55
3 75

dtype: inté64

The data frame data structure is the main structure for data collection
and processing in Python. A data frame is a two-dimensional series object,
as shown in Figure 1-8, where there’s an index and multiple columns of
content each having a label.

e The Data Frame
Joe(), .iloe() Axis 1 (columns)
Animals Owners .columns()
Axis 0 (rows) 0 Dog Chris
1 Bear Kevyn
df.iloc(2) = |2 Tiger Bob |
3 Moose Vinod Values
-+ Giraffe Daniel
6 MuuscT Stephanie df[“m]
df.iloc(5) ["Animals”]

Figure 1-8. Data frame virtual structure

68

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

Data frame creation and queries were discussed earlier in this chapter
and will be discussed again in the context of data collection structures in
Chapter 3.

Running Basic Inferential Analyses

Python provides numerous libraries for inference and statistical analysis such
as Pandas, SciPy, and Numpy. Python is an efficient tool for implementing
numerous statistical data analysis operations such as the following:

e Linear regression

o Finding correlation

e Measuring central tendency

e Measuring variance

e Normal distribution

o Binomial distribution

o Poisson distribution

e Bernoulli distribution

e (Calculating p-value

o Implementing a Chi-square test

Linear regression between two variables represents a straight line
when plotted as a graph, where the exponent (power) of both of the
variables is 1. A nonlinear relationship where the exponent of any variable
is not equal to 1 creates a curve shape.

Let’s use the built-in Tips data set available in the Seaborn Python
library to find linear regression between a restaurant customer’s total bill
value and each bill’s tip value, as shown in Figure 1-9. The function in
Seaborn to find the linear regression relationship is regplot.

69

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

In [40]:import seaborn as sb

Bill Tips

from matplotlib import pyplot as plt

df = sb.load dataset('tips')

sb.regplot(x = "total bill", y = "tip", data = df)
plt.xlabel('Total Bill")

plt.ylabel('Bill Tips"')

plt.show()

10 1

Total Bill

Figure 1-9. Regression analysis

Correlation refers to some statistical relationship involving
dependence between two data sets, such as the correlation between the

price of a product and its sales volume.
Let’s use the built-in Iris data set available in the Seaborn Python library
and try to measure the correlation between the length and the width of the

sepals and petals of three species of iris, as shown in Figure 1-10.

70

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

In [42]: import matplotlib.pyplot as plt
import seaborn as sns
df = sns.load dataset('iris"')
sns.pairplot(df, kind="scatter")
plt.show()

- @

sepal_length
(-2

s=peeenrer o
o*

-

7
6
=
£5
c
=4
=
%3
2
1
25
20
-]
b=l
.;I 15
Z10
-4
05 k.. >
..‘., Z{';&’;.... .. : ';:‘! vg
oo T T T T T T T T L
6 8 2 3 4 2 4 6 0 1 2
sepal_length sepal_width petal_length petal_width

Figure 1-10. Correlation analysis

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

In statistics, variance is a measure of how dispersed the values are from
the mean value. Standard deviation is the square root of variance. In other
words, it is the average of the squared difference of values in a data set
from the mean value. In Python, you can calculate this value by using the
function std() from the Pandas library.

In [58]: import pandas as pd

d = {

‘Name': pd.Series(['Ahmed','Omar','Ali','Salwa’,'Majid’,
'Othman', 'Gameel', 'Ziad', 'Ahlam', 'Zahrah',
"Ayman','Alaa']),

'Age': pd.Series([34,26,25,27,30,54,23,43,40,30,28,46]),

'Height':pd.Series([114.23,173.24,153.98,172.0,153.20,164.6,
183.8,163.78,172.0,164.8 1)}

df = pd.DataFrame(d) #Create a DataFrame

print (df.std())# Calculate and print the standard deviation

Age 9.740574
Height 18.552823
Out[46]: [Text(0,0.5, Frequency'), Text(0.5,0, 'Binomial")]

You can use the describe() method to find the full description of a
data frame set, as shown here:

In [59]: print (df.describe())

Age Height
count 12.000000 12.000000
mean 33.833333 164.448333
std 9.740574 18.552823
min 23.000000 114.230000
25% 26.750000 161.330000

72

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

50% 30.000000 168.400000
75% 40.750000 173.455000
max 54.000000 183.800000

Central tendency measures the distribution of the location of values of
a data set. It gives you an idea of the average value of the data in the data
set and an indication of how widely the values are spread in the data set.

The following example finds the mean, median, and mode values of
the previously created data frame:

In [60]: print ("Mean Values in the Distribution")
print (df.mean())
print ("*******************************")
print ("Median Values in the Distribution")
print (df.median())
print ("*******************************")
print ("Mode Values in the Distribution")
print (df['Height'].mode())

Mean Values in the Distribution
Age 33.833333

Height 164.448333

dtype: float64

Kok koK ok ok ok sk ok sk sk ok sk sk ok ok sk sk sk sk sk sk ksk sk k sk ko k >k
Median Values in the Distribution
Age 30.0

Height 168.4

dtype: float64

>k 3k ok ok ok ok ok >k ok ok ok k ok >k >k ok ok ok ok sk ok >k skoske ok sk k sk kkok
Mode Values of height in the Distribution
0 172.0

dtype: float64

73

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

Summary

This chapter introduced the data science field and the use of Python
programming for implementation. Let’s recap what was covered in this
chapter.

— The data science main concepts and life cycle

— The importance of Python programming and its main
libraries used for data science processing

— Different Python data structure use in data science
applications

— How to apply basic Python programming techniques

— Initial implementation of abstract series and data frames
as the main Python data structure

— Data cleaning and its manipulation techniques
— Running basic inferential statistical analyses

The next chapter will cover the importance of data visualization in
business intelligence and much more.

Exercises and Answers

1. Write a Python script to prompt users to enter
two values; then perform the basic arithmetical
operations of addition, subtraction, multiplication,
and division on the values.

Answer:

In [2]: # Store input numbers:
numl = input('Enter first number: ")

74

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

num2 = input('Enter second number: ")

sumval = float(numi) + float(num2) # Add two numbers
minval = float(num1) - float(num2) # Subtract two numbers
mulval = float(numi) * float(num2) # Multiply two numbers
divval = float(numi) / float(num2) #Divide two numbers

Display the sum
print('The sum of {0} and {1} is {2}'.format(numi, num2,
sumval))

Display the subtraction
print('The subtraction of {0} and {1} is {2}'.format(numi, num2,
minval))

Display the multiplication
print('The multiplication of {0} and {1} is {2}'.format(numi,
num2, mulval))

Display the division
print('The division of {0} and {1} is {2}'.format(numi, num2,
divval))

Enter first number: 10

Enter second number: 5

The sum of 10 and 5 is 15.0

The subtraction of 10 and 5 is 5.0
The multiplication of 10 and 5 is 50.0
The division of 10 and 5 is 2.0

2. Write a Python script to prompt users to enter
the lengths of a triangle sides. Then calculate the
semiperimeters. Calculate the triangle area and
display the result to the user. The area of a triangle is
(s*(s-a)*(s-b)*(s-c))-1/2.

75

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

Answer:

In [3]:a = float(input('Enter first side: '))
b = float(input('Enter second side: '))
c = float(input('Enter third side: "))
s=(a+b+c)/ 2# calculate the semiperimeter

area = (s*(s-a)*(s-b)*(s-c)) ** 0.5 # calculate the area
print('The area of the triangle is %0.2f' %area)

Enter first side: 10

Enter second side: 9

Enter third side: 7

The area of the triangle is 30.59

3. Write a Python script to prompt users to enter the
first and last values and generate some random
values between the two entered values.

Answer:

In [7]:import random

a = int(input('Enter the starting value : '))
b = int(input('Enter the end value : "))
print(random.randint(a,b))
random.sample(range(a, b), 3)

Enter the starting value : 10
Enter the end value : 100

14

Out[7]: [64, 12, 41]

4. Write a Python program to prompt users to enter a
distance in kilometers; then convert kilometers to
miles, where 1 kilometer is equal to 0.62137 miles.
Display the result.

76

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON
Answer:

In [9]: # convert kilometers to miles

kilometers = float(input('Enter the distance in kilometers: "))
conversion factor

Miles = kilometers * 0.62137

print('%0.2f kilometers is equal to %0.2f miles'

%(kilometers, Miles))

Enter the distance in kilometers: 120
120.00 kilometers is equal to 74.56 miles

5. Write a Python program to prompt users to enter a
Celsius value; then convert Celsius to Fahrenheit,
where T(°F) = T(°C) x 1.8 + 32. Display the result.

Answer:

In [11]: # convert Celsius to Fahrenheit
Celsius = float(input('Enter temperature in Celsius: '))
conversion factor
Fahrenheit = (Celsius * 1.8) + 32
print('%0.2f Celsius is equal to %0.2f Fahrenheit'
%(Celsius, Fahrenheit))

Enter temperature in Celsius: 25
25.00 Celsius is equal to 77.00 Fahrenheit

6. Write a program to prompt users to enter their
working hours and rate per hour to calculate gross
pay. The program should give the employee 1.5
times the hours worked above 30 hours. If Enter
Hours is 50 and Enter Rate is 10, then the calculated
payment is Pay: 550.0.

77

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON
Answer:

In [6]:Hflage=True
Rflage=True
while Hflage & Rflage :
hours = input ('Enter Hours:')

try:
hours = int(hours)
Hflage=False
except:
print ("Incorrect hours number !!!11")
try:
rate = input ('Enter Rate:')
rate=float(rate)
Rflage=False
except:

print ("Incorrect rate !!")

if hours>40:

pay= 40 * rate + (rate*1.5) * (hours - 40)
else:

pay= hours * rate
print ('Pay:"',pay)

Enter Hours: 50
Enter Rate: 10

Pay: 550.0
7. Write a program to prompt users to enter a value;

then check whether the entered value is positive or
negative value and display a proper message.

78

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON
Answer:

In [1]: Val = float(input("Enter a number: "))

if val > o:
print("{o} is a positive number".format(Val))
elif Val == o:

print("{o} is zero".format(Val))
else:
print("{o} is negative number".format(Val))

Enter a number: -12
-12.0 is negative number

8. Write a program to prompt users to enter a value;
then check whether the entered value is odd or even
and display a proper message.

Answer:

In [4]:# Check if a Number is Odd or Even
val = int(input("Enter a number: "))
if (val % 2) == o:
print("{0} is an Even number".format(val))
else:
print("{o} is an Odd number".format(val))

Enter a number: 13
13 is an 0dd number

9. Write a program to prompt users to enter an age; then
check whether each person is a child, a teenager, an
adult, or a senior. Display a proper message.

79

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

Age Category

<13 Child
13t0 17 Teenager
181059 Adult

> 59 Senior

Answer:

In [6]:age = int(input("Enter age of a person : "))
if(age < 13):
print("This is a child")
elif(age >= 13 and age <=17):
print("This is a teenager")
elif(age >= 18 and age <=59):
print("This is an adult")
else:
print("This is a senior"

Enter age of a person : 40
This is an adult
10. Write a program to prompt users to enter a car’s

speed; then calculate fines according to the
following categories, and display a proper message.

Speed Limit Fine Value

<80 0

811099 200
100 to 109 350
>109 500

80

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON
Answer:

In [7]:Speed = int(input("Enter your car speed"))

if(Speed < 80):
print("No Fines")

elif(Speed >= 81 and Speed <=99):
print("200 AE Fine ")

elif(Speed >= 100 and Speed <=109):
print("350 AE Fine ")

else:
print("500 AE Fine ")

Enter your car speed120

500 AE Fine

11. Write a program to prompt users to enter a
year; then find whether it’s a leap year. A year is
considered a leap year if it’s divisible by 4 and 100
and 400. If it’s divisible by 4 and 100 but not by 400,
it’s not a leap year. Display a proper message.

Answer:

In [11]:year = int(input("Enter a year: "))
if (year % 4) == O:
if (year % 100) == 0:

if (year % 400) == 0:
print("{0} is a leap year".
format(year))

else:
print("{0} is not a leap year".
format(year))

81

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

else:

print("{o} is a leap year".format(year))
else:

print("{0} is not a leap year".format(year))

Enter a year: 2000

2000 is a leap year

12. Write a program to prompt users to enter a
Fibonacci sequence. The Fibonacci sequence is
the series of numbers 0,1, 1, 2, 3,5, 8, 13, 21, 34,
The next number is found by adding the two
numbers before it. For example, the 2 is found by
adding the two numbers before it (1+1). Display a
proper message.

Answer:

In [14]:nterms = int(input("How many terms you want? "))
first two terms

nit =20
n2 =1
count = 2

check if the number of terms is valid
if nterms <= 0:

print("Please enter a positive integer")
elif nterms ==

print("Fibonacci sequence:")
print(n1)

82

CHAPTER 1 INTRODUCTION TO DATA SCIENCE WITH PYTHON

else:
print("Fibonacci sequence:")
print(n1,",",n2,end=", ') # end=", ' is used
to continue printing in the same line
while count < nterms:
nth = n1 + n2
print(nth,end=" , ')
update values

nl = n2
n2 = nth
count += 1

How many terms you want? 8

Fibonacci sequence:
0,1,1,2,3,5,38,13,

83

CHAPTER 2

The Importance of
Data Visualization in
Business Intelligence

Data visualization is the process of interpreting data and presenting it in
a pictorial or graphical format. Currently, we are living in the era of big
data, where data has been described as a raw material for business. The
volume of data used in businesses, industries, research organizations,
and technological development is massive, and it is rapidly growing every
day. The more data we collect and analyze, the more capable we can

be in making critical business decisions. However, with the enormous
growth of data, it has become harder for businesses to extract crucial
information from the available data. That is where the importance of data
visualization becomes clear. Data visualization helps people understand
the significance of data by summarizing and presenting a huge amount of
data in a simple and easy-to-understand format in order to communicate

the information clearly and effectively.

© Dr. Ossama Embarak 2018 85
O. Embarak, Data Analysis and Visualization Using Python,
https://doi.org/10.1007/978-1-4842-4109-7_2

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

Shifting from Input to Output

A decision-maker for any business wants to access highly visual business
intelligence (BI) tools that can help to make the right decisions quickly.
Business intelligence has become more mainstream; hence, vendors are
beginning to focus on both ends of the pipeline and improve the quality
of data input. There is also a strong focus on ensuring that the output is
well-structured and clearly presented. This focus on output has largely
been driven by the demands of consumers, who have been enticed by
what visualization can offer. A BI dashboard can be a great way to compile
several different data visualizations to provide an at-a-glance overview of
business performance and areas for improvement.

Why Is Data Visualization Important?

A picture is worth a thousand words, as they say. Humans just understand
data better through pictures rather than by reading numbers in rows
and columns. Accordingly, if the data is presented in a graphical format,
people are more able to effectively find correlations and raise important
questions.

Data visualization helps the business to achieve numerous goals.

— Converting the business data into interactive graphs for
dynamic interpretation to serve the business goals

— Transforming data into visually appealing, interactive
dashboards of various data sources to serve the business
with the insights

— Creating more attractive and informative dashboards of
various graphical data representations

— Making appropriate decisions by drilling into the data
and finding the insights

86

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

— Figuring out the patterns, trends, and correlations in the
data being analyzed to determine where they must
improve their operational processes and thereby grow
their business

— Giving a fuller picture of the data under analysis

— Organizing and presenting massive data intuitively to
present important findings from the data

— Making better, quick, and informed decisions with data
visualization

Why Do Modern Businesses Need Data
Visualization?

With the huge volume of data collected about business activities using
different means, business leaders need proper techniques to easily drill
down into the data to see where they can improve operational processes
and grow their business. Data visualization brings business intelligence
to reality. Data visualization is needed by modern businesses for these

reasons:

— Data visualization helps companies to analyze its differ-
ent processes so the management can focus on the areas
for improvement to generate more revenue and improve
productivity.

— It brings business intelligence to life.

— Itapplies a creative approach to understanding the
hidden information within the business data.

— It provides a better and faster way to identify patterns,
trends, and correlation in the data sets that would remain
undetected with just text.

87

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

— Itidentifies new business opportunities by predicting
upcoming trends or sales volumes and the revenue they
will generate.

— Itsupplies managers with information they need to make
more effective comparisons between data sets by plotting
them on the same visualization.

— It enables managers to understand the correlations
between the operating conditions and the business
performance.

— Ithelps businesses to discover the gray areas of the
business and make the right decisions for improvement.

— Data visualization helps managers to understand custom-
ers’ behaviors and interests and hence retains customers
and market share.

The Future of Data Visualization

Data visualization is moving from being an art to being a science field.
Data science technologies impose the need to move from relatively
simple graphs to multifaceted relational maps. Multidimensional
visualizations will boost the role that data visualizations can play in
the Internet of Things, network and complexity theories, nanoscience,
social science research, education systems, conative science, space,
and much more. Data visualization will play a vital role, now and in
the future, in applying many concepts such as network theory, Internet
of Things, complexity theory, and more. For instance, network theory
employs algorithms to understand and model pair-wise relationships
between objects to understand relationships and interactions in a variety
of domains, such as crime prevention and disease management, social

88

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

network analysis, biological network analysis, network optimization, and
link analysis.

Data visualization will be used intensively to analyze and visualize
data streams collected from billions of interconnected devices,
from smart appliances and wearables to automobile sensors and
environmental and smart cities monitors. Internet of Things device
data will provide extraordinary insight into what’s happening around
the globe. In this context, data visualization will improve safety
levels, drive operational efficiencies, help to better understand
several worldwide phenomena, and improve and customize provided

intercontinental services.

How Data Visualization Is Used for
Business Decision-Making

Data visualization is a real asset for any business to help make real-

time business decisions. It visualizes extracted information into logical
and meaningful parts and helps users avoid information overload by
keeping things simple, relevant, and clear. There are many ways in which
visualizations help a business to improve its decision-making.

Faster Responses

Quick response to customers’ or users’ requirements is important for any
company to retain their clients, as well as to keep their loyalty. With the
massive amount of data collected daily via social networks or via companies’
systems, it becomes incredibly useful to put useful interpretations of the
collected data into the hands of managers and decision-makers so they can
quickly identify issues and improve response times.

89

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE
Simplicity

It is impossible to make efficient decisions based on large amounts

of raw data. Therefore, data visualization gives the full picture of the
scoped parameters and simplifies the data by enabling decision-makers

to cherry-pick the relevant data they need and dive into a detailed view

wherever is needed.

Easier Pattern Visualization

Data visualization provides easier approaches to identifying upcoming
trends and patterns within data sets and hence enables businesses to make
efficient decisions and prepare strategies in advance.

Team Involvement

Data visualizations process not only historical data but also real-time data.
Different organization units gain the benefit of having direct access to the
extracted information displayed by data visualization tools. This increases
the levels of collaboration between departments to help them achieve
strategic goals.

Unify Interpretation

Data visualizations can produce charts and graphics that lead to the same
interpretations by all who use the extracted information for decision-
making. There are many data visualization tools such as R, Python, Matlab,
Scala, and Java. Table 2-1 compares the most common languages, which
are the R and Python languages.

90

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

Table 2-1. The R Language vs. Python

Parameter R Python
Main use Data analysis and Deployment and production.
statistics.
Users Scholars and researchers. Programmers and developers.
Flexibility Easy-to-use available It's easy to construct new models
library. from scratch.
Integration Runs locally. Well-integrated with app.
Runs through the cloud.
Database size Handles huge size. Handles huge size.
IDE examples RStudio. Spyder, IPython Notebook,

Important packages Tydiverse, Ggplot2,
and libraries Caret, Zoo.

Advantages e Comprehensive
statistical analysis
package.

e Open source; anyone
can use it.

e |t is cross-platform
and can run on many
operating systems.

¢ Anyone can fix bugs
and make code
enhancements.

Jupyter Notebook, etc.

Pandas, Numpy, Scipy, Scikit-
learn, TensorFlow, Caret.

e Python is a general-purpose
language that is easy and
intuitive.

e Useful for mathematical
computation.

e Can share data online via
clouds and IDEs such as
Jupyter Notebook.

e Can be deployed.

e Fast processing.

¢ High code readability.

e Supports multiple systems and
platforms.

e Easy integration with other
languages such as C and Java.

(continued)
91

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

Table 2-1. (continued)

Parameter R Python
Disadvantages e Quality of some e Comparatively smaller pool of
packages is not good. Python developers.

¢ R can consume all the e Python doesn’t have as many
memory because of its libraries as R.
memory management. e Not good for mobile
e Slow and high learning development.
curve. e Database access limitations.
e Dependencies between
library.
e There is no regular
and direct update for R
packages and bugs.

Introducing Data Visualization Techniques

Data visualization aims to understand data by extracting and graphing
information to show patterns, spot trends, and identify outliers. There are
two basic types of data visualization.

e Exploration helps to extract information from the
collected data.

e Explanation demonstrates the extracted information.

There are many types of 2D data visualizations, such as temporal,
multidimensional, hierarchical, and network. In the following section,
we demonstrate numerous data visualization techniques provided by the
Python programming language.

92

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

Loading Libraries

Some libraries are bundled with Python, while others should be directly
downloaded and installed.
For instance, you can install Matplotlib using pip as follows:

python -m pip install -U pip setuptools
python -m pip install matplotlib

You can install, search, or update Python packages with Jupyter
Notebook or with a desktop Python IDE such as Spyder. Table 2-2 shows
how to use the pip and conda commands.

Table 2-2. Installing and Upgrading Python Packages

Description pip conda Anaconda

Works with Python and Anaconda Anaconda only

Search a package pip search matplolib conda search
matplolib

Install a package pip install matplolib conda install
matplolib

Upgrade a package pip install conda install

matplolib-upgrade matplolib-upgrade
Display installed packages pip list conda list

Let’s list all the installed or upgraded Python libraries using the pip
and conda commands.

conda list

pip list

93

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

Similarly, you can install or upgrade packages or specific Python
packages such as Matplotlib on Jupyter Notebooks, as shown in Listing 2-1.

Listing 2-1. Installed or Upgraded Packages

In [5]: try:
import matplotlib
except:
import pip pip.main(['install', 'matplotlib'l])
import matplotlib

It is possible to import any library and use alias names, as shown here:

In []:import matplotlib.pyplot as plt import numpy as np
import pandas as pd
import seaborn as sns
import pygal from mayavi
import mlab
etc....

Once you load any library to your Python script, then you can call the
package functions and attributes.

Popular Libraries for Data Visualization

in Python

The Python language provides numerous data visualization libraries for
plotting data. The most used and common data visualization libraries are

Pygal, Altair, VisPy, PyQtGraph, Matplotlib, Bokeh, Seaborn, Plotly, and
ggplot, as shown in Figure 2-1.

94

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

Python
Visualization
Libraries

PyQtGraph

Matplotlib

ggplot

Figure 2-1. Data visualization libraries

Each of these libraries has its own features. Some of these libraries
may be adopted for implementation and dependent on other libraries.
For example, Seaborn is a statistical data visualization library that uses
Matplotlib. In addition, it needs Pandas and maybe NumPy for statistical
processing before visualizing data.

Matplotlib

Matplotlib is a Python 2D plotting library for data visualization built

on Numpy arrays and designed to work with the broader SciPy stack. It
produces publication-quality figures in a variety of formats and interactive
environments across platforms. There are two options for embedding
graphics directly in a notebook.

95

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

o The%matplotlib notebook will lead to interactive plots
embedded within the notebook.

o The %matplotlib inline will lead to static graphs images
of your plot embedded in the notebook.

Listing 2-2 plots fixed data using Matplotlib and adjusts the plot
attributes.

Listing 2-2. Importing and Using the Matplotlib Library

In [12]:import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
plt.style.use('seaborn-whitegrid")
X = [590,540,740,130,810,300,320,230,470,620,770,250]
Y = [32,36,39,52,61,72,77,75,68,57,48,48]

plt.scatter(X,Y)
plt.x1im(0,1000)
plt.ylim(0,100)

#scatter plot color
plt.scatter(X, Y, s=60, c="red', marker='"")

#ichange axes ranges
plt.x1im(0,1000)
plt.ylim(0,100)

#add title
plt.title('Relationship Between Temperature and Iced
Coffee Sales')

#add x and y labels
plt.xlabel('Sold Coffee')
plt.ylabel('Temperature in Fahrenheit')

96

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

#show plot
plt.show()

Figure 2-2 shows a visualization in the Matplot library.

Relationship Between Temperature and Iced Coffee Sales

80
=
z +
o
L+
L
c
T+ +
p= |
g @ —+—
g —+:+.
E
2
20
00 20 400 800 80 1000

Sold Coffee

Figure 2-2. Visualizing data using Matplotlib

Listing 2-3 plots fixed data using Matplotlib and adjusts the plot
attributes.

Listing 2-3. Importing Numpy and Calling Its Functions

In [20]:%matplotlib inline

import matplotlib.pyplot as plt
import numpy as np
plt.style.use('seaborn-whitegrid")

Create empty figure

fig = plt.figure()

ax = plt.axes()

x = np.linspace(0, 10, 1000)

97

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

ax.plot(x, np.sin(x));
plt.plot(x, np.sin(x))
plt.plot(x, np.cos(x))

set the x and y axis range
plt.xlim(0, 11)

plt.ylim(-2, 2)
plt.axis('tight")

#add title
plt.title('Plotting data using sin and cos')

Figure 2-3 shows the accumulated attributes added to the same graph.

Plotting Data using sin and cos
100

075
050
025
000
-0.25
-0.50
-0.75

-1.00
0 2 4 6 8 10

Figure 2-3. Determining the adapted function (sin and cos) by
Matplotlib

All altered attributes are applied to the same graph as shown above.
There are many different plotting formats generated by the Matplotlib
package; some of these formats will be discussed in Chapter 7.

98

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

Seaborn

Seaborn is a Python data visualization library based on Matplotlib that
provides a high-level interface for drawing attractive and informative
statistical graphics (see Listing 2-4).

Listing 2-4. Importing and Using the Seaborn Library

In [34]: import matplotlib.pyplot as plt
Zmatplotlib inline

import numpy as np

import pandas as pd

import seaborn as sns
plt.style.use('classic")
plt.style.use('seaborn-whitegrid")

Create some data

data = np.random.multivariate normal([0, 0], [[5, 2], [2, 2]],
size=2000)

data = pd.DataFrame(data, columns=['x"', 'y'])
Plot the data with seaborn
sns.distplot(data['x"])
sns.distplot(data['y']);

Figure 2-4 shows a Seaborn graph.

99

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

0.20

0.05

0.00

-10 10

Figure 2-4. Seaborn graph

Let’s use the distribution using a kernel density estimation, which
Seaborn does with sns.kdeplot. You can use the same data set, called
Data, as in the previous example (see Figure 2-5).

100

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

In [35]: for col in 'xy':
sns.kdeplot(data[col], shade=True)

0.18
016 |
014
012
010
008
0.06
0.04
002

095 s 0 5

Figure 2-5. Seaborn kernel density estimation graph

Passing the full two-dimensional data set to kdeplot as follows, you
will get a two-dimensional visualization of the data (see Figure 2-6):

In [36]: sns.kdeplot(data);

101

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

-5 0 5

Figure 2-6. Two-dimensional kernel density graph

Let’s use the joint distribution and the marginal distributions together

using sns.jointplot, as shown here (see Figure 2-7):

In [37]: with sns.axes style('white'):
sns.jointplot("x", "y", data, kind="kde');

102

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

- -

pearsonr = 0.66; p = 1.1e-252

[%)]

-5 0
X

Figure 2-7. Joint distribution graph

Use a hexagonally based histogram in the joint plot, as shown here (see

Figure 2-8):

In [38]: with sns.axes style('white'):
sns.jointplot("x", "y", data, kind="hex")

103

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

—cetlllll..

pearsonr = 0.66; p = 1.1e-252

Figure 2-8. A hexagonally based histogram graph

You can also visualize multidimensional relationships among the
samples by calling sns.pairplot (see Figure 2-9):

In [41]: sns.pairplot(data);

104

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

_6
-1086-4-202468 6 -4-2 0 2 4 6
X y

Figure 2-9. Multidimensional relationships graph

There are many different plotting formats generated by the Seaborn
package; some of these formats will be discussed in Chapter 7.

Plotly

The Plotly Python graphing library makes interactive, publication-quality
graphs online. Different dynamic graphs formats can be generated online
or offline.

Listing 2-5 implements a dynamic heatmap graph (see Figure 2-10).

105

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

Listing 2-5. Importing and Using the Plotly Library

In [67]:

-4

import plotly.graph objs as go
import numpy as np

X = np.random.randn(2000)

y = np.random.randn(2000)

iplot([go.Histogram2dContour (x=x, y=y,
contours=dict (coloring="heatmap')),
go.Scatter(x=x, y=y, mode='markers',
marker=dict(color="white', size=3,
opacity= opacity=0.3))], show_link=False)

N A+DIO ONEXA TeS M

BO

40

20

Figure 2-10. Dynamic heatmap graph

Use plotly.offline to execute the Plotly script offline within a

notebook (Figure 2-11), as shown here:

In [90]:

106

import plotly.offline as offline
import plotly.graph objs as go
offline.plot({'data': [{'y': [14, 22, 30,
44]}1,

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

'‘layout': {'title': 'Offline Plotly', 'font':
dict(size=16)}}, image="png")
Out[90]: 'file:///home/nbuser/library/temp-plot.html’

Offline Plotly
45

40

30
25

20

V] 0.5 1 15 2 25 3

Figure 2-11. Offline Plotly graph

Executing the Plotly Python script, as shown in Listing 2-6, will
open a web browser with the dynamic Plotly graph drawn, as shown in
Figure 2-12.

Listing 2-6. Importing and Using the Plotly Package

In [64]:from plotly import _ version _
from plotly.offline import download plotlyjs,
init_notebook mode, plot, iplot init notebook
mode (connected=True)
print (__version_)

<inline script removed for security reasons>
3.1.0

107

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

In [91]: import plotly.graph objs as go
plot([go.Scatter(x=[95, 77, 84], y=[75, 67, 56])])
Out[91]: 'file:///home/nbuser/library/temp-plot.html’

~ofn +noPFos

av| 3| €+ o+ w+] Fol w7 w ' k| ie] we] we| o] we] ge] weE

Ansiysts

Figure 2-12. Plotly dynamic graph

Plotly graphs are more suited to dynamic and online data visualization,
especially for real-time data streaming, which isn’t covered in this book.

Geoplotlib

Geoplotlib is a toolbox for creating a variety of map types and plotting
geographical data. Geoplotlib needs Pyglet as an object-oriented
programming interface. This type of plotting is not covered in this book.

Pandas

Pandas is a Python library written for data manipulation and analysis.
You can use Python with Pandas in a variety of academic and commercial
domains, including finance, economics, statistics, advertising, web
analytics, and much more. Pandas is covered in Chapter 6.

108

https://bitbucket.org/pyglet/pyglet/wiki/Home

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

Introducing Plots in Python

As indicated earlier, numerous plotting formats can be used, even offline
or online ones. The following are examples of direct plotting.

Listing 2-7 implements a basic plotting plot. Figure 2-13 shows the
graph.

Listing 2-7. Running Basic Plotting

In [116]: import pandas as pd import numpy as np

df = pd.DataFrame(np.random.randn(200,6),index= pd.date_
range('1/9/2009', periods=200), columns= list('ABCDEF'))
df.plot(figsize=(20, 10)).legend(bbox to anchor=(1, 1))

s

Figure 2-13. Direct plot graph

Listing 2-8 creates a bar plot graph (see Figure 2-14).

Listing 2-8. Direct Plotting

In [123]: import pandas as pd
import numpy as np

109

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

df = pd.DataFrame(np.random.rand(20,5), columns=['Jan','Feb',
"March', 'April', 'May'])
df.plot.bar(figsize=(20, 10)).legend(bbox to anchor=(1.1, 1))

il

Figure 2-14. Direct bar plot graph

o

@

Listing 2-9 sets stacked=True to produce a stacked bar plot (see
Figure 2-15).

Listing 2-9. Create a stacked bar plot

In [124]: import pandas as pd

df = pd.DataFrame(np.random.rand(20,5), columns=['Jan','Feb',
‘March', 'April', 'May']) df.plot.bar(stacked=True,
figsize=(20, 10)).legend(bbox to anchor=(1.1, 1))

110

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

as
u | ‘ |
T
1
@ m o m mTTe e e e ® & g @ om A A W ®m # A&

Figure 2-15. Stacked bar plot graph

1
§Tger

To get horizontal bar plots, use the barh method, as shown in Listing 2-10.

Figure 2-16 shows the resulting graph.

Listing 2-10. Bar Plots

In [126]: import pandas as pd

df = pd.DataFrame(np.random.rand(20,5), columns=['Jan",'Feb’,

'March','April', 'May']) df.plot.barh(stacked=True,
figsize=(20, 10)).legend(bbox_to anchor=(1.1, 1))

 ——— ——
e

s
s o e-—

I e

B, G e
5

a0

Figure 2-16. Horizontal bar plot graph

(1]
Fit

Aot
-y

111

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

Histograms can be plotted using the plot.hist() method; you can
also specify the number of bins, as shown in Listing 2-11. Figure 2-17

shows the graph.

Listing 2-11. Using the Bar’s bins Attribute

In [131]: import pandas as pd

df = pd.DataFrame(np.random.rand(20,5), columns=['Jan','Feb’,
‘March', 'April*, 'May'])

df.plot.hist(bins= 20, figsize=(10,8)).legend

bbox_to anchor=(1.2, 1))

E Jan
I Feb
I March
. April
H May

w

Frequency

~

]
00 0z 0.4

Figure 2-17. Histogram plot graph

Listing 2-12 plots multiple histograms per column in the data set

(see Figure 2-18).

112

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE
Listing 2-12. Multiple Histograms per Column

In [139]: import pandas as pd

import numpy as np
df=pd.DataFrame({ 'April' :np.random.randn(1000)+1, 'May' :np.random.
randn(1000), 'June': np.random.randn(1000) - 1}, columns=['April’,
'May', 'June'])
df.hist(bins=20)

4 April 4 June

120 120

100 100

0 80

60 60

40 40

20 20

% 054 = =2 = 2 .3

120

100

o B 3588

82 S ar E 2 A
Figure 2-18. Column base histograms plot graph
Listing 2-13 implements a box plot (see Figure 2-19).

Listing 2-13. Creating a Box Plot

In [140]:import pandas as pd
import numpy as np

113

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

df = pd.DataFrame(np.random.rand(20,5),
columns=["'Jan', 'Feb', 'March', 'April’', 'May'])

df.plot.box()
10 i el
1 |
| : i I
[} i 1 Bt]
| i | | |
1 1 | I
08 1 1 | | 1
1 : 1 |
| I
06
04
, |
l T !
02 T | T | I
) | I 1 | 1
| | | | |
| I | | |
1 | | | |
- | 1 P - |
0.0 == L s
Jan Feb March April May

Figure 2-19. Box plot graph

Listing 2-14 implements an area plot (see Figure 2-20).

Listing 2-14. Creating an Area Plot

In [145]: import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.rand(20,5),
columns= ['Jan','Feb', 'March"', 'April', 'May'])
df.plot.area(figsize=(6, 4)).legend
(bbox_to_anchor=(1.3, 1))

114

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

35
E Jan
w mm Feb
25 E March
. April
20 I May

15

10

05

0.0
0

5 10 15

Figure 2-20. Area plot graph

Listing 2-15 creates a scatter plot (see Figure 2-21).

Listing 2-15. Creating a Scatter Plot

In [150]: import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.rand(20,5),columns= ['Jan', 'Feb’,
'March','April', 'May'])

df.plot.scatter(x="Feb', y="Jan', title='Temperature over two
months ')

115

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

5 Temprature over two months

10 b
08

S
0.6

04

0.2

Feb

Figure 2-21. Scatter plot graph

See Chapter 7 for more graphing formats.

Summary

12

This chapter demonstrated how to implement data visualization in

modern business. Let’s recap what you studied in this chapter.

— Understand the importance of data visualization.

— Acknowledge the usage of data visualization in modern

business and its future implementations.

— Recognize the role of data visualization in
decision-making.

116

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

— Load and use important Python data visualization libraries.

— Revise exercises with model answers for practicing and
simulating real-life scenarios.

The next chapter will cover data collection structure and much more.

Exercises and Answers

1. Whatis meant by data visualization?
Answer:

Data visualization is the process of interpreting the data in the form of
pictorial or graphical format.

2. Why is data visualization important?
Answer:

Data Visualization helps business to achieve numerous goals through
the following.

— Convert the business data into interactive graphs for
dynamic interpretation to serve the business goals.

— Transforming data into visually appealing, interactive
dashboards of various data sources to serve the business
with the insights.

— Create more attractive and informative dashboard of
various graphical data representation.

— Make appropriate decisions by drilling into the data and
finding the insights.

— Figure out the patterns, trends and correlations in the data
being analyzed to determine where they must improve their
operational processes and thereby grow their business.

117

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

— Give full picture of the data under analysis.

— Enable to organize and present massive data intuitively to
present important findings from the data.

— Make better, quick and informed decisions.
3. Why do modern businesses need data visualization?
Answer:

Data visualization is needed by the modern business to support the
following areas.

— Analyze the business different processes where the
management can focus on the areas of improvement to

generate more revenue and improve productivity.
— Bring business intelligences to life.

— Apply creative approach to improve the abilities to
understand the hidden information within the business
data.

— Provide better and faster way to identify patterns,
trends, and correlation in the data sets that would remain
undetected with a text.

— Identify new business opportunities by predicting
upcoming trends or sales volumes and the revenue they
would generate.

— Helps to spot trends in data that may not have been
noticeable from the text alone.

— Supply managers with information they need to make
more effective comparisons between data sets by plotting

them on the same visualization.

118

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

— Enable managers to understand the correlations between
the operating conditions and business performance.

— Help to discover the gray areas of the business and hence
take right decisions for improvement.

— Helps to understand customers’ behaviors and interests,
and hence retains customers and market.

4. How is data visualization used for business
decision-making?

Answer:

There are many ways in which visualization help the business to
improve decision making.

Faster Times Response: It becomes incredibly
useful to put useful interpretation of the collected
data into the hands of managers and decision
makers enabling them to quickly identify issues and
improve response times.

Simplicity: data visualization techniques gives the
full picture of the scoped parameters and simplify
the data by enabling decision makers to cherry-pick
the relevant data they need and dive to detailed
wherever is needed.

Easier Pattern Visualization: provides easier
approaches to identify upcoming trends and
patterns within datasets, and hence enable to take
efficient decisions and prepare strategies in advance.

Team Involvement: increase the levels of
collaboration between departments and keep them
on the same page to achieve strategic goals.

119

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

Unify Interpretation: produced charts and graphics
have the same interpretation by all beneficial who
use extracted information for decisions making and
hence avoid any misleading.

5. Write a Python script to create a data frame for the

following table:
Name Mobile_Sales TV_Sales
Ahmed 2540 2200
Omar 1370 1900
Ali 1320 2150
Ziad 2000 1850
Salwa 2100 1770
Lila 2150 2000

Answer:

In []: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
salesMen = ['Ahmed', 'Omar', 'Ali', 'Ziad', 'Salwa', 'Lila']
Mobile Sales = [2540, 1370, 1320, 2000, 2100, 2150]
TV Sales = [2200, 1900, 2150, 1850, 1770, 2000]

df = pd.DataFrame()

df ['Name'] =salesMen

df ['Mobile Sales'] = Mobile Sales
df['TV_Sales']=TV Sales

df.set_index("Name",drop=True,inplace=True)

In [13]: df

120

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

Out[13]: Name Mobile Sales TV Sales

Ahmed 2540 2200
Omar 1370 1900
Ali 1320 2150
Ziad 2000 1850
Salwa 2100 1770
Lila 2150 2000

For the created data frame in the previous question, do the following:

A. Create a bar plot of the sales volume.
Answer:

In [5]: df.plot.bar(figsize=(20, 10), rot=0).legend(bbox to_
anchor=(1.1, 1)) plt.xlabel('Salesmen') plt.ylabel('Sales")
plt.title('Sales Volume for two salesmen in \nJanuary and April 2017')
plt.show()

See also Figure 2-22.

Salas Velume for twe salosman in
Juniray and Agril 2017

£

00
i
o
e s Ll B2)
wetman

Figure 2-22. Bar plot of sales

£

e

121

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

B. Create a pie chart of item sales.

Answer:

In [

6]: df.plot.pie(subplots=True)

See also Figure 2-23.

Omar Omar EEE Ahmed

: Ahmed
Ali hed

&

ile Sales

TV Sales

E Ahmed
B Omar
Al
B Ziad
Em Salwa
. Lila Salwa

Mqb

. Lila
Lila Ziad

Figure 2-23. Pie chart of sales

C. Create a box plot of item sales.

Answer:

In

122

[8]: df.plot.box()

See also Figure 2-24.

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

2600

2400 1

2200 1 T

2000
1800 - 1

1600

1400 - l

Mobile_Sales TV Sales

Figure 2-24. Box plot of sales

D. Create an area plot of item sales.
Answer:

In [9]: df.plot.area(figsize=(6, 4)).legend(bbox to anchor=(1.3,
1))

See also Figure 2-25.

123

CHAPTER 2 THE IMPORTANCE OF DATA VISUALIZATION IN BUSINESS INTELLIGENCE

EEE Mobile_Sales

N TV Sales
4000

3000

2000

1000

Ahmed Omar Al Ziad Salwa Lila
Name

Figure 2-25. Area plot of sales

E. Create a stacked bar plot of item sales.
Answer:

In [11]: df.plot.bar(stacked=True, figsize=(20, 10)).legend
(bbox_to_anchor=(1.1, 1))

See also Figure 2-26.

T i - i i :

Figure 2-26. Stacked bar plot of sales

—ceie_Sues
-y Saies

124

CHAPTER 3

Data Collection
Structures

Lists, dictionaries, tuples, series, data frames, and panels are Python data
collection structures that can be used to maintain a collection of data.
This chapter will demonstrate these various structures in detail with
practical examples.

Lists

A list is a sequence of values of any data type that can be accessed
forward or backward. Each value is called an element or a list item. Lists
are mutable, which means that you won't create a new list when you
modify a list element. Elements are stored in the given order. Various
operations can be conducted on lists such as insertion, sort, and
deletion. A list can be created by storing a sequence of different types
of values separated by commas. A Python list is enclosed between a
square brackets ([]), and elements are stored in the index based on a
starting index of 0.

© Dr. Ossama Embarak 2018 125
O. Embarak, Data Analysis and Visualization Using Python,
https://doi.org/10.1007/978-1-4842-4109-7_3

CHAPTER 3 DATA COLLECTION STRUCTURES

Creating Lists

You can have lists of string values and integers, empty lists, and nested
lists, which are lists inside other lists. Listing 3-1 shows how to create a list.

Listing 3-1. Creating Lists

In [1]: # Create List
List1 = [1, 24, 76]
print (List1)
colors=["'red', 'yellow', 'blue']
print (colors)
mix=['red', 24, 98.6]
print (mix)
nested= [1, [5, 6], 7]
print (nested)
print ([])

[1, 24, 76]

['red', 'yellow', 'blue']
['red', 24, 98.6]

[1, [5, 6], 7]

[

Accessing Values in Lists

You can access list elements forward or backward. For instance, in
Listing 3-2, 1ist2 [3:] returns elements starting from index 3 to the
end of the list since 1ist2 has four elements where [4,5] is the element
of index 3, which is in the form of nested list. Then you get [[4,5]]

126

CHAPTER 3 DATA COLLECTION STRUCTURES

asaresultof print (list2 [3:]). You can also access a list element
backward using negative indices. For example, 1ist3[-3] will return
the third element in the backward sequence n-3, i.e., index 1. Here’s an
example:

Forward indexing

0 1 2 3 4

L2l 2] 3] 4] 5]

5 4 3 2 1 **—1

Backward indexing

Listing 3-2. Accessing Lists

In [9]: lista = ['Egypt', 'chemistry', 2017, 2018]
list2 = [1, 2, 3, [4, 5]]
list3 = ["a", 3.7, '330', "Omar"]
print (list1[2])
print (list2 [3:])
print (list3 [-3:-1])
print (1ist3[-3])

2017
[[4, 5]]
[3.7, '330"]
3.7

Adding and Updating Lists

You can update single or multiple elements of lists by giving the slice on
the left side of the assign operator, and you can add elements to a list with
the append() method, as shown in Listing 3-3.

127

CHAPTER 3 DATA COLLECTION STRUCTURES

Listing 3-3. Adding and Updating List Elements

In [50]: courses=["00P","Networking","MIS","Project"]
students=["Ahmed", "Ali",
"Salim", "Abdullah", "Salwa"] OOP_marks = [65, 85, 92]

00P_marks.append(50) # Add new element
00P_marks.append(77) # Add new element
print (OOP_marks[:]) # Print list before updating

00P_marks[0]=70 # update new element
00P_marks[1]=45 # update new element
list1 = [88, 93]
OOP_marks.extend(list1) # extend list with another
list print
(0OP_marks[:]) # Print list after updating
[65, 85, 92, 50, 77]
[70, 45, 92, 50, 77, 88, 93]

As shown in Listing 3-3, you can add a new element to the list using the
append() method. You can also update an element in the list by using the
list name and the element index. For example, 00P_marks[1]=45 changes
the value of index 1 from 85 to 45.

Deleting List Elements

To remove a list element, either you can delete it using the del statement
in the element index, or you can remove the element using the remove()
method via the element value in the list. If you use the remove () method
to remove an element that is repeated more than one time in the list, it
removes only the first occurrence of that element inside the list. Also, you
can use the pop() method to remove a specific element by its index value,
as shown in Listing 3-4.

128

CHAPTER 3 DATA COLLECTION STRUCTURES

Listing 3-4. Deleting an Element from a List

In [48]: 00P_marks = [70, 45, 92, 50, 77, 45]

print (OOP_marks)

del OOP_marks[0] # delete an element using del
print (OOP_marks)

OOP_marks.remove (45) # remove an element using
remove() method
print (OOP_marks)

O0P_marks.pop (2) # remove an element using pop()
method
print (OOP_marks)

[70, 45, 92, 50, 77, 45]
[45, 92, 50, 77, 45]
[92, 50, 77, 45]

[92, 50, 45]

Basic List Operations

Like string processing, lists respond to + and * operators as concatenation

and repetition, except that the result is a new list, as shown in Listing 3-5.

Listing 3-5. List Operations

In [46]:print (len([5, "Omar", 3])) # find the list

length.

print ([3, 4, 1] + ["Omar", 5, 6]) # concatenate lists.
print (['Eg!'] * 4) # repeat an element in a list.
print (3 in [1, 2, 3]) # check if element in a list
for x in [1, 2, 3]:

print (x, end=" ") # traverse list elements

129

CHAPTER 3 DATA COLLECTION STRUCTURES

3

[3, 4, 1, 'Omar', 5, 6]
['Eg!', 'Eg!', 'Eg!', 'Eg!']
True

123

Indexing, Slicing, and Matrices

Lists are a sequence of indexed elements that can be accessed forward or
backward. Therefore, you can read their elements using a positive index or
negative (backward) index, as shown in Listing 3-6.

Listing 3-6. Indexing and Slicing List Elements

In [9]:1ist1 = ['Egypt', 'chemistry', 2017, 2018]
list2 = [1) 2, 3, [4) 5]]
list3 = ["a", 3.7, '330', "Omar"]

print (list1[2])
print (list2 [3:])
print (list3 [-3:-1])
print (list3[-3])

2017

[[4, 5]]
[3.7, "330']
3.7

Built-in List Functions and Methods

Various functions and methods can be used for list processing, as shown in
Table 3-1.

130

CHAPTER 3 DATA COLLECTION STRUCTURES

Table 3-1. List Functions

Sr.No. Function Description

1 cmp(list1, 1list2) Compares elements of both lists

2 len(list1) Gives the total length of the list

3 max(list1) Returns an item from the list with max value
4 min(list1) Returns an item from the list with min value
5 list(seq) Converts a tuple into list

List Functions

Built-in functions facilitate list processing. The following tables show
functions and methods that can be used to manipulate lists. For example,
you can simply use cmp() to compare two lists, and if both are identical,

it returns TRUE; otherwise, it returns FALSE. You can find the list size using
the len() method. In addition, you can find the minimum and maximum
values in a list using the min() and max () methods, respectively. See
Listing 3-7 for an example.

Listing 3-7. A Python Script to Apply List Functions

In [51]: #Built-in Functions and Lists
tickets = [3, 41, 12, 9, 74, 15]

print (tickets)

print (len(tickets))

print (max(tickets))

print (min(tickets))

print (sum(tickets))

print (sum(tickets)/len(tickets))

[3, 41, 12, 9, 74, 15]
6

131

CHAPTER 3

74
3

154
25.666666666666668

List Methods

DATA COLLECTION STRUCTURES

Built-in methods facilitate list editing. Table 3-2 shows that you can

simply use append(), insert(), and extend() to add new elements to

the list. The pop() and remove () methods are used to remove elements

from a list. Table 3-2 summarizes some methods that you can adapt to

the created list.

Table 3-2. Built-in List Methods

Sr.No. Methods Description

1 list.append(obj) Appends object obj to the list

2 list.count(obj) Returns count of how many times obj
occurs in the list

3 list.extend(seq) Appends the contents of seq to the list

4 list.index(obj) Returns the lowest index in the list that
obj appears in

5 list.insert(index, obj) Inserts object obj into the list at offset
index

6 list.pop(obj=list[-1]) Removes and returns last object or obj
from list

7 list.remove(obj) Removes object obj from list

8 list.reverse() Reverses objects of list in place

9 list.sort([func]) Sorts objects of list; use compare func

if given

132

CHAPTER 3 DATA COLLECTION STRUCTURES

List Sorting and Traversing

Sorting lists is important, especially for list-searching purposes. You can
create a list from a sequence; in addition, you can sort and traverse list
elements for processing using iteration statements, as shown in Listing 3-8.

Listing 3-8. List Sorting and Traversing

In [58]: #List sorting and Traversing
seq=(41, 12, 9, 74, 3, 15) # use sequence for creating
a list
tickets=1list(seq)

print (tickets)
tickets.sort()
print (tickets)

print ("\nSorted list elements ")
for ticket in tickets:
print (ticket)
[41, 12, 9, 74, 3, 15]
[3, 9, 12, 15, 41, 74]

Sorted list elements
3

9

12

15

41

74

133

CHAPTER 3 DATA COLLECTION STRUCTURES

Lists and Strings

You can split a string into a list of characters. In addition, you can split a
string into a list of words using the split() method. The default delimiter
for the split() method is a white space. However, you can specify which
characters to use as the word boundaries. For example, you can use a
hyphen as a delimiter, as in Listing 3-9.

Listing 3-9. Converting a String into a List of Characters or Words

In [63]: # convert string to a list of characters
Word = '"Egypt'
List1 = list(Word)
print (List1)
['EI) Igl) 'y') Ip‘) 't']
In [69]: # use the delimiter
Greeting= 'Welcome-to-Egypt'
List2 =Creeting.split("-")
print (List2)

Greeting= 'Welcome-to-Egypt'
delimiter="-"
List2 =Greeting.split(delimiter)
print (List2)
['Welcome', 'to', 'Egypt']
['Welcome', 'to', 'Egypt']
In [70]: # we can break a string into words using the split
method
Greeting= 'Welcome to Egypt'
List2 =Greeting.split()
print (List2)

134

CHAPTER 3 DATA COLLECTION STRUCTURES

print (List2[2])
['Welcome', "to', 'Egypt']
Egypt

The join() method is the inverse of the split method (see Listing 3-10).
It takes a list of strings and concatenates the elements. You have to specify
the delimiter that the join() method will add between the list elements to
form a string.

Listing 3-10. Using the join() Method

In [73]: List1 = ['Welcome', 'to', 'Egypt']
delimiter = ' '
delimiter.join(List1)

Out[73]: 'Welcome to Egypt’

In [74]: List1 = ['Welcome', 'to', 'Egypt']
delimiter = '-'
delimiter.join(List1)

Out[74]: 'Welcome-to-Egypt’

Parsing Lines

You can read text data from a file and convert it into a list of words for
further processing. Figure 3-1 shows that you can read myfile.txt, parse it
line per line, and convert the data into a list of words.

135

CHAPTER 3 DATA COLLECTION STRUCTURES

¥ newsythonprojectoy |

1 £ myfiletit - Notepad - o
2 fhand = cpen{'myfils.txt'} | Fle Edt Formst View Help]
3| for line in fhand: From oembarak@hct.ac.ae Sat Jan 5 09:14:16 2016
4 line = line.rstrip() ?JM@eCI“&ms 095341;6[2?“‘09 ki
: ‘ S b 3 e TONT OSSAMA. arac.eg Sat Tan § 09:14:16 2
2 S (11‘;:: ¥ :t:irrt::l:.:;:{t '{i G R From usa.mak(@gmail.com Suns_!an 500:14:16 2015
: - mak jon@ec.ac.ae Wed Jan 5 09:14416 2011
1 print (List]) Say.om@ec.ac.ae Mon Jan 5 09:14:16 2011
8 From Al om@ar.ac.eg Sun Jan § 09:14:16 2010
9 From man.mak@gmail.com Tue Jan § 09:14:16 2015
10
11

> ['From’, ‘oembarak@hct.ac.ae', *Sat’, *Jan', *5', '09:14:16', '2016"]

<] ['From', 'ossama.embarakfar.ac.eg', 'Sat', 'Jan', '5', '09:14:16', '2010']
['From', 'usa.mak@gmail.com', 'Sun', 'Jan', '5', '0%:14:16', '2015"]
['From', "Ali.om@ar.ac.eg', 'Sun', 'Jan', 'S', '09:14:16", '2010']
[*Frem', 'man.mak@gmail,com’, "Tue’, ‘Jan', '5', '09:14:18', '"2015")

Figure 3-1. Parsing text lines

In the previous example, you can extract only years or e-mails of
contacts, as shown in Figure 3-2.

] nesmythorproject.oy ¥ |

1 ¥ myfile - Notepad - olEl
2 fhand = open('myfile.txt') CFile Edt Format View Help - I
3 for line in fhand: From oembarak@het.ac.ae Sat Jan 5 09:14:16 2016
4 line = line.rstrip() ;gk-joﬂ@m-ac-ﬂcg” -‘m5°9=l4‘-;6l2]°“5 o
if (14 o W rom ossama.en! ar.ac.eg Sat Jan 5 09:14:
2 i (f:‘::znji::":::t“ 2L meusa.mak@glnaﬂ.cmmn St fan 5 09:14:16 2015
; . mak jon@ec.ac.ae Wed Jan 5 09:14{16 2011
it print (List{1]), Say.om@ec.ac.ae Mon Jan 5 09:14:16 2011
g print (List[6]) From Ab.om@ar.ac.eg Sun Jan 5 09:14:16 2010
g From man.mak{@gmail.com Tue Jan 5 09:14:16 2015
10
11

<
[ErTer————
W cembarakehct.ac.as 2016
| ossama.embarakfar.ac.eg 2010
usa.makl@gmail.com 2015
Ali.om@axz.ac.eg 2010
| man.mak@gmail .com 2015

Figure 3-2. Extracting specific data from a text file via lists

Aliasing

The assign operator is dangerous if you don’t use it carefully. The
association of a variable with an object is called a reference. In addition,
an object with more than one reference and more than one name is called

136

CHAPTER 3 DATA COLLECTION STRUCTURES

an alias. Listing 3-11 demonstrates the use of the assign operator. Say you
have a list called a. If a refers to an object and you assign b = a, then both
variables a and b refer to the same object, and an operation conducted on
a will automatically adapt to b.

Listing 3-11. Alias Objects

With Alias Without Alias
In [117]:a = [1, 2, 3] In [120]:a = [1, 2, 3]
b=a b =1[1, 2, 3]
print (a) print (a)
print (b) print (b)
[1, 2, 3] [1, 2, 3]
[1, 2, 3] [1, 2, 3]
In [118]:a.append(77) In [121]:a.append(77)
print (a) print (a)
print (b) print (b)
[1J 2) 3’ 77] [1) 2’ 3’ 77]
[1, 2, 3, 77] [1, 2, 3]
In [119]: b is a In [122]: b is a
Out[119]: True Out[122]: False
Dictionaries

A dictionary is an unordered set of key-value pair; each key is separated
from its value by a colon (:). The items (the pair) are separated by commas,
and the whole thing is enclosed in curly braces ({}). In fact, an empty
dictionary is written only with curly braces:. Dictionary keys should be
unique and should be of an immutable data type such as string, integer, etc.

137

CHAPTER 3 DATA COLLECTION STRUCTURES

Dictionary values can be repeated many times, and the values can be of
any data type. It's a mapping between keys and values; you can create a
dictionary using the dict() method.

Creating Dictionaries

You can create a dictionary and assign a key-value pair directly. In
addition, you can create an empty dictionary and then assign values to
each generated key, as shown in Listing 3-12.

Listing 3-12. Creating Dictionaries

In [36]: Prices = {"Honda":40000, "Suzuki":50000,

"Mercedes" :85000, "Nissan":35000, "Mitsubishi": 43000}
print (Prices)
{'Honda': 40000, 'Suzuki': 50000, 'Mercedes': 85000,
"Nissan': 35000, 'Mitsubishi': 43000}

In [37]: Staff Salary = { 'Omar Ahmed' : 30000 , 'Ali Ziad' :
24000,
'Ossama Hashim': 25000,
‘Majid Hatem':10000}
print(Staff Salary)
STDMarks={"Salwa Ahmed":50, "Abdullah Mohamed":80,
"Sultan Ghanim":90}
print(STDMarks)
{'Omar Ahmed': 30000, 'Ali Ziad': 24000,
‘Ossama Hashim': 25000, ‘'Majid Hatem': 10000}
{'Salwa Ahmed': 50, 'Abdullah Mohamed': 80,
'Sultan Ghanim': 90}

138

CHAPTER 3 DATA COLLECTION STRUCTURES

In [38]:STDMarks = dict()
STDMarks['Salwa Ahmed']=50
STDMarks|['Abdullah Mohamed']=80
STDMarks['Sultan Ghanim']=90
print (STDMarks)
{'Salwa Ahmed': 50, 'Abdullah Mohamed': 80, 'Sultan
Ghanim': 90}

Updating and Accessing Values in Dictionaries

Once you have created a dictionary, you can update and access its values
for any further processing. Listing 3-13 shows that you can add a new item
called STDMarks['Omar Majid'] = 74 where Omar Majid is the key and 74
is the value mapped to that key. Also, you can update the existing value of
the key Salwa Ahmed.

Listing 3-13. Updating and Adding a New Item to a Dictionary

In [39]: STDMarks={"Salwa Ahmed":50, "Abdullah Mohamed":80,
"Sultan
Ghanim":90}
STDMarks['Salwa Ahmed'] = 85 # update current value of
the key 'Salwa Ahmed'
STDMarks['Omar Majid'] = 74 # Add a new item to the
dictionary
print (STDMarks)
{'Salwa Ahmed': 85, 'Abdullah Mohamed': 80, 'Sultan
Ghanim': 90, 'Omar Majid': 74}

You can directly access any element in the dictionary or iterate all
dictionary elements, as shown in Listing 3-14.

139

CHAPTER 3 DATA COLLECTION STRUCTURES

Listing 3-14. Accessing Dictionary Elements

In [2]: Staff_Salary = { 'Omar Ahmed' : 30000 , 'Ali Ziad' :
24000, 'Ossama Hashim': 25000, 'Majid Hatem':10000}
print('Salary package for Ossama Hashim is ', end=“)

access specific dictionary element
print(Staff Salary['Ossama Hashim'])

Salary package for Ossama Hashim is 25000

In [3]: # Define a function to return salary after discount tax
5% def Netsalary (salary):
return salary - (salary * 0.05) # also, could be
return salary *0.95
#Iterate all elements in a dictionary
print ("Name" , '\t', "Net Salary")
for key, value in Staff Salary.items():
print (key , "\t', Netsalary(value))

Name Net Salary
Omar Ahmed 28500.0
Ali Ziad 22800.0

Ossama Hashim 23750.0
Majid Hatem 9500.0

Listing 3-14 shows that you can create a function to calculate the net
salary after deducting the salary tax value of 5 percent, and you iterate all
dictionary elements. In each iteration, you print the key name and the
returned net salary value.

140

CHAPTER 3 DATA COLLECTION STRUCTURES

Deleting Dictionary Elements

You can either remove individual dictionary elements using the element
key or clear the entire contents of a dictionary. Also, you can delete the
entire dictionary in a single operation using a del keyword, as shown in
Listing 3-15. It should be noted that it’s not allowed to have repeated keys
in a dictionary.

Listing 3-15. Alter a Dictionary

In [40]: STDMarks={"Salwa Ahmed":50, "Abdullah Mohamed":80,
"Sultan Ghanim":90}
print (STDMarks)
del STDMarks['Abdullah Mohamed'] # remove entry with
key 'Abdullah Mohamed'
print (STDMarks)
STDMarks.clear() # remove all entries in STDMarks
dictionary
print (STDMarks)
del STDMarks # delete entire dictionary
{'Salwa Ahmed': 50, 'Abdullah Mohamed': 80, 'Sultan

Ghanim': 90}
{'Salwa Ahmed': 50, 'Sultan Ghanim': 90}
{}

Built-in Dictionary Functions

Various built-in functions can be implemented on dictionaries. Table 3-3
shows some of these functions. The compare function cmp() in older Python
versions was used to compare two dictionaries; it returns 0 if both dictionaries
areequal, 1ifdicl>dict2, and -1ifdicti < dict2. But starting with Python 3,
the cmp () function is not available anymore, and you cannot define it. See also
Listing 3-16.

141

CHAPTER 3 DATA COLLECTION STRUCTURES

Table 3-3. Built-in Dictionary Functions

No Function Description

1 cmp(dict1, dict2) Compares elements of two dictionaries.

2 len(dict) Gives the total length of the dictionary, i.e., the
number of items in the dictionary.

3 str(dict) Produces a printable string representation of a
dictionary.

4 type(variable) Returns the type of the passed variable. If the
passed variable is a dictionary, then it would return
a dictionary type.

Listing 3-16. Implementing Dictionary Functions

In [43]:Staff Salary = { 'Omar Ahmed' : 30000 , 'Ali Ziad' :
24000,
'Ossama Hashim': 25000, 'Majid
Hatem':10000}
STDMarks={"Salwa Ahmed":50, "Abdullah Mohamed":80,
"Sultan
Ghanim":90}

In [52]: def cmp(a, b):
for key, value in a.items():
for key1, valuel in b.items():
return (key >key1) - (key < key1)

In [54]: print (cmp(STDMarks,Staff Salary))
print (cmp(STDMarks,STDMarks))
print (len(STDMarks))
print (str(STDMarks))
print (type(STDMarks))

1

142

CHAPTER 3 DATA COLLECTION STRUCTURES

0

3

{'Salwa Ahmed': 50, 'Abdullah Mohamed': 80, 'Sultan
Ghanim': 90}

<class 'dict'>

Built-in Dictionary Methods

Python provides various methods for dictionary processing. Table 3-4
summarizes the methods that can be used to access dictionaries.

Table 3-4. Built-in Dictionary Methods

No Methods Description

1 dicti.clear() Removes all elements of dictionary dict1

2 dict1.copy() Returns a copy of dictionary dict1

3 dict1.fromkeys() Creates a new dictionary with keys from seq and
values

4 dict1.get(key, For the key name key, returns the value or default

default=None) if key not in dictionary

5 dicti.has_key(key) Returnstrue if key is in dictionary dict1, false
otherwise

6 dicti.items() Returns a list of dict1’s (key, value) tuple pairs

7 dicti.keys() Returns list of the dictionary dict1’s keys

8 dict1. Similar to get (), but will set dict1

setdefault(key, [key]=default if key is not already in dict1
default=None)

9 dict1.update(dict2) Adds dictionary dict2’s key-values pairs to dict1

10 dict1.values() Returns list of dictionary dict1’s values

143

CHAPTER 3 DATA COLLECTION STRUCTURES

Listing 3-17 shows the use and implementation of dictionary methods.

Listing 3-17. Implementing Dictionary Methods

In [89]: Staff Salary = { 'Omar Ahmed' : 30000 , 'Ali Ziad' :
24000,
'Ossama Hashim': 25000, 'Majid
Hatem':10000}
STDMarks={"Salwa Ahmed":50, "Abdullah Mohamed":80,
"Sultan
Ghanim":90}
print (Staff Salary.get('Ali Ziad'))
print (STDMarks.items())
print (Staff Salary.keys())

print()

STDMarks.setdefault('Ali Ziad")

print (STDMarks)

print (STDMarks.update(dict1))

print (STDMarks)

24000

dict_items([('Salwa Ahmed', 50), ('Abdullah Mohamed',
80), ('Sultan Ghanim', 90)])

dict _keys(['Omar Ahmed', 'Ali Ziad', 'Ossama Hashim',
‘Majid Hatem'])

{'Salwa Ahmed': 50, 'Abdullah Mohamed': 80, 'Sultan
Ghanim': 90, 'Ali Ziad': None}

None

{'Salwa Ahmed': 50, 'Abdullah Mohamed': 80, 'Sultan
Ghanim': 90, 'Ali Ziad': None}

144

CHAPTER 3 DATA COLLECTION STRUCTURES

You can sort a dictionary by key and by value, as shown in Listing 3-18.

Listing 3-18. Sorting a Dictionary

In [96]: Staff Salary = { 'Omar Ahmed' : 30000 , 'Ali Ziad' :
24000, 'Ossama Hashim': 25000, 'Majid Hatem':10000}

print ("\nSorted by key")

for k in sorted(Staff_Salary):

print (k, Staff Salary[k])

Sorted by key

Ali Ziad 24000

Majid Hatem 10000

Omar Ahmed 30000

Ossama Hashim 25000

In [97]: Staff Salary = { 'Omar Ahmed' : 30000 , 'Ali Ziad' :
24000, 'Ossama Hashim': 25000, 'Majid Hatem':10000}
print ("\nSorted by value")
for w in sorted(Staff Salary, key=Staff Salary.get,
reverse=True):
print (w, Staff Salary[w])
Sorted by value

Omar Ahmed 30000
Ossama Hashim 25000
Ali Ziad 24000

Majid Hatem 10000

Tuples

A tuple is a sequence just like a list of immutable objects. The differences
between tuples and lists are that the tuples cannot be altered; also, tuples
use parentheses, whereas lists use square brackets.

145

CHAPTER 3 DATA COLLECTION STRUCTURES

Creating Tuples

You can create tuples simply by using different comma-separated values.
You can access an element in the tuple by index, as shown in Listing 3-19.

Listing 3-19. Creating and Displaying Tuples

In [1]:Names = ('Omar', 'Ali', 'Bahaa')
Marks = (75, 65, 95)
print (Names[2])
print (Marks)
print (max(Marks))
Bahaa
(75, 65, 95)
95

In [2]: for name in Names:
print (name)
Omar
Ali
Bahaa

Let’s try to alter a tuple to modify any element, as shown in Listing 3-20;
we get an error because, as indicated earlier, tuples cannot be altered.

Listing 3-20. Altering a Tuple for Editing

In [3]: Marks[1]=66
TypeError Traceback (most recent call last)
<ipython-input-3-b225998b9edb> in <module>()
----> 1 Marks[1]=66
TypeError: 'tuple' object does not support item
assignment

146

CHAPTER 3 DATA COLLECTION STRUCTURES

Like lists, you can access tuple elements forward and backward using
the element’s indices. Here’s an example:

Forward indexing

0o 1 2 3 4 5 6 7

[1] 2] 3] 4] s5][10]19]17]

8] <6 B & F F

Backward index

You can sort a list of tuples. Listing 3-21 shows how to sort tuple
elements in place as well as how to create another sorted tuple.

Listing 3-21. Sorting a Tuple

In [1]:import operator
MarksCIS = [(88,65),(70,90,85), (55,88,44)]
print (MarksCIS) # original tuples
print (sorted(MarksCIS)) # direct sorting
[(88, 65), (70, 90, 85), (55, 88, 44)]
[(55, 88, 44), (70, 90, 85), (88, 65)]

In [2]: print (MarksCIS) # original tuples
#icreate a new sorted tuple
MarksCIS2 = sorted(MarksCIS, key=lambda x: (x[0], x[1]))
print (MarksCIS2)
[(88, 65), (70, 90, 85), (55, 88, 44)]
[(55, 88, 44), (70, 90, 85), (88, 65)]
In [3]:print (MarksCIS) # original tuples
MarksCIS.sort(key=lambda x: (x[0], x[1])) # sort in tuple
print (MarksCIS)
[(88, 65), (70, 90, 85), (55, 88, 44)]
[(55, 88, 44), (70, 90, 85), (88, 65)]

147

CHAPTER 3 DATA COLLECTION STRUCTURES

By default the sort built-in function detected that the items are in
tuples form, so the sort function sorts tuples based on the first element,
then based on the second element.

Concatenating Tuples

As mentioned, tuples are immutable, which means you cannot update
or change the values of tuple elements. You can take portions of existing
tuples to create new tuples, as Listing 3-22 demonstrates.

Listing 3-22. Concatenating Tuples

In [5]:MarksCIS=(70,85,55)
MarksCIN=(90,75,60)
Combind=MarksCIS + MarksCIN
print (Combind)

(70, 85, 55, 90, 75, 60)

Accessing Values in Tuples

To access an element in a tuple, you can use square brackets and the
element index for retrieving an element value, as shown in Listing 3-23.

Listing 3-23. Accessing Values in a Tuple

In [4]:MarksCIS = (70, 85, 55)
MarksCIN = (90, 75, 60)
print ("The third mark in CIS is ", MarksCIS[2])
print ("The third mark in CIN is ", MarksCIN[2])
The third mark in CIS is 55
The third mark in CIN is 60

You can delete a tuple using de, as shown in Listing 3-24.

148

CHAPTER 3 DATA COLLECTION STRUCTURES
Listing 3-24. Deleting a Tuple

In [5]: MarksCIN = (90, 75, 60)

print (MarksCIN)

del MarksCIN

print (MarksCIN)

(90, 75, 60)

NameError Traceback
(most recent
call last)

<ipython-input-5-4c08fec39768> in <module>()

2 print (MarksCIN) 3 del MarksCIN
----> 4 print (MarksCIN)
NameError: name 'MarksCIN' is not defined

You received an error because you ordered Python to print a tuple
named MarksCIN, which has been removed. You can access a tuple
element forward and backward; in addition, you can slice values from
a tuple using indices. Listing 3-25 shows that you can slice in a forward
manner where MarksCIS[1:4] retrieves elements from element 1 up
to element 3, while MarksCIS[:] retrieves all elements in a tuple. In
backward slicing, MarksCIS[-3] retrieves the third element backward, and
MarksCIS[-4:-2] retrieves the fourth element backward up to the third
element but not the second backward element.

Listing 3-25. Slicing Tuple Values

In [6]: MarksCIS = (88, 65, 70,90,85,45,78,95,55)
print ("\nForward slicing")
print (MarksCIS[1:4])
print (MarksCIS[:3])
print (MarksCIS[6:])
print (MarksCIS[4:6])

149

CHAPTER 3 DATA COLLECTION STRUCTURES

print ("\nBackward slicing")

print (MarksCIS[-4:-2])
print (MarksCIS[- 3])
print (MarksCIS[-3:])
print (MarksCIS[:-3])
Forward slicing

(65, 70, 90)

(88, 65, 70)

(78, 95, 55)

(85, 45)

Backward slicing

(45, 78)

78

(78, 95, 55)

(88, 65, 70, 90, 85, 45)

Basic Tuples Operations

Like strings, tuples respond to the + and * operators as concatenation and

repetition to get a new tuple. See Table 3-5.

Table 3-5. Tuple Operations

Expression Results Description

len((5, 7, 2,6)) 4 Length

(1, 2, 3,10) + (4, 5, 6,7) (1, 2, 3,10, 4, 5, 6,7) Concatenation

("Hil',) * 4 (‘Hi!", 'Hi!', 'Hi!', Repetition
"Hi!")

10 in (10, 2, 3) True Membership

for x in (10, 1, 5): 1015 Iteration

print x,

150

CHAPTER 3 DATA COLLECTION STRUCTURES

Series

A series is defined as a one-dimensional labeled array capable of
holding any data type (integers, strings, floating-point numbers, Python
objects, etc.).

SeriesX = pd.Series(data, index=index),

Here, pd is a Pandas form, and data refers to a Python dictionary, an

ndarray, or even a scalar value.

Creating a Series with index

If the data is an ndarray, then the index is a list of axis labels that is directly
passed; otherwise, an auto index is created by Python starting with 0 up to
n-1. See Listing 3-26 and Listing 3-27.

Listing 3-26. Creating a Series of Ndarray Data with Labels

In [8]: import numpy as np
import pandas as pd
Series1l = pd.Series(np.random.randn(4), index=['a’,
'b', 'c', 'd'])
print(Series1)
print(Series1.index)
a 0.350241
b -1.214802
c 0.704124
d 0.866934
dtype: float64
Index(['a', 'b", 'c', 'd"], dtype='object")

151

CHAPTER 3 DATA COLLECTION STRUCTURES
Listing 3-27. Creating a Series of Ndarray Data Without Labels

In [9]:import numpy as np
import pandas as pd
Series2 = pd.Series(np.random.randn(4))
print(Series2)
print(Series2.index)
0 1.784219
1 -0.627832
2 0.429453
3 -0.473971
dtype: float64
RangeIndex(start=0, stop=4, step=1)

Creating a series from ndarrays is valid to most Numpy functions;
also, operations such as slicing will slice the index. See Listing 3-28 and
Listing 3-29.

Listing 3-28. Slicing Data from a Series

In [10]: print (" \n Series slicing ")
print (Seriesi[:3])
print ("\nIndex accessing")
print (Seriesi[[3,1,0]])
print ("\nSingle index")
X = Series1[0]
print (x)
Series slicing
a 0.350241
b -1.214802
C 0.704124
dtype: float64

152

CHAPTER 3 DATA COLLECTION STRUCTURES

Index accessing
d 0.866934
b -1.214802
a 0.350241
dtype: float64

Single index
0.35024081401881596

Listing 3-29. Sample Operations in a Series

In [11]: print ("\nSeries Sample operations")
print ("\n Series values greater than the mean: %.4f"
% Seriesi.mean())
print (Seriesi [Series1> Seriesi.mean()])
print ("\n Series values greater than the
Meadian:%.4f" % Seriesi.median())
print (Seriesi [Series1> Seriesi.median()])
print ("\nExponential value ")
Series1Exp = np.exp(Seriesi1)
print (SeriesiExp)

Series Sample operations

Series values greater than the mean: 0.1766

a 0.350241
C 0.704124
d 0.866934

dtype: float64

Series values greater than the Median: 0.5272
C 0.704124

d 0.866934

dtype: float64

153

CHAPTER 3 DATA COLLECTION STRUCTURES

Exponential value

a 1.419409
b 0.296769
c 2.022075
d 2.379604

dtype: float64

Creating a Series from a Dictionary

You can create a series directly from a dictionary, as shown in Listing 3-30.
If you don’t explicitly pass the index, Python version +3.6 considers the
series index by the dictionary insertion order. Otherwise, the series index
will be the lexically ordered list of the dictionary keys.

Listing 3-30. Creating a Series from a Dictionary

In [12]: dict = {'m" : 2, "y' : 2018, 'd" : 'Sunday'}
print ("\nSeries of non declared index")
SeriesDict1 = pd.Series(dict)
print(SeriesDict1)
print ("\nSeries of declared index")
SeriesDict2 = pd.Series(dict, index=['y",
's']) print(SeriesDict2)

Series of non declared index

LI B |
m)dJ

d Sunday
m 2
y 2018

dtype: object

Series of declared index
y 2018
m 2

154

CHAPTER 3 DATA COLLECTION STRUCTURES

d Sunday
S NaN
dtype: object

You can use the get method to access a series values by index label, as

shown in Listing 3-31.

Listing 3-31. Altering a Series and Using the Get() Method

In [13]:

print ("\nUse the get and set methods to access”

"a series values by index label\n")
SeriesDict2 = pd.Series(dict, index=['y', 'm', 'd"',
's']) print (SeriesDict2['y']) # Display the year
SeriesDict2['y']=1999 # change the year value
print (SeriesDict2) # Display all dictionary
values print (SeriesDict2.get('y')) # get specific
value by its key
Use the get and set methods to access a series values
by index label

2018

y 1999

m 2

d Sunday

s NaN
dtype: object
1999

Creating a Series from a Scalar Value

If data is a scalar value, an index must be provided. The value will be

repeated to match the length of index. See Listing 3-32.

155

CHAPTER 3 DATA COLLECTION STRUCTURES

Listing 3-32. Creating a Series Using a Scalar Value

In [14]: print ("\n CREATE SERIES FORM SCALAR VALUE ")
Scl = pd.Series(8., index=['a', 'b', 'c', 'd'])
print (Scl)

CREATE SERIES FORM SCALAR VALUE

a 8.0
b 8.0
c 8.0
d 8.0

dtype: float64

Vectorized Operations and Label Alignment
with Series

Series operations automatically align the data based on label. Thus, you
can write computations without giving consideration to whether the series
involved have the same labels. If labels are not matches, it gives a missing
value NaN. See Listing 3-33.

Listing 3-33. Vectorizing Operations on a Series

In [16]: SerX = pd.Series([1,2,3,4], index=['a', 'b', 'c', 'd'])
print ("Addition");
print(SerX + SerX)
print ("Addition with non-matched labels");
print (SerX[1:] + SerX[:-1])
print ("Multiplication");
print (SerX * SerX)
print ("Exponential");
print (np.exp(SerX))

156

CHAPTER 3 DATA COLLECTION STRUCTURES

Addition

a 2

b 4

cb6

d 8

dtype: int64

Addition with non-matched labels
a NaN

b 4.0

c 6.0

d NaN

dtype: float64

Multiplication
a 1

b 4

c 9

d 16

dtype: int64

Exponential

a 2.718282

b 7.389056

C 20.085537

d 54.598150
dtype: float64

Name Attribute

You can name a series; also, you can alter a series, as shown in Listing 3-34.

157

CHAPTER 3 DATA COLLECTION STRUCTURES

Listing 3-34. Using a Series Name Attribute

In [17]:std = pd.Series([77,89,65,90], name='StudentsMarks")
print (std.name)
std = std.rename("Marks")
print (std.name)
StudentsMarks
Marks

Data Frames

A data frame is a two-dimensional tabular labeled data structure with
columns of potentially different types. A data frame can be created from
numerous data collections such as the following:

e A 1D ndarray, list, dict, or series
e 2D Numpy ndarray

o Structured or record ndarray

o Aseries

e Another data frame

A data frame has arguments, which are an index (row labels) and
columns (column labels).

Creating Data Frames from a Dict of Series
or Dicts

You can simply create a data frame from a dictionary of series; it’s also
possible to assign an index. If there is an index without a value, it gives a
NaN value, as shown in Listing 3-35.

158

http://docs.scipy.org/doc/numpy/user/basics.rec.html

CHAPTER 3 DATA COLLECTION STRUCTURES

Listing 3-35. Creating a Data Frame from a Dict of Series

In [5]: import pandas as pd
dict1 = {'one' : pd.Series([1., 2., 3.],
index=['a", 'b', 'c']),
"two' : pd.Series([1., 2., 3., 4.],
index=['a", 'b', 'c', 'd'])}
df = pd.DataFrame(dict1)
df
Out[5]: one two
a 1.0 1.0
b 2.0 2.0
C 3.0 3.0
d NaN 4.0
In [6]: # set index for the DataFrame
pd.DataFrame(dict1, index=['d', 'b', 'a'])
Out[6]: one two
d NaN 4.0
b 2.0 2.0
a 1.0 1.0
In [8]: # Control the labels appearance of the DataFrame

pd.DataFrame(dict1, index=['d', 'b', 'a'], columns=["two',

"three', 'one'])

Out[8]: two three
d 4.0
b 2.0
a 1.0

one

NaN NaN
NaN 2.0
NaN 1.0

159

CHAPTER 3 DATA COLLECTION STRUCTURES

Creating Data Frames from a Dict of
Ndarrays/Lists

When you create a data frame from an ndarray, the ndarrays must all be
the same length. Also, the passed index should be of the same length as
the arrays. If no index is passed, the result will be range(n), where n is the
array length. See Listing 3-36.

Listing 3-36. Creating a Data Frame from an Ndarray

In [11]: # without index
ndarrdict = {'one' : [1., 2., 3., 4.],'two" :
[4., 3., 2., 1.]}
pd.DataFrame(ndarrdict)

Out[11]: one two
0 1.0 4.0
1 2.0 3.0
2 3.0 2.0
3 4.0 1.0

In [12]: # Assign index

pd.DataFrame(ndarrdict, index=['a', 'b', 'c', 'd'])

Out[12]: one two
a 1.0 4.0
b 2.0 3.0
C 3.0 2.0
d 4.0 1.0

160

CHAPTER 3 DATA COLLECTION STRUCTURES

Creating Data Frames from a Structured or
Record Array

Listing 3-37 creates a data frame by first specifying the data types of each
column and then the values of each row. ('A", 'i4') determines the
column label and its data type as integers, ('B', 'f4') determines the
label as B and the data type as float, and finally ('C', 'a10") assigns the
label C and data type as a string with a maximum of ten characters.

Listing 3-37. Creating a Data Frame from a Record Array

In [18]:import pandas as pd
import numpy as np
data = np.zeros((2,), dtype=[('A", 'i4"),('B', 'f4"),

(‘c’, 'a10")])
data[:] = [(4,2.,"'Hello"), (2,3.,"World")]
pd.DataFrame(data)
Out[18]: A B C
01 2.0 b'Hello'
12 3.0 b'World'
In [16]: pd.DataFrame(data, index=['First', 'Second'])
Out[16]: A B C
First 1 2.0 b'Hello'

Second 2 3.0 b'World'

In [17]: pd.DataFrame(data, columns=['C"', 'A"', 'B'])
Out[17]: C A B

0 b'Hello' 1 2.0

1 b'World' 2 3.0

Creating Data Frames from a List of Dicts

Also, you can create data frame from a list of dictionaries, as shown in
Listing 3-38.

161

CHAPTER 3 DATA COLLECTION STRUCTURES

Listing 3-38. Creating a Data Frame from a List of Dictionaries

In [19]: data2 = [{'A ": 1, 'B ': 2}, {'A': 5, 'B': 10, 'C': 20}]
pd.DataFrame(data2)
Out[19]: A B C
0 1 2 NaN
1 5 10 20.0
In [20]: pd.DataFrame(data2, index=['First', 'Second'])
Out[20]: A B C
First 1 2 NaN
Second 5 10 20.0
In [21]: pd.DataFrame(data2, columns=['A"', 'B'])
Out[21]: A B
0 1 2
1 5 10

Creating Data Frames from a Dict of Tuples

Another method to create a multi-indexed data frame is to pass a
dictionary of tuples, as indicated in Listing 3-39.

Listing 3-39. Creating a Data Frame from a Dictionary of Tuples

In [22]: pd.DataFrame({('a', 'b"): {('A', 'B"): 1, ('A", 'C"): 2},

(‘a', 'a"): {("A", 'C): 3, (PAY,
'B'): 4},

(‘a', 'c"): {('A", 'B"): 5, ('A",

'C'): 6},

('b', 'a'): {('A', 'C'): 7, ('A',

'B'): 8},

('b', 'b"): {("A', 'D'): 9, ('A',

'B'): 10}})

162

CHAPTER 3 DATA COLLECTION STRUCTURES

Out[22]:
a b

a b c a b

A B 40 10 50 80 100
C 30 20 60 70 NaN
D NaN NaN NaN NaN 9.0

Selecting, Adding, and Deleting Data
Frame Columns

Once you have a data frame, you can simply add columns, remove
columns, and select specific columns. Listing 3-40 demonstrates how to
alter a data frame and its related operations.

Listing 3-40. Adding Columns and Making Operations on a Created
Data Frame

In [25]: # DATAFRAME COLUMN SELECTION, ADDITION, DELETION
ndarrdict = {'one' : [1., 2., 3., 4.], 'two'
[4., 3., 2., 1.]}
df = pd.DataFrame(ndarrdict, index=['a", 'b', 'c', 'd'])

df
Out[25
one two
a 10 40
b 20 30
c 30 20
d 40 10

163

CHAPTER 3

In [26]:

AT
Out[26]:
Out[26]

DATA COLLECTION STRUCTURES

df['three'] = df['one'] * df['two'] # Add column
df['flag'] = df['one'] > 2 # Add column
df

one two three flag

10 40 40 False

20 30 6.0 False
30 20 6.0 True

a o o

40 10 40 True

You can insert a scalar value to a data frame; it will naturally be

propagated to fill the column. Also, if you insert a series that does not have

the same index as the data frame, it will be conformed to the data frame’s

index. To delete a column, you can use the del or pop method, as shown in
Listing 3-41.

Listing 3-41. Adding a Column Using a Scalar and Assigning to a

Data Frame

In [27]:

out[27]:

164

df['Filler'] = "HCT'
df['Slic'] = df['one'][:2]
df

one two three flag Filler Slic

10 4.0 40 False HCT 1.0

o o

20 30 60 False HCT 20
30 20 60 True HCT NaN

1]

d 40 10 40 True HCT NaN

CHAPTER 3 DATA COLLECTION STRUCTURES

In [28]:# Delet columns
del df['two"]
Three = df.pop('three')
df

(=]
[
ca

one flag Filler Slic

a 10 False HCT 1.0
b 20 False HCT 20
¢ 30 True HCT NaN
d 40 True HCT NaN

In [29]: df.insert(1, 'bar', df['one'])
df

one bar flag Filler Slic

a 10 10 False HCT 10
b 20 20 False HCT 20
¢ 30 30 True HCT NaN
d 40 40 True HCT NaN

By default, columns get inserted at the end. However, you can use
the insert () function to insert at a particular location in the columns, as
shown previously.

Assigning New Columns in Method Chains

A data frame has an assign() method that allows you to easily create new
columns that are potentially derived from existing columns. Also, you can

change values of specific columns by altering the columns and making the
necessary operations, as in column A in Listing 3-42.

165

CHAPTER 3 DATA COLLECTION STRUCTURES

Listing 3-42. Using the assign() Method to Add a Derived Column

In [54]: import numpy as np
import pandas as pd
df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
df = df.assign(C=lambda x: x['A'] + x['B'])
df = df.assign(D=lambda x: x['A'] + x['C"])
df

out[54]:

(=]
—
~
w
o o | 0O

In [55]: df
df

df.assign(A=lambda x: x['A'] *2)

S
e
o
-~
o o| O

2 6 6 9 12

Indexing and Selecting Data Frames

Table 3-6 summarizes the data frame indexing and selection methods of
columns and rows.

166

CHAPTER 3 DATA COLLECTION STRUCTURES

Table 3-6. Data Frame Indexing and Selection Methods

Operation Syntax Result
Select column df[col] Series
Select row by label df.loc[label] Series
Select row by integer location df.iloc[loc] Series
Slice rows df[5:10] Data frame
Select rows by Boolean vector df[bool vec] Data frame

Listing 3-43 applies different approaches for rows and columns
selections from a data frame.

Listing 3-43. Data Frame Row and Column Selections

In [56]: df
' ABC D
0245 6
Tl E
2 6 6 9 12

In [61]: df['B']

: 0
i
2

awn b

Name: B, dtype: inté4

167

CHAPTER 3 DATA COLLECTION STRUCTURES

In [59]: df.iloc[2]

- -]

A
B
C
D 12

Name: 2, dtype: inté4

In [62]: df[1:]

out[62]:
A BC D

14N 5T 0
2 66 9 12

In [65]: df[df['C']>7]
Out[65]:

A B C D

2 6 6 9 12

See Listing 3-44.

Listing 3-44. Operations on Data Frames

In [69]:df1 = pd.DataFrame({"A": [1, 2, 3], "B":

df2 = pd.DataFrame({"A": [7, 4, 6], "B":

print (df1)
print()
print(df2)

168

[4, 5, 6]})
[10, 4, 15]})

CHAPTER 3 DATA COLLECTION STRUCTURES

A B
e 1 4
1 2 5
2 3 6

A B
e 7 10
1 4 -
2 6 15

In [70]: df1 + df2

Outlf70] -
VUKL /O]

21

In [71]: df1-df2

Out[71]:

In [72]: df2 - df1.iloc[2]

=
Fs
o N &

169

CHAPTER 3 DATA COLLECTION STRUCTURES

In [75]: df2

10

o
o & ~N|>P

15

In [78]: df2*2+1
Out[78]:

A B

0 15 21

2 13 3

Transposing a Data Frame

You can transpose a data frame using the T operator, as shown in Listing 3-45.
Listing 3-45. Transposing a Data Frame
In [78]: df2

Out[8@]:

10

o
o & NP

15

170

CHAPTER 3 DATA COLLECTION STRUCTURES

Out[79]
01 2
A 74 8
B 10 4 15

Data Frame Interoperability with Numpy
Functions

You can implement matrix operations using the dot method on a data
frame. For example, you can implement matrix multiplication as in
Listing 3-46.

Listing 3-46. Matrix Multiplications

In [78]: df1

In [78]: df1.T.dot(df1)

A 14 32
B 3 77

171

CHAPTER 3 DATA COLLECTION STRUCTURES

Panels

A panelis a container for three-dimensional data; it's somewhat less
frequently used by Python programmers.
A panel creation has three main attributes.

— items: axis 0; each item corresponds to a data frame

contained inside

— major_axis: axis 1; it is the index (rows) of each of the

data frames

— minor_axis: axis 2; it is the columns of each of the data

frames

Creating a Panel from a 3D Ndarray

You can create a panel from a 3D ndarray with optional axis labels, as
shown in Listing 3-47.

Listing 3-47. Creating a Panel from a 3D Ndarray

In [3]:import pandas as pd
import numpy as np
P1 = pd.Panel(np.random.randn(2, 5, 4), items=['Item1’,
‘Item2'],major_axis=pd.date_range('10/05/2018",
periods=5), minor axis=['A', 'B', 'C', 'D'])
P1

3]: <class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x S (major_axis) x 4 (minor_axis)
Items axis: Iteml to Item2
Major_axis axis: 2018-10-05 00:00:00 to 2018-10-09 00:00:00
Minor axis axis: A to D

172

CHAPTER 3 DATA COLLECTION STRUCTURES

Creating a Panel from a Dict of Data
Frame Objects

You can create a panel from a dictionary of a data frame, as shown in
Listing 3-48.

Listing 3-48. Creating a Panel from a Dictionary of Data Frames

In [4]:

data = {'Item1' : pd.DataFrame(np.random.randn(4, 3)),
"Item2' : pd.DataFrame(np.random.randn(4, 2))}

P2 = pd.Panel(data)

P2

<class 'pandas.core.panel.Panel'>

Dimensions: 2 (items) x 4 (major_axis) x 3 (minor_axis)
Items axis: Iteml to Item2

Major axis axis: 0 to 3

Minor_ axis axis: 0 to 2

: p3 = pd.Panel.from dict(data, orient="minor")

pP3

]+ <class 'pandas.core.panel.Panel'>

Dimensions: 3 (items) x 4 (major_axis) x 2 (minor_axis)
Items axis: 0 to 2

Major_axis axis: 0 to 3

Minor axis axis: Iteml to Item2

See Listing 3-49.

173

CHAPTER 3 DATA COLLECTION STRUCTURES

Listing 3-49. Creating a Panel from a Data Frame

In [26]: df = pd.DataFrame({'Item': ['TV', 'Mobile', 'Laptop'],
"Price': np.random.randn(3)**2*1000})
df

Item Price

0 TV 3704932147
1 Mobile 1348.142581
2 Laptop 336.985518

In [29]: data = {'stocki': df, 'stock2': df}
panel = pd.Panel.from dict(data, orient='minor")
panel['Item']

O
'

1
(8]
w

stock1 stock2

0 v v
1 Mobie Mobie

2 Laptop Laptop

In [30]: panel['Price']

stock1 stock2

0 3704932147 3704932147
1 1348142561 1348.142561
2 336985518 336.985518

174

CHAPTER 3 DATA COLLECTION STRUCTURES

Selecting, Adding, and Deleting Items

A panel is like a dict of data frames; you can slice elements, select items,
and so on. Table 3-7 gives three operations for panel items selections.

Table 3-7. Panel Item Selection and Slicing Operations

Operation Syntax Result

Select item wp[item] Data frame
Get slice at major_axis label ~ wp.major xs(val) Data frame

Get slice atminor_axis label ~ wp.minor xs(val) Data frame

See Listing 3-50.

Listing 3-50. Slicing and Selecting Items from a Panel

In [33]: import pandas as pd
import numpy as np
P1 = pd.Panel(np.random.randn(2, 5, 4),
items=['Item1’,
"Item2'], major axis=pd.date_
range('10/05/2018",

periods=5), minor axis=['A', 'B', 'C', 'D'])

P1['Item1']

A B C D

2018-10-05 -0.794656 1.082396 -0.368632 0.350976
2018-10-06 -0.281474 0.070584 -0.012626 -0.388089
2018-10-07 1653752 0.487939 1.838114 -0.832078
2018-10-08 -0.145535 1.856141 0.107239 0.462018

2018-10-09 -0.8168585 2195793 -0.871674 -1.226816

175

CHAPTER 3 DATA COLLECTION STRUCTURES

In [34]: P1.major xs(P1.major_ axis[2])

Q

Item1 Item2

1653752 -0.496110

A

B 0.487939 0.990550
C 1838114 1.492156
D

-0.832078 -0.197148
In [35]: P1.minor axis
Out[35]: Index(['A", 'B', 'C', 'D'], dtype='object")

In [36]: P1.minor xs('C")

Item1 Item2

2018-10-05 -0.368632 -0.989085
2018-10-06 -0.012636 0.268520
2018-10-07 1.838114 1.4921%58
2018-10-08 0.107239 -0.555847
2018-10-09 -0.871674 -0.468045

Summary

This chapter covered data collection structures in Python and their

implementations. Here’s a recap of what was covered:
— How to maintain a collection of data in different forms
— How to create lists and how to manipulate list content

— What a dictionary is and the purpose of creating a dic-
tionary as a data container

176

CHAPTER 3 DATA COLLECTION STRUCTURES

— How to create tuples and what the difference is between
tuple data structure and dictionary structure, as well as the
basic tuple operations

— How to create a series from other data collection forms

— How to create data frames from different data collection
structures and from another data frame

— Howto create a panel as a 3D data collection from a series
or data frame

The next chapter will cover file I/O processing and using regular
expressions as a tool for data extraction and much more.

Exercises and Answers

1. Write a program to create a list of names; then
define a function to display all the elements in
the received list. Call the function to execute its
statements and display all names in the list.

Answer:

In [124]: Students =["Ahmed", "Ali", "Salim", "Abdullah",
"Salwa"]
def displaynames (x):
for name in x:
print (name)
displaynames(Students) # Call the function display
names
Ahmed
Ali
Salim

177

CHAPTER 3 DATA COLLECTION STRUCTURES

Abdullah
Salwa

2. Write a program to read text file data and create
a dictionary of all keywords in the text file. The
program should count how many times each
word is repeated inside the text file and then find
the keyword with a highest repeated number.
The program should display both the keywords
dictionary and the most repeated word.

Answer:

In [4]: # read data from file and add it to dictionary for
processing

o] Egyptixt - Notepad - olEl
File Edit Format View Help
[E2ypt. a country linking northeast Africa with the Middle East,
dates to the time of the pharaohs. Millennia-old monuments sit
along the fertile Nile River Valley, including Giza's colossal
Pyramids and Great Sphinx as well as Luxor’s hieroglyph-lined
Kamak Temple and Valley of the Kings tombs. The capital, Cairo,
is home to Ottoman landmarks like Muhammad Ali Mosque and
the Egyptian Museum, a trove of antiquities.

handle = open("Egypt.txt")
text = handle.read()
words = text.split()

counts = dict()
for word in words:
counts[word] = counts.get(word,0) + 1
print (counts)
bigcount = None
bigword = None

178

CHAPTER 3 DATA COLLECTION STRUCTURES

for word,count in counts.items():
if bigcount is None or count > bigcount:
bigword = word
bigcount = count
print ("\n bigword and bigcount™)
print (bigword, bigcount)

3. Write a program to compare tuples of integers and

tuples of strings.

Answer:

In [14]: print ((100, 1, 2) > (150, 1, 2))
print ((0, 1, 120) < (0, 3, 4))
print (('Javed', 'Salwa') > ('Omar', 'Sam"))
print (('Khalid', 'Ahmed') < ('Ziad', 'Majid"))
False
True
False
True

4. Write a program to create a series to maintain three
students’ names and GPA values.

Name GPA
Omar 2.5
Ali 3.5
Osama 3

179

CHAPTER 3 DATA COLLECTION STRUCTURES

Answer:

180

In [41]: data = {'Omar'

pd.Series (data)

[41]: Aali 3.5
Cmar 2.5
Csama 3.0

dtype: float64

In [42]: pd.Series(datsa,

(o]

ot

[

Ali 3.
Cmar 2.
Csama 3.
dtype: floatéd

(=T]

5 2oS, SAla?

index=['Ali"',

'Cmar’,

: 3.5, '"Osama' : 3.(

'"Osama'l])

course. Display the final data frame.

Write a program to create a data frame to maintain
three students’ names associated with their grades
in three courses and then add a new column named
Mean to maintain the calculated mean mark per

Name Course1 Course2 Course3
Omar 90 50 89
Ali 78 75 73
Osama 67 85 80

CHAPTER 3 DATA COLLECTION STRUCTURES
Answer:

In [31]: data = {'Omar': [90, 50, 89], 'Ali': [78, 75, 73],
'Osama': [67, 85, 80]}
df1 = pd.DataFrame (data, index= ['Coursel’,
"Course2', 'Course3'])

df1
out [S1]:
Ali Omar Osama
Coursel 78 90 67
Course2 75 50 85
Course3 73 89 80

In [32]: df1['Omar']

Out[32]:Course1 90
Course2 50
Course3 89
Name: Omar, dtype: int64

In [33]: df1['Mean'] = (df1['Ali'] + df1['Omar'] +
df1['0Osama'])/3

df1
Ali Omar Osama Mean
Coursel 78 90 67 78.333333
Course2 75 50 85 70.000000

Coursel 73 89 80 80.666667

181

CHAPTER 4

File /0 Processing
and Regular
Expressions

In this chapter, you'll study input-output functions and file processing.
In addition, you'll study regular expressions and how to extract data that
matches specific patterns.

File 1/0 Processing

Python provides numerous methods for input, output, and file processing.
You can get input from the screen and output data to the screen as well as
read data from files and store data in files.

Data Input and Output

You can read data from a user using the input() function. Received data
by default is in text format. Hence, you should use conversion functions to
convert the data into numeric values if required, as shown in Listing 4-1.

© Dr. Ossama Embarak 2018 183
O. Embarak, Data Analysis and Visualization Using Python,
https://doi.org/10.1007/978-1-4842-4109-7_4

CHAPTER 4 FILE I/0 PROCESSING AND REGULAR EXPRESSIONS

Listing 4-1. Screen Data Input/Output

In [2]: Name = input ("Enter your name: ")
Name

Enter your name: Osama Hashim

Out[2]: 'Osama Hashim'

In [3]: Mark = input("Enter your mark: ") Mark = float(Mark)
Enter your mark: 92
In [4]:print ("Welcome to Grading System \nHCT 2018")
print ("\nCampus\t Name\t\tMark\tGrade")
if (Mark>=85):
Grade="B+"
print ("FMC\t", Name,"\t",Mark,"\t", Grade)
Welcome to Grading System

HCT 2018
Campus Name Mark Grade
FMC Osama Hashim 92.0 B+

Here you are converting the Mark value into a float using float (Mark).
You use \t to add tabs and \n to jump lines on the screen.

Opening and Closing Files

Python’s built-in open () function is used to open a file stored on a
computer hard disk or in the cloud. Here’s its syntax:

file object = open(file name [, access mode][, buffering])

Table 4-1 describes its modes.

184

CHAPTER 4 FILE I/0 PROCESSING AND REGULAR EXPRESSIONS

Table 4-1. Open File Modes

No. Modes Description

1 T Opens a file for reading only; the default mode

2 rb Opens a file for reading only in binary format

3 I+ Opens a file for both reading and writing

4 b+ Opens a file for both reading and writing in binary format
5 W Opens a file for writing only

6 wb Opens a file for writing only in binary format

7 W+ Opens a file for both writing and reading

8 wb+ Opens a file for both writing and reading in binary format
9 a Opens a file for appending

10 ab Opens a file for appending in binary format

11 a+ Opens a file for both appending and reading

12 ab+ Opens a file for both appending and reading in binary format

File Object Attributes

Python provides various methods for detecting the open file’s information,

as shown in Table 4-2.

Table 4-2. Opened File Attributes

No. Attribute Description

1 file.closed Returns true if the file is closed; false otherwise
2 file.mode Returns access mode with which file was opened
3 file.name Returns name of the file

185

CHAPTER 4 FILE I/0 PROCESSING AND REGULAR EXPRESSIONS

Listing 4-2 displays the attributes of an open file called Egypt. txt.

Listing 4-2. Opened File Attributes

In [41]: # Open a file and find its attributes
Filehndl = open("Egypt.txt", "r")
print ("Name of the file: ", Filehndl.name)
print ("Closed or not : ", Filehndl.closed)
print ("Opening mode : ", Filehndl.mode)

Name of the file: Egypt.txt

Closed or not : False

Opening mode : r

You can close an opened file using the close () method to clear all
related content from memory and to close any opened streams to the back-
end file, as shown in Listing 4-3.

Listing 4-3. Closing Files

In [40]: Filehndl = open("Egypt.txt", "r")
print ("Closed or not : ", Filehndl.closed)
Filehndl.close()
print ("Closed or not : ", Filehndl.closed)
Closed or not : False
Closed or not : True

Reading and Writing to Files

The file.write() method is used to write to a file as shown in below
figure, and the file.read() method is used to read data from an opened
file. A file can be opened for writing (W), reading (1), or both (r+), as shown
in Listing 4-4.

186

CHAPTER 4 FILE I/0 PROCESSING AND REGULAR EXPRESSIONS
Listing 4-4. Writing to a File

In [39]:Filehndl = open("Egypt.txt", "w+"
Filehndl.write("Python Processing Files\nMay
2018!!\n")

Close opend file
Filehndl.close()

As shown in the following figure, data has been written into the
“Egypt.txt” file.

OssamaEmbarak > Libraries > PythonBookvl > Egypt.txt

£ Share TiClone VY 0Clones | > Run L Download

Python Processing Files
May 2018!!

The rename () method is used to rename a file; it takes two arguments:
the current filename and the new filename. Also, the remove () method can
be used to delete files by supplying the name of the file to be deleted as an

argument.

In [34]: import os
os.rename("Egypt.txt", "test2.txt")
os.remove("test2.txt")

Directories in Python

Python provides various methods for creating and accessing directories.
Listing 4-5 demonstrates how to create, move, and delete directories. You
can find the current working directory using Python’s getcwd() method.

187

CHAPTER 4 FILE I/0 PROCESSING AND REGULAR EXPRESSIONS
Listing 4-5. Creating and Deleting Directories

In [35]: import os
os.mkdir("Data 1") # create a directory
os.mkdir("Data_2")
os.chdir("Data_3") # create a Childe directory
os.getcwd() # Get the current working
directory

os.rmdir('Data 1') # remove a directory
os.rmdir('Data_3') # remove a directory

Regular Expressions

A regular expression is a special sequence of characters that helps find
other strings or sets of strings matching specific patterns; it is a powerful
language for matching text patterns.

Regular Expression Patterns

Different regular expression syntax can be used for extracting data from
text files, XML, JSON, HTML containers, and so on.
Table 4-3 lists some Python regular expression syntax.

188

CHAPTER 4 FILE I/0 PROCESSING AND REGULAR EXPRESSIONS

Table 4-3. Python Regular Expression Syntax

No. Pattern Description

1 A Matches beginning of the line.

2 $ Matches end of the line.

3 Matches any single character except a newline.

4 [...] Matches any single character in brackets.

5 [~...] Matches any single character not in brackets.

6 re* Matches zero or more occurrences of the preceding
expression.

7 Te+ Matches one or more occurrence of the preceding expression.

8 re? Matches zero or one occurrence of the preceding expression.

9 re{ n} Matches exactly n number of occurrences of the preceding
expression.

10 re{ n,} Matches n or more occurrences of the preceding expression.

11 re{ n, m} Matches at least nand at most m occurrences of the
preceding expression.

12 al| b Matches either a or b.

13 (re) Groups regular expressions and remembers matched text.

14 (?2imx) Temporarily toggles on /, m, or x options within a regular
expression.

15 (?-imx) Temporarily toggles off i, m, or x options within a regular
expression.

16 (?: re) Groups regular expressions without remembering matched
text.

17 (?imx: re) Temporarily toggles on i, m, or x options within parentheses.

(continued)

189

CHAPTER 4

FILE I/0 PROCESSING AND REGULAR EXPRESSIONS

Table 4-3. (continued)

No. Pattern Description
18 (?-imx: Temporarily toggles off i, m, or x options within parentheses.
re)

19 (?#...) Comment.

20 (?= re) Specifies the position using a pattern. Doesn’t have a range.

21 (?! re) Specifies the position using pattern negation. Doesn’t have a
range.

22 (7> re) Matches independent pattern without backtracking.

23 \w Matches word characters.

24 \W Matches nonword characters.

25 \s Matches whitespace. Equivalent to [\t\n\r\f].

26 \S Matches nonwhitespace.

27 \d Matches digits. Equivalent to [0-9].

28 \D Matches nondigits.

29 \A Matches beginning of the string.

30 \z Matches end of the string. If a newline exists, it matches just
before the newline.

31 \z Matches end of the string.

32 \G Matches point where the last match finished.

33 \b Matches word boundaries when outside brackets.

34 \B Matches nonword boundaries.

35 \n,\t,etc. Matches newlines, carriage returns, tabs, etc.

36 \1...\9 Matches nth grouped subexpression.

37 \10 Matches nth grouped subexpression if it matched already.

190

CHAPTER 4 FILE I/0 PROCESSING AND REGULAR EXPRESSIONS

For instance, if you have a text file of e-mail log data and you want to
extract only the text lines where the @uct.ac.za pattern appears, then you
can use iteration to capture only the lines with the given pattern, as shown
in Listing 4-6.

Listing 4-6. Reading and Processing a Text File

In [46]: print ("\nUsing in to select lines // only print lines
which has specific string ")
fhand = open('Emails.txt")
for line in fhand:
line = line.rstrip()

if not '@uct.ac.za' in line :
continue
print (line)

You can extract only the lines starting with From:. Once it has been
extracted, then you can split each line into a list and slice only the e-mail
element, as indicated in Listing 4-7 and Listing 4-8.

Listing 4-7. Extracting Lines Starting with a Specific Pattern

In [45]: print("\nSearching Through a File\n")
fhand = open('Emails.txt")
for line in fhand:
line = line.rstrip()
if line.startswith('From:"') :
print (line)
Searching Through a File
From: stephen.marquard@uct.ac.za
From: louis@media.berkeley.edu
From: zqgian@umich.edu
From: rjlowe@iupui.edu

191

CHAPTER 4 FILE I/0 PROCESSING AND REGULAR EXPRESSIONS

From: zqian@umich.edu

From: rjlowe@iupui.edu

From: cwen@iupui.edu

From: cwen@iupui.edu

From: gsilver@umich.edu

From: gsilver@umich.edu

From: zqgian@umich.edu

From: gsilver@umich.edu

From: wagnermr@iupui.edu

From: zqgian@umich.edu

From: antranig@caret.cam.ac.uk
From: gopal.ramasammycook@gmail.com
From: david.horwitz@uct.ac.za
From: david.horwitz@uct.ac.za
From: david.horwitz@uct.ac.za
From: david.horwitz@uct.ac.za
From: stephen.marquard@uct.ac.za
From: louis@media.berkeley.edu
From: louis@media.berkeley.edu
From: ray@media.berkeley.edu
From: cwen@iupui.edu

From: cwen@iupui.edu

From: cwen@iupui.edu

Listing 4-8. Extracting e-mails without regular expressions

In [47]: print("\nSearching Through a File\n") fhand =
open('Emails.txt")
for line in fhand:
line = line.rstrip()
if line.startswith('From:") :
line = line.split()
print (line[1])

192

CHAPTER 4 FILE I/0 PROCESSING AND REGULAR EXPRESSIONS

Searching Through a File
stephen.marquard@uct.ac.za louis@media.berkeley.edu
zgian@umich.edu
rjlowe@iupui.edu
zgian@umich.edu
rjlowe@iupui.edu
cwen@iupui.edu
cwen@iupui.edu
gsilver@umich.edu
gsilver@umich.edu
zgian@umich.edu
gsilver@umich.edu
wagnermr@iupui.edu
zgian@umich.edu
antranig@caret.cam.ac.uk
gopal.ramasammycook@gmail.com
david.horwitz@uct.ac.za
david.horwitz@uct.ac.za
david.horwitz@uct.ac.za
david.horwitz@uct.ac.za
stephen.marquard@uct.ac.za
louis@media.berkeley.edu
louis@media.berkeley.edu
ray@media.berkeley.edu
cwen@iupui.edu
cwen@iupui.edu
cwen@iupui.edu

Although regular expressions are useful for extracting data from word
bags, they should be carefully used. The regular expression in Listing 4-9
finds all the text starting with a capital X followed by any character
repeated zero or more times and ending with a colon (:).

193

CHAPTER 4 FILE I/0 PROCESSING AND REGULAR EXPRESSIONS

Listing 4-9. Regular Expression Example

In [48]: import re
print ("\nRegular Expressions\n'”X.*:' \n") hand =
open('Data.txt")
for line in hand:
line = line.rstrip()
y = re.findall('"X.*:",line)
print (y)

This is a text file maintaining text data which we used to apply regular
expressions as shown below.

r) Data.txt - Notepad - olEl
File Edt Format View Help

[X-Sieve: CMU Sieve 2.3
X-DSPAM-Result: Innocent
X-DSPAM-Confidence: 0.8475

X- Content-Type-Message-Body: text/plain
X-Plane is behind schedule: two weeks

In the following code, the expression '*X.*: ' retrieves all lines starting
with a capital X followed by any character including white spaces zero
or more times and ending with a colon delimiter (:) . However, it doesn’t
consider the whitespaces. Listing 4-10 retrieves only the values that have
no whitespaces included in the matched patterns.

XoE

['X-Sieve:']

['X-DSPAM-Result: "]

['X-DSPAM-Confidence: "]

['X- Content-Type-Message-Body: "]
['X-Plane is behind schedule:']

194

CHAPTER 4 FILE I/0 PROCESSING AND REGULAR EXPRESSIONS
Listing 4-10. Extracting Nonwhitespace Patterns

In [49]: print ("\nRegular Expressions\nWild-Card Characters
"AX-\S+:"\n")
hand = open('Data.txt")
for line in hand:
line = line.rstrip()
y = re.findall('"X-\S+:',1line) # match any
nonwhite space characters
print (y)
Regular Expressions
Wild-Card Characters 'X-\S+:'
['X-Sieve:']
['X-DSPAM-Result: "]
['X-DSPAM-Confidence: "]
[]
[]

Regular expressions enable you to extract numerical values within a
string and find specific patterns of characters within a string of characters,
as shown in Listing 4-11.

Listing 4-11. Extracting Numerical Values and Specific Characters

In [50]: print ("\n Matching and Extracting Data \n")
x = 'My 2 favorite numbers are 19 and 42'
y = re.findall('[0-9]+",x)
print (y)
Matching and Extracting Data
['2", '19', "42']

195

CHAPTER 4 FILE I/0 PROCESSING AND REGULAR EXPRESSIONS

In [51]: y = re.findall('[AEsOUn]+',x) # find any of these
characters in string

print (y)

['n', 's", 'n"]

Although regular expressions are useful for extracting data, they should
be carefully implemented. The following examples show the greedy and
nongreedy extraction. In the first example in Listing 4-12, Python finds
a string starting with F and containing any number of characters up to
a colon and then stops when it reaches the end of the line. That is why
it continues to retrieve characters even when it finds the first colon. In
the second example, re.findall('"F.+?:", x) asks Python to retrieve
characters starting with an F and ending with the first occurrence of a
delimiter, which is a colon regardless of whether it reached the end of the

line or not.

Listing 4-12. Greedy and Nongreedy Matching

In [52]: print ("\nGreedy Matching \n")
x = 'From: Using the : character’
y = re.findall('"F.+:"', x)
print (y)
Greedy Matching
['From: Using the :']
In [53]: print ("\nNon-Greedy Matching \n")
x = 'From: Using the : character'
y = re.findall('"F.+?:", x)
print (y)
Non-Greedy Matching
['From:"]

Table 4-4 demonstrates various implementations of regular
expressions.

196

CHAPTER 4 FILE I/0 PROCESSING AND REGULAR EXPRESSIONS

Table 4-4. Examples of Regular Expressions

No. Example Description

1 [Pp]ython Matches "Python" or "python"

2 rub[ye] Matches "ruby" or "rube"

3 [aeiou] Matches any one lowercase vowel

4 [0-9] Matches any digit; same as [0123456789]

5 [a-Z] Matches any lowercase ASCII letter

6 [A-Z] Matches any uppercase ASCII letter

7 [a-zA-Z0-9] Matches any of the above

8 [~aeiou] Matches anything other than a lowercase vowel
9 [*0-9] Matches anything other than a digit

Special Character Classes

Some special characters are used within regular expressions to extract
data. Table 4-5 summarizes some of these special characters.

Table 4-5. Regular Expression Special Characters

No. Example Description

1 . Matches any character except newline

2 \d Matches a digit: [0-9]

3 \D Matches a nondigit: [*0-9]

4 \s Matches a whitespace character: [\t\r\n\f]
5 \S Matches nonwhitespace: [* \t\r\n\f]

6 \w Matches a single word character: [A-Za-z0-9]
7 \W Matches a nonword character: [*A-Za-z0-9]

197

CHAPTER 4 FILE I/0 PROCESSING AND REGULAR EXPRESSIONS

Repetition Classes

It is possible to have a string with different spelling such as “ok” and “okay.”
To handle such cases, you can use repetition expressions, as shown in
Table 4-6.

Table 4-6. Regular Expression Repetition Characters

No. Example Description

1 ruby? Matches "rub" or "ruby"; the yis optional
2 ruby* Matches "rub" plus zeros or more ys

3 Tuby+ Matches "rub" plus one or more ys

4 \d{3} Matches exactly three digits

5 \d{3,} Matches three or more digits

6 \d{3,5} Matches three, four, or five digits
Alternatives

Alternatives refer to expressions where you can use multiple expression
statements to extract data, as shown in Table 4-7.

Table 4-7. Alternative Regular Expression Characters

No Example Description

1 python|RLang Matches "python" or " RLang "
2 R(L|Lang)) Matches " RL" or " RLang"

3 Python(!+|\?) "Python" followed by one or more ! or one ?

198

Anchors

CHAPTER 4 FILE I/0 PROCESSING AND REGULAR EXPRESSIONS

Anchors enable you to determine the position in which you can find the

match pattern in a string. Table 4-8 demonstrates numerous examples of

anchors.

Table 4-8. Anchor Characters

No. Example Description

1 “Python Matches "Python" at the start of a string or internal line
2 Python$ Matches "Python" at the end of a string or line

3 \APython Matches "Python" at the start of a string

4 Python\Z Matches "Python" at the end of a string

5 \bPython\b Matches "Python" at a word boundary

6 \brub\B \B is nonword boundary: matches "rub" in rube and ruby

7 Python(?=!)
8 Python(?!!)

but not on its own
Matches "Python, " if followed by an exclamation point

Matches "Python, " if not followed by an exclamation
point

Not only are regular expressions used to extract data from strings, but

various built-in methods can be used for the same purposes. Listing 4-13

demonstrates the use of methods versus regular expressions to extract the

same characters.

Listing 4-13. The Use of Methods vs. Regular Expressions

In [54]: import re

print ("\nFine-Tuning String Extraction \n")
mystr="From ossama.embarak@hct.ac.ae Sat Jun 5
08:14:16 2018" Extract = re.findall('\S+@\S+',mystr)

199

CHAPTER 4 FILE I/0 PROCESSING AND REGULAR EXPRESSIONS

print (Extract)

E xtracted = re.findall('"From.*? (\S+@\S+)',mystr) #
non greedy white space

print (E_xtracted)

print (E_xtracted[0])

Fine-Tuning String Extraction

['ossama.embarak@hct.ac.ae']
['ossama.embarak@hct.ac.ae']
ossama.embarak@hct.ac.ae

In [57]: mystr="From ossama.embarak@hct.ac.ae Sat Jun 5
08:14:16 2018"

atpos = mystr.find('@")

sppos = mystr.find(' ',atpos) # find white space

starting from atpos

host = mystr[atpos+1 : sppos]

print (host)

usernamepos = mystr.find(' ')

username = mystr[usernamepos+1 : atpos]

print (username)

hct.ac.ae

ossama.embarak

re.findall('@([*]*)',mystr) retrieves a substring in the mystr
string, which starts after @and continues until finding the whitespace.
Similarly, re.findall('“From .*@([*]*)', mystr) retrieves a
substring in the mystr string, which starts after From and finds zero or
more characters and then the @ character and then anything other than
whitespace characters. See Listing 4-14.

200

CHAPTER 4 FILE I/0 PROCESSING AND REGULAR EXPRESSIONS

Listing 4-14. Using the Regular Expression findall() Method

In [58]:

In [59]:

print ("\n The Regex Version\n")

import re

mystr="From ossama.embarak@hct.ac.ae Sat Jun 5
08:14:16 2018"

Extract = re.findall('@([*]*)',mystr)

print (Extract)

Extract = re.findall('"From .*@(["]*)",mystr)
print (Extract)

The Regex Version

['hct.ac.ae']

['hct.ac.ae']

print ("\nScape character \n")

mystr = '"We just received $10.00 for cookies and
$20.23 for juice'

Extract = re.findall('\$[0-9.]+",mystr)

print (Extract)

Scape character

['$10.00", '$20.23"]

Summary

This chapter covered input/output data read or pulled from stored files or

directly read from users. Let’s recap what was covered in this chapter.

The chapter covered how to open files for reading, writing, or
both. Furthermore, it covered how to access the attributes of
open files and close all opened sessions.

The chapter covered how to collect data directly for users via the
screen.

201

CHAPTER 4 FILE I/0 PROCESSING AND REGULAR EXPRESSIONS

— It covered regular expressions and their patterns and special
character usage.

— The chapter covered how to apply regular expressions to extract
data and how to use alternatives, anchors, and repetition expres-
sions for data extraction.

The next chapter will study techniques of gathering and cleaning data
for further processing, and much more.

Exercises and Answer

1. Write a Python script to extract a course number,
code, and name from the following text using
regular expressions:

CoursesData = """101 COM Computers
205 MAT Mathematics
189 ENG English"""

Answer:

In [60]: import re
CoursesData = """101 COM Computers
205 MAT Mathematics
189 ENG English"""
In [61]: # Extract all course numbers
Course_numbers = re.findall('[0-9]+', CoursesData)

print (Course_numbers)

Extract all course codes
Course codes = re.findall('[A-Z]{3}', CoursesData)

print (Course codes)

202

CHAPTER 4 FILE I/0 PROCESSING AND REGULAR EXPRESSIONS

Extract all course names

Course names = re.findall('[A-Za-z]{4,}', CoursesData)
print (Course names)

['101', '205', '189']
['COM', 'MAT', 'ENG']
['Computers', 'Mathematics', 'English']

2. Write a Python script to extract each course’s details
in a tuple form from the following text using regular
expressions. In addition, use regular expressions to
retrieve string values in the CoursesData and then
retrieve numerical values in CoursesData.

Answer:

CoursesData = """101 COM Computers
205 MAT Mathematics
189 ENG English"""

In [63]: # define the course text pattern groups and extract

course pattern = '([0-9]+)\s*([A-Z]{3})\s*([A-Za-z]

{4,})"

re.findall(course pattern, CoursesData)
Out[63]: [('101"', 'COM', 'Computers'),

('205', 'MAT', 'Mathematics'),

('189", "ENG', 'English')]
In [64]: print(re.findall('[a-zA-Z]+', CoursesData)) # []
Matches any character inside
['COM', 'Computers', 'MAT', 'Mathematics', 'ENG', 'English']

In [65]: print(re.findall('[0-9]+', CoursesData)) # [] Matches
any numeric inside

['101', '205', '189']

203

CHAPTER 4 FILE I/0 PROCESSING AND REGULAR EXPRESSIONS

3. Write a Python script to extract digits of size 4 and
digits of size 2 to 4 using regular expressions.

Answer:

CoursesData = """101 COM Computers
205 MAT Mathematics
189 ENG English"""

In [66]: import re
CoursesData = """10 COM Computers

205 MAT Mathematics 1899 ENG English"""

print(re.findall('\d{4}"', CoursesData)) # {n} Matches
repeat n times.

print(re.findall('\d{2,4}"', CoursesData))
['1899"]
['10", '205', '1899']

204

CHAPTER 5

Data Gathering
and Cleaning

In the 21st century, data is vital for decision-making and developing
long-term strategic plans. Python provides numerous libraries and built-
in features that make it easy to support data analysis and processing.
Making business decisions, forecasting weather, studying protein
structures in biology, and designing a marketing campaign are all
examples that require collecting data and then cleaning, processing, and
visualizing it.

There are five main steps for data science processing.

1. Data acquisition is where you read data
from various sources of unstructured data,
semistructured data, or full-structured data that
might be stored in a spreadsheet, comma-separated
file, web page, database, etc.

2. Data cleaning is where you remove noisy data and
make operations needed to keep only the relevant
data.

3. Exploratory analysis is where you look at your
cleaned data and make statistical processing fits for
specific analysis purposes.

© Dr. Ossama Embarak 2018 205
O. Embarak, Data Analysis and Visualization Using Python,
https://doi.org/10.1007/978-1-4842-4109-7_5

CHAPTER 5

4.

DATA GATHERING AND CLEANING

An analysis model needs to be created. Advanced
tools such as machine learning algorithms can be
used in this step.

Data visualization is where the results are plotted
using various systems provided by Python to help in
the decision-making process.

Python provides several libraries for data gathering, cleaning,

integration, processing, and visualizing.

Pandas is an open source Python library used to load,
organize, manipulate, model, and analyze data by
offering powerful data structures.

Numpy is a Python package that stands for “numerical
Python. It is a library consisting of multidimensional
array objects and a collection of routines for manipulating
arrays. It can be used to perform mathematical, logical,
and linear algebra operations on arrays.

SciPy is another built-in Python library for numerical
integration and optimization.

Matplotlib is a Python library used to create 2D graphs
and plots. It supports a wide variety of graphs and plots
such as histograms, bar charts, power spectra, error charts,
and so on, with additional formatting such as control line
styles, font properties, formatting axes, and more.

Cleaning Data

Data is collected and entered manually or automatically using various

methods such as weather sensors, financial stock market data servers,

users’ online commercial preferences, etc. Collected data is not

206

CHAPTER 5 DATA GATHERING AND CLEANING

error-free and usually has various missing data points and
erroneously entered data. For instance, online users might not want
to enter their information because of privacy concerns. Therefore,
treating missing and noisy data (NA or NaN) is important for any data
analysis processing.

Checking for Missing Values

You can use built-in Python methods to check for missing values. Let’s
create a data frame using the Numpy and Pandas libraries. Include the
index values a to h, and give the columns labels of stock1, stock2, and
stock3, as shown in Listing 5-1.

Listing 5-1. Creating a Data Frame Including NaN

In [47]: import pandas as pd
import numpy as np
dataset = pd.DataFrame(np.random.randn(5, 3),
index=['a", 'c', 'e', 'f', 'h'],columns=["'stock1’,
"stock2', 'stock3'])
dataset.rename(columns={"one":"'stock1',"two":'stock2",

"three":'stock3'}, inplace=True)

dataset = dataset.reindex(['a', 'b', 'c', 'd', 'e',
I_Fl’ Igl) Ihl])

print (dataset)

atockl stock2 atock3
-0.716435 (0.646375 0.403254
NaN NaN NaN
0.923383 -0.354701 -0.594661
NaN NaN NaN
1.039185 0.984489% 0.902545
-0.398857 -0.205501 -1.859085
NaN NaN NaN
0.228843 0.049838 0.400658%

S o o e

207

CHAPTER 5 DATA GATHERING AND CLEANING

It should be clear that you can use Numpy to create an array of random

values, as shown in Listing 5-2.

Listing 5-2. Creating a Matrix of Random Values

In [46]: import numpy as np

np.random.randn(5, 3)

.60947559, -0
.76189114, -0

[-2.45374913, 1.
[-0.00900845, -1.
[-0.13841039, -1.
[-1
I

26130579,
23156979,
52834029,

.4905408s6,
.69154256,

OO0 OB K

.095235¢64],
.25864397],
.64229365),
.08816671],
.35327674)1)

In Listing 5-2, you are ignoring rows b, d, and g. That’s why you got

NaN, which means non-numeric values. Pandas provides the isnull()
and notnull() functions to detect the missing values in a data set. A

Boolean value is returned when NaN has been detected; otherwise, False is

returned, as shown in Listing 5-3.

Listing 5-3. Checking Null Cases

In [48]: print (dataset['stock1'].isnull())

False
True
False
True
False
False

True

TGO MO L OCP

False
Name: stockl, dtype: bool

208

CHAPTER 5

Handling the Missing Values

DATA GATHERING AND CLEANING

There are various techniques that can be used to handle missing values.

You can replace NaN with a scalar value.

Listing 5-4 replaces all NaN cases with 0 values.

Listing 5-4. Replacing NaN with a Scalar Value

In [49]:

g
7
:

print (dataset)

dataset.fillna(0)

atockl stock2 stock3
a —-0.716435 0.646375 0.403254
b NaN NaN NaN
c 0.523383 -0.354701 -0.594661
d NaN NaN NaN
e 1.039185 0.984489 0.902545
£f -0.398857 -0.205501 -1.859085
g NaN NaN NaN
h 0.228843 0.049838 0.400659%

stock1 stock2 stock3

a -0716435 0646375 0.403254

b 0.000000 0.000000 0.000000

¢ 0923383 -0.354701 -0.594661

d 0000000 0.000000 0.000000

e 1039185 0984489 0902545

-0.398857 -0.205501 -1.859085

g 00000000 0.000000 0.000000

h 0228843 00493838 0.400659

209

CHAPTER 5 DATA GATHERING AND CLEANING

¢ You can fill NaN cases forward and backward.

Another technique to handle missing values is to fill
them forward using pad/fill or fill them backward
using bfill/backfill methods. In Listing 5-5, the
values of row a are replicating the missing values in

row b.

Listing 5-5. Filling In Missing Values Forward

In [50]: # Fill missing values forward
print (dataset)
dataset.fillna(method="pad")

atockl atock2 atock3
0.512450 2.038219 -2.59084¢
NaN NaN NaN
-1.187903 -0.301327 1.388822
NaN NaN NaN
-0.892797 0.870075 -1.324887
1.227542 0.936045 -0.776875
NaN NaN NaN

h -1.570058 -0.363290 1.2%92037

Q o RO D Pe

Out[35]):

stock1 stock2 stock3

a 0512490 2038219 -2.590846
b 0512490 2.038219 -2.590846
-1.187903 -0.301327 1.388822

(1]

d -1.187903 -0.301327 1.388822

e -0.892797 0.870075 -1.324887

f 1.227542 0.936045 -0.776875
g 1227542 0.936045 -0.776875
-1.570058 -0.363290 1.292037

—

210

CHAPTER 5 DATA GATHERING AND CLEANING

e You can drop the missing values.

Another technique is to exclude all the rows with
NaN values. The Pandas dropna() function can be
used to drop entire rows from the data set. As you
can see in Listing 5-6, rows b, d, and g are removed
entirely from the data set.

Listing 5-6. Dropping All NaN Rows

In [51]: print (dataset)

dataset.dropna()
stockl stock2 stock3
a 0.884239 0.228564 -0.48442¢
b NaN NaN NaN
c -0.274077 0.678091 -0.355736
d NaN NaN NaN
e -1.937147 1.220786 0.243400
f -2.230833 0.183692 0.957954
g NaN NaN NaN
h -0.984818 0.198828 -1.119425

o]
(v}
ot
W
)

stock1 stock2 stock3

a 0.884239 0.228564 -0.454426
¢ -0.274077 0.678091 -0.355736
e -1.937147 1.220766 0.243400
f -2.230833 0.183692 0.957954
h -0.984818 0.198828 -1.119425

¢ You can replace the missing (or generic) values.

The replace() method can be used to replace a
specific value in a data set with another given value.
In addition, it can be used to replace NaN cases, as
shown in Listing 5-7.

211

CHAPTER 5 DATA GATHERING AND CLEANING

Listing 5-7. Using the replace() Function

In [52]: print (dataset)
dataset.replace(np.nan, 0)

stockl stock2 stock3
0.830097 -0.149682 -1.532897
NaN NaN NaN
-0.006940 0.750294 -0.772074
NaN NaN NaN
-1.347131 -0.644828 0.465200
-0.853575 1.852128 -0.451999
NaN NaN NaN
-0.308116 0.748715 -0.034594

QMO QN D

stock1 stock2 stock3

a 0830097 -0.149682 -1.532897
b 0.000000 0.000000 0.000000
¢ -0.006940 0.750294 -0.772074
d 0.000000 0.000000 0.000000
e -1.347131 -0.644828 0.465200
f -0.853575 1.852128 -0.451999
g 0.000000 0.000000 0.000000

h -0.308116 0.748715 -0.034594

Reading and Cleaning CSV Data

In this section, you will read data from a comma-separated values
(CSV) file. The CSV sales file format shown in Figure 5-1 will be used to
demonstrate the data cleaning process.

212

CHAPTER 5 DATA GATHERING AND CLEANING

‘T"‘- ot = ® 'N-:mbu - [Conditional Formatting - %‘Imeﬂ- E 4r-

Pasl:: 3 - o ! VAR T ‘armat as Table - &% Delete =~ [E=- £~

s U-i=- 8- g 3 [7 Cell Styhes - Elformats # -

Clipbaard 7 Font % Aligrment % Humber Styles Cells Editing ~
11 i I 1150 w
Al A 8 c D E F 6 H 1 ik L M| e][]
1 SALES_ID SALES_BY JANUARY FEBRUARYMARCH APRIL MAY JUNE JULY AUGUST SEPTEMBE OCTOBER NOVEMBE DECEMBER

2 1 AUH 3,469.00 n.a. notavilab 3,682.00 5,803.00 566200 1896.00 2,293.00 2,583.00 5,233.00 442000 4,071.00

3| 15H 5,840.00 5,270.00 4,114.00 560500 4,387.00 502600 4,055.00 2,782.00 4,576.00 4,993.00 2,859.00 4,853.00

4 1 -1 2,567.00 2,425.00 35,353.00 n.a. 5027.00 4,078.00 3.853.00 1,527.00 3,527.00 417900 1,571.00 555100

55| 2 AUH 1,328.00 -1 15M.00 2,343.00 3,826.00 4,932.00 171000 3,270.00 338100 1,313.00 1,765.00 1,214.00

6| 3 5H) 2,473.00 142100 3,606.00 1,314.00 141300 2,091.00 3,270.00 3346.00 2,080.00 1,539.00 2,630.00 1,657.00

7| 3 notavilab n.a. 956 1,297.00 198400 2,744.00 5793.00 2,261.00 5607.00 2437.00 4,328.00 3,317.00 5,330.00

8 3 AUH 2,634.00 2,143.00 3,698.00 5767.00 2,782.00 4,344.00 5,036.00 4,805.00 5,792.00 5,256.00 4,096.00 3,170.00

9 4 AlM 4,673.00 1,32200 261500 342300 5659400 354400 2093.00 2,676.00 5979.00 548100 4,786.00 1,637.00

10 4 RAK 4,862.00 947 340000 3,913.00 565400 2,504.00 1922.00 LS577.00 2,766.00 231800 5,906.00 5477.00

1 4 RAK 5,829.00 1,802.00 2,145.00 513100 3,662.00 1,323.00 3,214.00 1,150.00! 1,191.00 1,328.00 3,766.00 2,050.00
12} 4 -1 4,870.00 4,643.00 552100 4,82400 3,839.00 1,118.00 3,665.00 5241.00 2433.00 5215.00 1,858.00 4,667.00

13 5 FUl 2,152.00 3,064.00 3,98L00 2,958.00 3,794.00 5453.00 3,324.00 n.a. 151600 564000 1,301.00 5,513.00
14 5 AalM 5,584.00 1,103.00 2,838.00 3,520.00 2,250.00 143500 3,035.00 4,572.00 545000 2,374.00 1,549.00 4,835.00
15 5 DXB 4,358.00 1,397.00 382.00 4,715.00 3,150.00 5572.00 968 1,014.00 2,784.00 5313.00 969 4,153.00
16 5 SHI 1,738.00 521200 &,647.00 3,637.00 4,616.00 4,651.00 2,293.00 3,097.00 4,239.00 300000 2,457.00 75
17 5 RAK 5.847.00 5635.00 2,110.00 944 2,597.00 2,381.00 2,094.00 5.849.00 2,393.00 3.296.00 5,784.00 1,436.00

18] 6 OXB 2,223.00 2,05400 3,339.00 4,368.00 4,539.00 5,852.00 2,304.00 1,841.00 4,616.00 4,180.00 2,503.00 4,211.00

9 7 FU) 5,564.00 1,972.00 3,522.00 2,779.00 1371.00 5419.00 1,398.00 4,277.00 5467.00 4,§3L.00 1,507.00 3,749.00
201 7 FU) 1,119.00 166600 3,257.00 1,188.00 530100 136200 3452.00 912 4,756.00 962 3,618.00 1,351.00
21 7 5HI 1,723.00 1,156.00 2,044.00 925 297300 1581.00 LS12.00 4429.00 1,230.00 5813.00 2,115.00 3,105.00
22| 7 RAK 972 1,938.00 504100 2,119.00 3,172.00 2,327.00 2,104.00 4,796.00 2,458.00 1,500.00 4,799.00 2,987.00 |
2| 8 DXB 3,490.00 notavilab 1,317.00 2,351.00 1,864.00 n.a, 4,151.00 1,131.00 2,173.00 400500 523600 1,396.00 |,

Sales | (3 i [G

Ready 23 Blm o - L +

Figure 5-1. Sales data in CSV format

You can use the Pandas library to read a file and display the first five
records. An autogenerated index has been generated by Python starting
with 0, as shown in Listing 5-8.

Listing 5-8. Reading a CSV File and Displaying the First Five
Records

In [53]: import pandas as pd
sales = pd.read csv("Sales.csv")
print ("\n\n<<<<<<< First 5 records <<<<<<<\n\n")
print (sales.head())

213

CHAPTER 5 DATA GATHERING AND CLEANING

<<€<<<<< First 5 records <<<<<<<

SALES_ID SALES BY REGION JANUARY FEBRUARY MARCH APRIL \
0 1 AUH 3,469.00 n.a. not avilable 3,642.00
1 1 SHJ 5,840.00 5,270.00 4,114.00 5,605.00
2 1 -1 2,967.00 2,425.00 5,353.00 n.a.
3 2 AUH 1,328.00 -1 1,574.00 2,343.00
4 3 SHJ 2,473.00 1,421.00 3,606.00 1,314.00
MAY JUNE JULY AUGUST SEPTEMBER OCTCBER NOVEMBER \

o

5,803.00 5,662.00 1,896.00 2,293.00 2,583.00 5,233.00 4,421.00
4,387.00 5,026.00 4,055.00 2,782.00 4,578.00 4,993.00 2,859.00
5,027.00 4,078.00 3,858.00 1,927.00 3,527.00 4,179.00 1,571.00
3,826.00 4,932.00 1,710.00 3,221.00 3,381.00 1,313.00 1,765.00
i,413.00 2,091.00 3,270.00 3,346.00 2,080.00 1,539.00 2,630.00

o W A B

DECEMBER
4,071.00
4,853.00
5,551.00
1,214.00
1,697.00

o W MO

You can display the last five records using the tail () method.
In [54]: print (sales.tail())

pd.read csv() is used to read the entire CSV file; sometimes you need
to read only a few records to reduce memory usage, though. In that case,
you can use the nrows attribute to control the number of rows you want to
read.

In [55]: import pandas as pd
salesNrows = pd.read csv("Sales.csv", nrows=4)
salesNrows

Similarly, you can read specific columns using a column index or label.
Listing 5-9 reads columns 0, 1, and 6 using the usecols attribute and then
uses the column labels instead of the column indices.

Listing 5-9. Renaming Column Labels

In [58]: salesNrows = pd.read csv("Sales.csv", nrows=4,
usecols=[0, 1, 6])
salesNrows

214

CHAPTER 5 DATA GATHERING AND CLEANING

SALES_ID SALES_BY_REGION MAY

0 1 AUH 5,803.00
1 1 SH) 4,287.00
2 1 -1 5,027.00
3 2 AUH 3,826.00

In [60]: salesNrows = pd.read csv("Sales.csv", nrows=4,
usecols=['SALES ID' , 'SALES BY REGION', 'FEBRUARY', 'MARCH'])
salesNrows

SALES_ID SALES_BY_REGION FEBRUARY MARCH

0 1 AUH na. nol aviable
1 1 SHJ) §,270.00 411400
2 1 -1 2,425.00 5,353.00
3 2 AUH -1 1,574.00

In Listing 5-10, the . rename() method is used to change data set
column labels (e.g., SALES_ID changed to ID). In addition, you set
inplace=True to commit these changes to the original data set, not to a
copy of it.

Listing 5-10. Renaming Column Labels

In [56]: salesNrows.rename(columns={"SALES ID":'ID","SALES BY
REGION":'REGION'}, inplace=True)
salesNrows

D REGION JANUARY FEBRUARY MARCH APRIL MAY JUKE JULY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER

AUH 348500 na notaviable 364200 S200.00 SE5200 188600 229200 258300 sS2300 442100 4071.00

296700 243500 535300 na 502700 407800 385800 1.527.00 A52700 497800 1571.00 5,551.00

W oM o= o

1
1 SH) 584000 527000 411400 560500 438700 S02600 405500 2TEL00 457800 459300 2.855.00 4.852.00
1 -1
2 UH

1,328.00 -1 157400 234300 382800 453200 171000 322100 338100 131200 1.765.00 121400

215

CHAPTER 5 DATA GATHERING AND CLEANING

You can find the unique values in your data set variables; you just
refer to each column as a variable or pattern that can be used for further
processing. See Listing 5-11.

Listing 5-11. Finding Unique Values in Columns

In [57]: print (len(salesNrows['JANUARY'].unique()))
print (len(salesNrows['REGION'].unique()))
print (salesNrows['JANUARY'].unique())

4
3
['3,469.00' *'5,840.00" '2,967.00"' '1,328.00')

To get precise data, you can replace all values that are anomalies with
NaN for further processing. For example, as shown in Listing 5-12, you can

use na_values =["n.a.", "not avilable", -1] to generate NaN cases
while you are reading the CSV file.

Listing 5-12. Automatically Replacing Matched Cases with NaN

In [61]: import pandas as pd
sales = pd.read csv("Sales.csv", nrows=7, na_values
=["n.a.", "not avilable"])
mydata = sales.head(7)
mydata

SALES D SALES BY _REGION JANUARY FEBRUARY MARCH APRIL MAY JUKE JULY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEME

L] 1 AUH 3,489.00 &J w'&&l?ﬂo 5,800.00 566200 189600 229300 258300 523300 442100 4071
1 1 SH) BE4000 527000 40400 550500 433700 500600 405500 ZTEROD 457800 258200 285900 488}
2 1 ;I—I 2967.00 242500 535300 'L“,_;__ES«.UZ?.M 407800 385800 1927.00 Jsaree 417900 157100 5581
3 2 AUH 132800 -1 ||.5?4 00 234300 382600 453200 171000 322100 3300 13300 178500 1214
4 3 SHI 247300 |_42$ JEOE00 131400 141300 209100 327000 31800 208000 153900 283000 1887
5 3 Han | | 856 129700 188400 274400 STH300 226100 560700 243700 432800 INTOE 5380
& 3

AUH 263400 214300 JE98.00 STET.00 276200 444200 503500 480500 579200 525600 409800 3470

< >

216

CHAPTER 5 DATA GATHERING AND CLEANING

In [62]: import pandas as pd
sales = pd.read csv("Sales.csv", nrows=7, na_values
=["n.a.", "not avilable", -1])
mydata = sales.head(7)
mydata

SALES ID SALES BY REGION JANUARY FEBRUARY MARCH APRIL MAY June JULY AUGUST SEPTEMBER OCTOBER NOVEMBIR DECEME

L AUM 346900 ! !]li".'&: $80300 566200 1859600 229300 258300 S233W 4410 “on
1 1 SH) 584000 S27000 411400 S80500 428700 502000 405500 27TR200 457800 499200 285000 428
2 1 N | 2.987.00 242500 535300 5155270: 407800 385800 192700 382700 417900 1.571.00 5581
3 Auw 132800 Mol (157400 234300 282600 493200 171000 322100 3138100 131300 1.785.00 129
4 3 S 247300 142100 360800 131400 141300 200100 327000 334800 200000 153900 283000 1897
s Nl NaN 956 129700 196400 274400 579000 226100 S607T00 240700 432800 Inree £3%0
L] 3 AUW 283400 204300 185800 STETO0 278200 444400 50300 480500 ST9200 S2%800 4 0% 00 170

< >

Since you have different patterns in a data set, you should be able to
use different values for data cleaning and replacement. The following
example is reading from the sales.csv file and storing the data into the
sales data frame. All values listed in the na_values attribute are replaced

with the NaN value. So, for the January column, all ["n.a.", "not

available", -1] values are converted into NaN.

In [25]: sales = pd.read csv("Sales.csv", na values = {
"SALES BY REGION": ["n.a.", "not avilabl”],
"JANUARY": ["n.a.", "not avilable", -1],
"FEBRUARY": ["n.a.", "not avilable", -1]})
sales.head(20)

Another professional method to clean data, while you are loading it,
is to define functions for data cleaning. In Listing 5-13, you define and call
two functions: CleanData_Sales() to clean numerical values and reset
all NaN values to 0 and CleanData REGION() to clean string values and
reset all NaN values to Abu Dhabi. Then you call these functions in the
converters attribute.

217

CHAPTER 5 DATA GATHERING AND CLEANING

Listing 5-13. Defining and Calling Functions for Data Cleaning

In [26]: def CleanData Sales(cell):
if (cell=="n.a." or cell=="-1" or cell=="not
avilable"):
return 0
return cell

def CleanData REGION(cell):
if (cell=="n.a." or cell=="-1" or cell=="not
avilable"):
return 'AbuDhabi'’
return cell

In [28]: sales = pd.read csv("Sales.csv", nrows=7, converters={
"SALES BY REGION": CleanData REGION,
"JANUARY": CleanData_Sales,
"FEBRUARY": CleanData_Sales,
"APRIL": CleanData Sales,
1))

sales.head(20)

SALES ID SALES_BY RIGION JANUARY FEBRUARY MARCH APRIL MAY Junt JULY AUGUST SEPTEMBIR OCTOBIR NOVIMBIR DECEME

. 1 AUN 146500 0) .I‘.:: 164200 SBOJOO SH6200 189800 229000 25800 s2300 442100 4om
1 S S8e000 $27000 411400 560500 428700 S02600 408500 2TROQ 457800 4¥EIO0 28890 488
2 AbOnabi | 2967 00 242500 338300 _ 0502700 407000 3800 TWTH AT 4900 157100 $.581
3 " 132000 0 J157400 234300 3182600 493200 171000 321100 33100 131300 176500 1.2%
4 3 S 24T00 142100 280800 121400 141300 209100 327000 334800 208000 153900 263000 1897
L] AvuOnats | [$58 129700 198400 274400 STHA00 226100 S80T00 243700 432800 331700 4390
L] 3 AUN 28M00 214200 269000 S76700 278200 444400 S0M00 480500 $7200 S2%600 4098 00 e

< »

Merging and Integrating Data

Python provides the merge () method to merge different data sets together
using a specific common pattern. Listing 5-14 reads two different data sets
about export values in a different range of years but for the same countries.

218

CHAPTER 5

Listing 5-14. Two Files of Export Sales

In [35]: import pandas as pd

DATA GATHERING AND CLEANING

pd.read csv("1. Exporti Columns.csv")
pd.read csv("1. Export2 _Columns.csv")

e X
b A

y X A = o T Condaicnal Formatting - P = o ol 2
ot B 5 £ Format as Table = = B - T -
Paste T | Fomt | Alignement | Bhaeniber Celis Editing P e e e [: RS Cells Edting
gl & . - [Fedstye- - W Z = (57 el Seydes - - -

Clipbowd & Stles Diiphoard & Styes -

EX » F 6012464846 G2% N & 13108 x
& B o € F A B c o E ¥ & " ' e
e o 1| Conmurpliane CourcpgCods 2005 J008 200 200 0T 200 0 1

| Corwy Codd 204) 200K, e £ [Barin e DE W M W0 TEe BB %56 |

F] m« . ;z_: s:‘al 3 g l'f’\: 3 |ButinaFase A B4 W3 TN EE I D 359 |

3 BubinaFas 1 |Bangladesn 560 WE W0 WAz 25627 26T 3NS5 HIM

4 Bargladesh BGO =T 3 TI7as LR 5 | Bugana BGE I 264 AN IS4M JINTE ITHD STEAS

L5 | BCR 6T i BT RS & | Baesn B N WS A0 3% rhSY [o

& |Bahvan Bt 0327 133 15582 % 7| Bahaeras, The -1 3T MW 2023 M43 A B T |

T |Bahamar The Lted el b el b ¥ | Dosnia ard Heseegarin DM 4 425 4301 ST S STG 0 |

4| Bormia andHecregouin BH 2% s 505 il 3 |Belanr an IT0RN eEES 202 4G4 STME 44058 43555

3| Belarus BR o 8065 22200 e B |Bekee 7] B W m sM w3 mm []

0 |Belee 2 555] s L] | Boemads o) 0 2898 IS o 1589 27 o

N | 3 B 0 o 0 0 2 | Boluas B0 B BIM 3 WSS TS TSM a

@ Bebwia BoL T3 pd AT e B | Bacl BRa ZENTT WORRE ZITEY EMAAT J66SSH HATEMD FI0IM

0 Bugad B 103 L] B WA » | Babador o8 WM W5 055 WE TR B a

¥ Baskrackn B L] T) 2044 B | Bussilanasion S8 i N TH T T —

EXPO | sheett | @ i [x 1. Expart? Columns | (&) i o
Resdy 83 Ei @ M- Reary 8 HiE m-—3 *

Suppose that you want to drop specific years from this study such as
2009, 2012, 2013, and 2014. Listing 5-15 and Listing 5-16 demonstrate
different methods that are used to drop these columns.

Listing 5-15. Loading Two Different Data Sets with One Common

Attribute

In [35]:

In [31]:

import pandas as pd
pd.read csv("1. Exporti Columns.csv")
pd.read csv("1. Export2 _Columns.csv")

a
b

a.head()

219

CHAPTER 5 DATA GATHERING AND CLEANING

OCuc[62]:

Country Name Country Code 2004 2005 2006 2007
0 Benin BEN 811 940 869 1076
1 Burkina Faso BFA 548 532 673 T4
2 Bangladesh BGD 7257 9995 11745 13530
3 Bulgaria BGR 10713 12703 16151 23263
4 Bahrain BHR 10337 13397 15662 17314
In [30]: b.head()
Cut[61
Country Name Country Code 2008 2009 2010 2011 2012 2013 2014
0 Benin BEN 1312 1039 991 1040 1154 1518 1656
1 Burkina Faso BFA 834 1063 1727 2681 2849 3166 3551
2 Bangladesh BGD 16181 17360 18472 25627 26887 29305 34344
3 Bulgaria BGR 28591 21964 26836 35488 33975 37260 37845
+ Bahrain BHR 21231 15705 17880 22945 22853 0 0

Listing 5-16. Dropping Columns 2009, 2012, 2013, and 2014

In [32]: b.drop('2014', axis=1, inplace=True)
columns = ['2013', '2012']
b.drop(columns, inplace=True, axis=1)

o
5

o
h
(4 :]

b.head()
Country Name Country Code 2008 2010 2011
0 Benin BEN 1312 991 1040
1 Burkina Faso BFA 834 1727 2681
2 Bangladesh BGD 16181 18472 25627
3 Bulgaria BGR 28591 26836 35488
-+ Bahrain BHR 21231 17880 22945

220

CHAPTER 5 DATA GATHERING AND CLEANING

Python’s .merge() method can used to merge data sets; you can
specify the merging variables, or you can let Python find the matching
variables and implement the merging, as shown in Listing 5-17.

Listing 5-17. Merging Two Data Sets

In [102]: mergedDataSet = a.merge(b, on="Country Name")
mergedDataSet.head()

Merge two datasets using column labeled County Code_x and County
Code_y as shown below.

Country Name Country Code_x 2004 2005 2006 2007 Country Code_y 2008 2010 2011

0 Benin BEN an 940 869 1076 BEN 1312 991 1040
1 Burkina Faso BFA 548 §32 €73 714 BFA 834 1727 2681
2 Bangladesh BGD 7257 9995 11745 13530 BGD 16181 18472 28627
3 Bulgaria BGR 10713 12703 186151 23262 BGR 28591 26826 35488
4 Bahrain BHR 10337 13397 15662 17314 BHR 21231 17880 22945

In [103]: dataX = a.merge(b)
dataX.head()

Country Name Country Code 2004 2005 2006 2007 2008 2010 2011

0 Benin BEN an 940 889 1076 1312 991 1040
| Burkina Faso BFA S48 S32 673 714 834 1727 2681
2 Bangladesh BGD 7257 9995 11745 13530 16181 18472 25627
3 Bulgaria BGR 10713 12703 16151 23263 28591 26836 35488
4 Bahrain BHR 10337 13397 15662 17314 21231 17880 22945

You can merge two data sets using Index via Rows Union operation, as
indicated in Listing 5-18, where the .concat() method is used to merge
Data1l and Data2 over axis 0. This is a row-wise operation.

221

CHAPTER 5

DATA GATHERING AND CLEANING

Listing 5-18. Row Union of Two Data Sets

In [71]:

In [72]:

In [78]:

222

Datal = a.head()
Datal=Datal.reset index()
Data1

Ingex CountryName CountryCode 2004 2005 2006 2007

o 0 sen BEN 81 90 89 107
1 1 BukinaFaso BFA S8 52 673 T4
2 2 Banglasesn BGD 7257 9995 1745 13530
s 3 Buigaria BGR 10713 12703 16151 23263
VR Banran BHR 10337 13397 15662 17314

Data2 = a.tail()
Data2=Data2.reset index()
Data2

ingex CountryName CountryCoge 2004 2005 2006 2007

0 223 Yemen, Rep. YEM 5048 6352 T7ET3 0
1 2 Souh Arica ZAF 58216 63172 79519 93339
2 230 Congo,Dem Rep. COD 2341 2442 2765 6540
3 M Zamdla ZIMB 2087 2380 s a2
4 232 Zimdawe INE 2001 1831 1857 2000

stack the DataFrames on top of each othe
VerticalStack = pd.concat((Data1, Data2), axis=0)
VerticalStack

CHAPTER 5 DATA GATHERING AND CLEANING

Index CountryName CountryCode 2004 2005 2008 2007

1] 0 Benin BEN an a0 368 10m
1 1 Burking Faz0 BFA 543 532 673 714
2 2 Banglacesh BGD Ta5T 9985 N7 13530
i Buigara BGR 10713 12703 16151 23263
4 4 Bahran BHR 10337 13397 15662 17314
1] 228 Yemen, Rep YEM 5043 6352 TENI 0
1 229 Sounh Africa ZAF 58216 68172 79519 93338
2 230 Congo, Dem. Rep COD 2341 242 2765 6540
3 23 Zambla ZMB 2087 2550 4158 4T
4 232 Zimoaowe ZNE 2001 1931 1957 2000

Reading Data from the JSON Format

The Pandas library can read JSON files using the read_json function
directly from the cloud or from a hard disk. Listing 5-19 demonstrates

how to create JSON data and load it in JSON format and then iterate or
manipulate the data. The JSON format is similar to a dictionary structure
where you have a key-value pair, but in JSON, you can have subattributes
with inner values, similar to email in the first example, and its subattribute
hide with the value NO.

Listing 5-19. Creating and Manipulating JSON Data

In [73]: import json data = '''{
"name" : "Ossama",
"phone" : { "type" : "intl", "number" : "+971 50 244
5467"},
"email" : {"hide" : "No" }
pro

223

CHAPTER 5 DATA GATHERING AND CLEANING

info = json.loads(data)

print ('Name:',info["name"])

print ('Hide:',info["email"]["hide"])
Name: Ossama

Hide: No

In [74]: input = ""'[
{ "idll : ||001", "XII : Il5", "namell : "OSSama"} ,
{ llidll : ||009"’ "XII : ||10|l’ llnamell : "Omar" }
]lll

info = json.loads(input) print ('User count:',
len(info)) for item in info:

print ('\nName', item['name'])

print ('Id', item['id'])

print ('Attribute', item['x'])
User count: 2

Name Ossama
Id oo1
Attribute 5

Name Omar
Id 009
Attribute 10

You can directly read JSON data from an online resource, as shown in
Listing 5-20 and Listing 5-21.

Listing 5-20. JSON Sample Data

url=" http://python-data.dr-chuck.net/comments 244984.json’
print ('Retrieving', url)

uh = urllib.urlopen(url)

data = uh.read()

224

CHAPTER 5 DATA GATHERING AND CLEANING

¥ comments:

ve:
name: “Abaan™
count: 98

vi:
name: “Ashna®
count: 95

v2:
name: “Dante”
count: 94

v3:
name: “Isabel”
count: 93

v4:
name: “Fearne”
count: 92

Listing 5-21. Loading a JSON File

In [101]: import json
with open('comments.json') as json data:
JSONdta = json.load(json data)

print(JSONdta)

(‘note’: *This file contains the actual data for your assignment®, *comments’: [(‘name’: °*Abaan‘, ‘count’: 98), (‘nam
@': "Ashna’, ‘count’: 95), (‘name®: "Dante’, "count®: S4), ("name’: *Isabel®, °count®: 93), (‘name’: ‘'Pearne’, ‘count
*: 92), ('name‘: 'Kriss®, "count®: $1), ("name’: *Janani’, "count': 87), (*name®: °Karhys®, ‘count’: 85), (‘name‘’: "M
e9g', 'count': 84), (‘name': "Luisa’, "count®: 83), ("name’: *Thorben', ‘*count®’: 79), (*name’: *Kaelan’, ‘count': 77)
+ ("name': "Ceirin’, *count': 75), {"name’: °"Lileidn’, "count®: 70}, ('name’: *Angelika’, ‘count': 70}, {‘name’': ‘Ame
lka', ‘count': 69), {'name’: "Justin‘, "count': 69), (‘name’: °Muneed’, ‘count’: €8)., (‘name’: 'Antoine’, ‘count’': 64
J. (‘name*: *Ivar®, "count®: 61), {(‘"name’: *xKaid*, ‘count': €0), ("name’: *Dakotah*®, ‘count': S8), ('name': ‘Nadeem’,
‘count': 58), {'name®: "Marybeth®, ‘count': 55), ("name’: °*Ashlyn’, °count': 55), [°name’: 'Kaydin’, ‘count': 50}, {*
name': ‘Obieluem’, "count’: 48), {"name’: "Cairmn®, "count’: 46), ("name’: "Ala‘, ‘count’: 45}, ['name': ‘vithujan', *
count': 38), ('name‘: "Ivory', ‘count’: 34), (‘name’: °Rosalyn®, °"count®: 33), (‘name’: *Kaywan’, ‘count': 32}, ('nam
e': 'Pedro’, ‘'count': J1), {'name®: "Bharath’, "count’: 30), ("name’: "Eshaal’, ‘count‘: 29 ‘name’: °‘Aliya‘, ‘coun
t': 28), {‘name’: "Sephiroth', "count': 27), {(‘name’: °Minah’, ‘count’: 23), {*name*:
‘Ata‘; ‘count’: 21)] (‘'name’: "Remonae’, ‘count': 17), (‘name’: "Muskaan®, ‘count’: + | name

" : ‘s "count®: 9), (‘name’: "Dinec’, ‘count’':), ("name’: "Zos’, ‘count’': §),
nt': 4), ("name’: "Tammylee', "count': 2), ("name’: "Mornma', "count': 1}))

3 ‘count':
(‘name’: "Raul’, ‘cou

You can access JSON data and make further operations on the
extracted data. For instance, you can calculate the total number of
all users, find the average value of all counts, and more, as shown in
Listing 5-22.

225

CHAPTER 5 DATA GATHERING AND CLEANING

Listing 5-22. Accessing JSON Data

In [102]:sumv=0

counter=0

for i in range(len(JSONdta["comments"])):
counter+=1
Name = JSONdta["comments"][i]["name"
Count = JSONdta["comments"][i]["count"]
sumv+=int(Count)

print (Name," ", Count)

print ("\nCount: ", counter)

print ("Sum: ", sumv)

The following is a sample of extracted data from the JSON file and the
calculated total number of all users:

Murdo .
Ata 21
Remonae 17
Muskaan 17
Lottie : i |
Giane 9

Dineo 6
Zoe -

Raul -
Tammylee 2
Morna 1
Count: 50
Sum: 2507

Reading Data from the HTML Format

You can read online HTML files, but you should install and use the
Beautiful Soup package to do so. Listing 5-23 shows how to make a request
to a URL to be loaded into the Python environment. Then you use the

226

CHAPTER 5 DATA GATHERING AND CLEANING

HTML parser parameter to read the entire HTML file. You can also extract
values stored with HTML tags.

Listing 5-23. Reading and Parsing an HTML File

In [104]:import urllib from bs4

import BeautifulSoup

response = urllib.request.urlopen('http://python-data.
dr-chuck.net/known_by Rona.html'

html doc = response.read()

soup = BeautifulSoup(html doc, 'html.parser')
print(html_doc[:700])

print("\n")

print (soup.title)

print(soup.title.string)

print(soup.a.string)

In [103]: import urllib.request
with urllib.request.urlopen("http://python-data.dz-
chuck.net/known_by Rona.html") as url:

strhtml = url.read()
#I'm guessing this would output the html source code?
print(strhtml[:700])

227

CHAPTER 5 DATA GATHERING AND CLEANING

You can also load HTML and use the Beautiful Soup package to
parse HTML tags and display the first ten anchor tags, as shown in
Listing 5-24.

Listing 5-24. Parsing HTML Tags

In [107]: import urllib from bs4
import BeautifulSoup
response = urllib.request.urlopen(http://python-
data.dr chuck.net/known_by Rona.html' html_doc =
response.read()
print (html doc[:300])
soup = BeautifulSoup(html doc, 'html.parser')
print ("\n") counter=0
for link in soup.findAll("a"):
print(link.get("href"))
if counter<10: counter+=1
continue
else:
break

b'<html>\n<head>\n<title>Pecple that Ro
peaition:fixed;\n "3
d>\n<bedy>\n<hl>People that Rona

backgsound-coloz:deee;\
11000 \n)\n</atyle>\n</hea

Let’s create an html variable that maintains some web page content
and read it using Beautiful Soup, as shown in Listing 5-25.

228

CHAPTER 5 DATA GATHERING AND CLEANING

Listing 5-25. Reading HTML Using Beautiful Soup

In [108]: htmldata="""<html>
<head>
<title>
The Dormouse's story
</title>
</head>
<body>
<p class="title">

The Dormouse's story

</p>
<p class="story">
Once upon a time there were three little
sisters; and their names were
<a class="sister" href="http://example.com/
elsie" id="link1"> Elsie

)
<a class="sister" href="http://example.com/
lacie" id="1link2"> Lacie
 and
<a class="sister" href="http://example.com/
tillie" id="link2"> Tillie

; and they lived at the bottom of a well.
</p>

229

CHAPTER 5 DATA GATHERING AND CLEANING

<p class="story"> ...
</p>
</body>
</html>

from bs4 import BeautifulSoup
soup = BeautifulSoup(htmldata, 'html.parser')
print(soup.prettify())

<html>
<head>
<title>
The Dormouse's story
</title>
</head>
<body>
<p class="title">

The Dormouse’'s story

</p>
<p class="atory">
Once upon a time there were three little siatera; and their names were

Elaie

Lacie

and

Tillie
</a»
; and they lived at the bottom of a well.
</p>
<p class="story">
</p>
</body>
</html>

You can also use Beautiful Soup to extract data from HTML. You can
extract data, tags, or all related data such as all hyperlinks in the parsed
HTML content, as shown in Listing 5-26.

230

CHAPTER 5 DATA GATHERING AND CLEANING

Listing 5-26. Using Beautiful Soup to Extract Data from HTML

In [109]:
Out[109]:

In [110]:
Out[110]:

In [111]:
Out[111]:

In [112]:
Out[112]:

In [113]:
Out[113]:

In [114]:
Out[114]:

In [115]:
Out[115]:

soup.title
<title>

The Dormouse's story
</title>

soup.title.name

"title'
soup.title.string
"\n The Dormouse's story\n "

soup.title.parent.name
"head'

soup.p
<p class="title">

The Dormouse's story

</p>

soup.p['class’']
["title']

soup.a
<a class="sister" href="http://example.com/elsie"

id="1ink1"> Elsie

231

CHAPTER 5 DATA GATHERING AND CLEANING

In [116]: soup.find all('a")
Out[116]: [<a class="sister" href="http://example.com/elsie"
id="1ink1"> Elsie
, <a class="sister" href="http://example.com/
lacie" id="link2"> Lacie
, <a class="sister" href="http://example.com/
tillie" id="link2"> Tillie
]

In [117]: soup.find(id="1ink2")
Out[117]: <a class="sister" href="http://example.com/lacie"
id="link2"> Lacie

It is possible to extract all the URLs found within a page’s <a> tags, as
shown in Listing 5-27.

Listing 5-27. Extracting All URLs in Web Page Content

In [118]: for link in soup.find all('a'):
print(link.get('href"))

T Y S

Another common task is extracting all the text from a page and
ignoring all the tags, as shown in Listing 5-28.

232

CHAPTER 5 DATA GATHERING AND CLEANING
Listing 5-28. Extracting Only the Contents

In [119]: print(soup.get text())

The Dormouse's story

The Dormouse's story

Once upon a time there were three little sisters; and their names were

Elsie

Lacie
and
Tillie

; and they lived at the bottom of a well.

Reading Data from the XML Format

Python provides the xml.etree.ElementTree (ET) module to implement

a simple and efficient parsing of XML data. ET has two classes for this
purpose: ElementTree, which represents the whole XML document as a
tree, and Element, which represents a single node in this tree. Interactions
with the whole document (reading and writing to/from files) are usually
done on the ElementTree level. The interactions with a single XML element
and its subelements are done on the Element level. In Listing 5-29, you are
creating an XML container and reading it using ET for parsing purposes.
Then you extract data from the container using the find() and get()
methods, parsing through the generated tree.

233

CHAPTER 5 DATA GATHERING AND CLEANING

Listing 5-29. Reading XML and Extracting Its Data

In [128]: xmldata = """
<?xml version="1.0"?>
<data>
<student
name="Omar">
<rank>2</rank>
<year»>2017</year>
<GPA>3.5</GPA>
<concentration name="Networking"
Semester="7"/> </student>
<student name="Ali">
<rank>3</rank>
<year>2016</year>
<GPA>2.8</GPA>
<concentration name="Security"
Semester="6"/>
</student>

<student name="Osama">
<rank>1</rank>
<year>2018</year>
<GPA>3.7</GPA>
<concentration name="App Development"
Semester="8"/> </student>
</data>
"t strip()

In [129]:from xml.etree import ElementTree as ET stuff =
ET.fromstring(xmldata) 1st = stuff.findall('student')

print ('Students count:', len(lst)) for item in 1st:

234

CHAPTER 5 DATA GATHERING AND CLEANING

print ("\nName:", item.get("name"))
print ('concentration:', item.
find("concentration").get("name"))
print ('Rank:', item.find('rank').text)
print ('GPA:', item.find("GPA").text)

Students count:

Name: Omar

concentration:

Rank: 2
GPA: 3.5

Name: Ali

concentration:

Rank: 3
GPA: 2.8

Name: Osama

concentration:

Rank: 1
GPA: 3.7

Summary

3

Networking

Securitcy

App Develcpment

This chapter covered data gathering and cleaning so that you can

have reliable data for analysis. This list recaps what you studied in this

chapter:

— How to apply cleaning techniques to handle missing

values

— How to read CSV-formatted data offline and directly from

the cloud

235

CHAPTER 5 DATA GATHERING AND CLEANING

— How to merge and integrate data from different sources

— How to read and extract data from JSON, HTML, and
XML formats

The next chapter will study how to explore and analyze data and much
more.

Exercises and Answers

1. Write a Python script to read the data in an Excel
file named movies.xlsx and save this data in a data
frame called mov. Perform the following steps:

mov = pd.read excel ("movies.xlsx")

a. Read the contents of the second sheet that is
named 2000s in the Excel file (movies.x1sx)
and store this content in a data frame called
Second_sheet.

Second_sheet = pd.read_excel ("movies.xlsx",sheetname = "2000s")

b. Write the code needed to show the first seven
rows from the data frame Second_sheet using
an appropriate method.

Second_sheet.head(7)

c. Write the code needed to show the last five
rows using an appropriate method.

Second_sheet.tail()

236

CHAPTER 5 DATA GATHERING AND CLEANING

d. Use asuitable command to show only one
column that is named Budget.

Second_ sheet ["Budget"]

e. Use asuitable command to show the total rows
in the first sheet that is called 2000s.

len (Second_sheet)

f. Use a suitable command to show the maximum
value stored in the Budget column.

Second_sheet ["Budget"] .max ()

g. Use asuitable command to show the minimum
value stored in the Budget column.

Second_sheet ["Budget"] .min()

h. Write a single command to show the details
(count, min, max, mean, std, 25%, 50%, 75%)
about the column User Votes.

Second_sheet ["User Votes")] .describe()

i Use a suitable conditional statement that
stores the rows in which the country name is
USA and the Duration value is less than 50 in a
data frame named USA50. Show the values in
data frame USA50.

i

USAS0 = Second_sheet[(Second_sheet|["Country"] == 'USA') & Second_sheet["Duration®] < 1

237

CHAPTER 5 DATA GATHERING AND CLEANING

j- Using a suitable command, create a calculated
column named Avg Reviews in Second_sheet
by adding Reviews by Users and Reviews by
Critics and divide it by 2. Display the first five
rows of the Second_sheet after creating the
previous calculated column.

Second sheet ["Avg Reviews®] = (Second sheet["Reviews by Users®] 4 Second sheet["Review

Second_sheet .head ()

k. Using a suitable command, sort the Country
values in ascending order (smallest to largest)
and Avg_reviews in descending order (largest
to smallest).

Second_sheet.sort_values(["Country"”,"Avg Reviews"],ascending=(1,0])

1. Write a Python script to read the following
HTML and extract and display only the
content, ignoring the tag structure:

-
[Python Book Verion 2018 X

&« C | @ filey///D:fArchieve/2.5%20Evaluation®%200f%20Scholarly.. v @ ¥ @& B 6 £ & 1 (]
Author Name: Ossama Embarak

Python techniques for gathering and cleaning data Dara Cleaning | Data Processing and Visulization Data Visualization
@July 2018

238

CHAPTER 5 DATA GATHERING AND CLEANING

<html>
<head>
<title>
Python Book Version 2018
</title>
</head>
<body>
<p class="title">

Author Name: Ossama Embarak

</p>
<p class="story">
Python techniques for gathering and cleaning data
<a class="sister" href="https://leanpub.com/
AgilePythonProgrammingAppliedForEveryone"” id="link1">
Data Cleaning

, Data Processing and Visualization
<a class="sister" href="http://www.lulu.com/shop/ossama-
embarak/agile-python-programming-applied-for-everyone/
paperback/product-23694020.html" id="1link2">
Data Visualization

</p>
<p class="story">
@July 2018
</p>
</body>
</html>

239

CHAPTER 5 DATA GATHERING AND CLEANING

Answer:

from bs4 import BeautifulSoup

soup = BeautifulSoup(htmldata, 'html.parser')
print(soup.prettify())

print(soup.get text())

In [17]): htmldata="""<html>

<head>

<title>
FPython Book Verion 2018

</title>

</head>

<body>

<p class="title">

Author Name: Ossama Embarak

</p>

<p class="stozy">
Python techniques for gathering and cleaning data
<a class="sistexr"

href="https://leanpub.com/AgilePythonProgrammingAppliedFfozEveryone™

id="l1linkl">
Data Cleaning
</ax>
+ Data Processing and Visulization
<a class="sister" href="heep://www.lulu.com/shop/o=ssama~

embarak/agile-python-programming-applied-£for-

everyone/paperback/product-23€94020.heml™ id="l1ink2">
Data Visualization

</p>
<p class="stozy" >
@July 2018
</p>
</body>
</html>

from b=4 import BeautifulScup
soup = BeautifulSoup (htmldata, "html.parsex')
print (soup.prettify())

240

CHAPTER 5 DATA GATHERING AND CLEANING

<html>
<head>
<gazler
Python Book Verzion 2018
</eicle>
</head>
<body>
<p class="citle™>

Author Name: Ossama Ewbarak

</p>
<p class="story">
Pythen chni fox - | and el i data

Daza Cleaning
<fax»
+ Data Processing and Visulisasion
<a class="sister” href="http://www.lulu.com/shop/ossama~

t/agile-python lied-for=

everyone/paperback/product-23694020 . html® id="1link2">
Daza Visualizazien
<fa»
</p>
<p class="stozy™>
@July 2018
</fp>
</body>
</heml>

In [18]: printisoup.get_text()]

Pychon Book Verion 2018

Author Hame: Ossama Exbazak

Python techniques for gathering and cleaning data
Data Cleaning
+ Data Processing and Visuliszazmien

Data Visualization

241

CHAPTER 6

Data Exploring
and Analysis

Nowadays, massive data is collected daily and distributed over various
channels. This requires efficient and flexible data analysis tools. Python’s
open source Pandas library fills that gap and deals with three different data
structures: series, data frames, and panels. A series is a one-dimensional
data structure such as a dictionary, array, list, tuple, and so on. A data
frame is a two-dimensional data structure with heterogeneous data types,
i.e., tabular data. A panel refers to a three-dimensional data structure
such as a three-dimensional array. It should be clear that the higher-
dimensional data structure is a container of its lower-dimensional data
structure. In other words, a panel is a container of a data frame, and a data
frame is a container of a series.

Series Data Structures

As mentioned earlier, a series is a sequence of one-dimensional data such
as a dictionary;, list, array, tuple, and so on.

© Dr. Ossama Embarak 2018 243
O. Embarak, Data Analysis and Visualization Using Python,
https://doi.org/10.1007/978-1-4842-4109-7_6

CHAPTER 6 DATA EXPLORING AND ANALYSIS

Creating a Series

Pandas provides a Series() method that is used to create a series
structure. A serious structure of size n should have an index of length
n. By default Pandas creates indices starting at 0 and ending with n-1.
A Pandas series can be created using the constructor pandas.Series
(data, index, dtype, copy) where data could be an array, constant,
list, etc. The series index should be unique and hashable with length n,
while dtype is a data type that could be explicitly declared or inferred
from the received data. Listing 6-1 creates a series with a default index
and with a set index.

Listing 6-1. Creating a Series

In [5]: import pandas as pd
import numpy as np
data = np.array(['0','S",'S",'A"])

S1 = pd.Series(data) # without adding index

S2 = pd.Series(data,index=[100,101,102,103]) # with
adding index print (S1) print ("\n") print (S2)
0 0

1 S

2 S

3 A

dtype: object

100 O

101 S

102 S

103 A

dtype: object

244

In [40]:import pandas as pd
import numpy as np

CHAPTER 6 DATA EXPLORING AND ANALYSIS

my series2 = np.random.randn(5, 10)
print ("\nmy_series2\n", my series2)

This is the output of creating a series of random values of 5 rows and

10 columns.

my_series2
[[0.08590877
-1.14191133
50645411

-0.84699981 0.
-0.37674882 -1.
76132521 -0.40671662 -0.
66951224 -1.19373055 1.

1 94028641
0.
0.
-0.
-0.48208329 -1.9805521 -0.
-0.
-0.
1.

16751734
7484758

864496782
73735706
27216885
43724096
22409272
49587483

t
[

[79181088 1.02769491 -1.
66898612 -0.60962025 -1.
14193093 -0.8842498 0.

.87701454 1.08452103 -1.

[

0.59702919 -1.29330859 -1.42021041 -0.09535271
1.
=-1.
0.
1
-1.
0.
=-0.
-0.
=-0.

0.09058623
75400706)
24061761
30420489)
43047631 -0.06302096 0.49239499
03152802]
20320462
22663712)
29598594
31887386])

0.03981985 0.13478382

0.19385809

-0.51614599

1.1917404 1.09016684

As mentioned earlier, you can create a series from a dictionary;

Listing 6-2 demonstrates how to create an index for a data series.

Listing 6-2. Creating an Indexed Series

In [6]: import pandas as pd
import numpy as np

data = {'X' : 0.,

IYI

D 1.,

2" 2.}

SERIES1 = pd.Series(data)

print (SERIES1)
X 0.0
Y 1.0
Z 2.0
dtype: float64

import pandas as pd

import numpy as np
data = {'X' : 0.,

IYI

D 1.,

'Z' 2.}

SERIES1 = pd.Series(data,index=['Y",'Z","'W","'X"])

print (SERIES1)
Y 1.0

245

CHAPTER 6 DATA EXPLORING AND ANALYSIS

Z 2.0
W NaN
X 0.0
dtype: float64

If you can create series data from a scalar value as shown in Listing 6-3,
then an index is mandatory, and the scalar value will be repeated to match
the length of the given index.

Listing 6-3. Creating a Series Using a Scalar

In [9]: # Use sclara to create a series
import pandas as pd
import numpy as np
Series1 = pd.Series(7, index=[0, 1, 2, 3, 4])
print (Seriesi1)

0
1
2
3
4

N NN NN

dtype: int64

Accessing Data from a Series with a Position

Like lists, you can access a series data via its index value. The examples in
Listing 6-4 demonstrate different methods of accessing a series of data.
The first example demonstrates retrieving a specific element with index 0.
The second example retrieves indices 0, 1, and 2. The third example
retrieves the last three elements since the starting index is -3 and moves
backward to -2, -1. The fourth and fifth examples retrieve data using the
series index labels.

246

CHAPTER 6 DATA EXPLORING AND ANALYSIS

Listing 6-4. Accessing a Data Series

In [18]: import pandas as pd
Series1l = pd.Series([1,2,3,4,5],index =

[Ia','bljlcl,ld','el])

print ("Example 1:Retrieve the first element")

print (Seriesi[o0])

print ("\nExample 2:Retrieve the first three element")
print (Seriesi[:3])

print ("\nExample 3:Retrieve the last three element")
print(Series1[-3:])

print ("\nExample 4:Retrieve a single element")

print (Seriesi['a'])

print ("\nExample 5:Retrieve multiple elements")

print (Seriesi[['a','c','d']])

Example 1:Retrieve
1

Example 2:Retrieve
a 3

b 2

c 3

dtype: inté4

Example 3:Retrieve
c 3

d 4

e 5

dtype: inté4

Example 4:Retrieve
1

Example S5:Retrieve
a 1

c 3

d 4

dtype: inté4

the first element

the first three element

the last three element

a single element

multiple elements

247

CHAPTER 6 DATA EXPLORING AND ANALYSIS

Exploring and Analyzing a Series

Numerous statistical methods can be applied directly on a data series.
Listing 6-5 demonstrates the calculation of mean, max, min, and standard
deviation of a data series. Also, the .describe() method can be used to
give a data description, including quantiles.

Listing 6-5. Analyzing Series Data

In [10]: import pandas as pd
import numpy as np
my seriesl = pd.Series([5, 6, 7, 8, 9, 10])
print ("my _seriesi\n", my series1)
print ("\n Series Analysis\n ")
, my seriesi.mean()) #

print ("Series mean value :
find mean value in a series
print ("Series max value : ",my seriesi.max()) #
find max value in a series
print ("Series min value : ",my seriesl.min()) #
find min value in a series

print ("Series standard deviation value : ",
my seriesl.std()) # find standard deviation
my seriesi

0 5

1 6

2 7

3 8

4 9

5 10

dtype: int64

248

CHAPTER 6 DATA EXPLORING AND ANALYSIS
Series Analysis

Series mean value : 7.5

Series max value : 10

Series min value : §

Series standard deviation value : 1.8708286933869707

In [11]: my seriesi.describe()

Out[11]: count 6.000000
mean 7.500000
std 1.870829
min 5.000000
25% 6.250000
50% 7.500000
75% 8.750000
max 10.000000

dtype: float64

If you copied by reference one series to another, then any changes
to the series will adapt to the other one. After copyingmy seriesitomy
series 11, once you change the indices of my series 11, it reflects back
tomy_seriesi, as shown in Listing 6-6.

Listing 6-6. Copying a Series to Another with a Reference

In [17]: my series 11 = my seriesi
print (my seriesi1)
my series 11.index = ['A', 'B', 'C', 'D', 'E', 'F']
print (my series 11)
print (my seriesi1)
0

5
1 6
2 7
3 8

249

CHAPTER 6 DATA EXPLORING AND ANALYSIS

4
5

9
10

dtype: int64

M m O N o >

O 00 N O U

10

dtype: int64

M m O N @ >

O 00 N O U

10

dtype: int64

You can use the . copy() method to copy the data set without having a

reference to the original series. See Listing 6-7.

Listing 6-7. Copying Series Values to Another

In [21]: my series 11 = my seriesi.copy()

250

print (my seriesi1)

my series 11.index = ['A', 'B', 'C', 'D', 'E', 'F']
print (my series 11)

print (my seriesi1)

0

1
2
3

5
6
7
8

4
5

CHAPTER 6 DATA EXPLORING AND ANALYSIS

9
10

dtype: int64

M m O N o >

O 00 N O U

10

dtype: int64

0
1
2
3
4
5

W 00 N O U

10

dtype: int64

Operations on a Series

Numerous operations can be implemented on series data. You can check

whether an index value is available in a series or not. Also, you can check

all series elements against a specific condition, such as if the series value is

less than 8 or not. In addition, you can perform math operations on series

data directly or via a defined function, as shown in Listing 6-8.

Listing 6-8. Operations on Series

In [23]: "F' in my series 11

Out[23]: True

In [27]: temp = my series 11 < 8

temp

251

CHAPTER 6 DATA EXPLORING AND ANALYSIS

Out[27]: A True

B True

C True

D False

E False

F False

dtype: bool

In [35]: len(my series 11)
Out[35]: 6

In [28]: temp = my series 11[my series 11 < 8] * 2
temp

Out[28]: A 10
B 12
C 14
dtype: int64

Define a function to add two series and call the function, like this:

In [37]: def AddSeries(x,y):
for i in range (len(x)):
print (x[1] + y[i])

In [39]: print ("Add two series\n")

AddSeries (my series 11, my seriesl)
Add two series

10

12

14

16

18

20

252

CHAPTER 6 DATA EXPLORING AND ANALYSIS

You can visualize data series using the different plotting systems that
are covered in Chapter 7. However, Figure 6-1 demonstrates how to get
an at-a-glance idea of your series data and graphically explore it via visual

plotting diagrams. See Listing 6-9.

Listing 6-9. Visualizing Data Series

In [49]: import matplotlib.pyplot as plt
plt.plot(my series2)
plt.ylabel('index")
plt.show()

index

0.0 0.5 10 15 20 25 30 35 4.0

Figure 6-1. Line visualization

n [54]: from numpy import *
import math
import matplotlib.pyplot as plt
t = linspace(0, 2*math.pi, 400)

253

CHAPTER 6 DATA EXPLORING AND ANALYSIS

a = sin(t)
b = cos(t)
c=a+b

In [50]: plt.plot(t, a, 'r') # plotting t, a separately
plt.plot(t, b, 'b") # plotting t, b separately
plt.plot(t, c, 'g") # plotting t, c separately
plt.show()

We can add multiple plots to the same canvas as shown in Figure 6-2.

15 1

10 1

0.5 1

i

0.0

0 1 2 3 B 5 6

Figure 6-2. Multiplots on the same canvas

Data Frame Data Structures

As mentioned earlier, a data frame is a two-dimensional data structure
with heterogeneous data types, i.e., tabular data.

254

Creating a Data Frame

CHAPTER 6 DATA EXPLORING AND ANALYSIS

Pandas can create a data frame using the constructor pandas.

DataFrame(data, index, columns, dtype, copy).A data frame can be

created from lists, series, dictionaries, Numpy arrays, or other data frames.

A Pandas data frame not only helps to store tabular data but also performs

arithmetic operations on rows and columns of the data frame. Listing 6-10

creates a data frame from a single list and a list of lists.

Listing 6-10. Creating a Data Frame from a List

In [19]: import pandas as pd

data = [10,20,30,40,50]

DF1 = pd.DataFrame(data)

print (DF1)

0

1
2
3
4

10
20
30
40
50

In [22]: import pandas as pd
data = [['Ossama',25],["'Ali',43],['Ziad",32]]
DF1 = pd.DataFrame(data,columns=["'Name', 'Age'])

print (DF1)
Name

Ossama
Ali
Ziad

Age
25
43
32

In [21]: import pandas as pd
data = [['Ossama',25],["'Ali',43],['Ziad",32]]
DF1 = pd.DataFrame(data,columns=['Name', 'Age'],
dtype=float) print (DF1)

255

CHAPTER 6 DATA EXPLORING AND ANALYSIS

Name Age
Ossama 25.0
Ali 43.0
Ziad 32.0

You can create a data frame from dictionaries or arrays, as shown in
Listing 6-11. Also, you can set the data frame indices. However, if you don’t
set the indices, then the data frame starts with 0 and goes up to n-1, where
n is the length of the list. Column names are taken by default from the
dictionary keys. However, it’s possible to set labels for columns as well. The
first data frame’s df1 columns are labeled with the dictionary key names;
that’s why you don’t see NaN cases except for the missing value of the project
in dictionary 1. While in the second data frame, named df2, you change the
column name from Test1 to Test_1, and you get NaNs for all the records.
This is because of the absence of Test_1 in the dictionary key of data.

Listing 6-11. Creating a DataFrame from a Dictionary

In [13]: import pandas as pd
data = [{'Test1': 10, 'Test2': 20},{'Test1': 30,
'Test2': 20, 'Project': 20}]
With three column indices, values same as dictionary
keys
df1 = pd.DataFrame(data, index=['First', 'Second'],
columns=['Test2", 'Project' , 'Test1'])

#With two column indices with one index with another
name

df2 = pd.DataFrame(data, index=['First', 'Second'],
columns=['Project', 'Test 1','Test2 ")]

print (df1)

print ("\n")

print (df2)

256

CHAPTER 6 DATA EXPLORING AND ANALYSIS

Test2 Project Test1
First 20 NaN 10
Second 20 20.0 30

Project Test 1 Test2
First NaN NaN 20
Second 20.0 NaN 20

Pandas allows you to create a data frame from a dictionary of series
where you get the union of all series indices passed. As shown in Listing
6-12 with the student Salwa, no Test1 value is given. That’s why NaN is set
automatically.

Listing 6-12. Creating a Data Frame from a Series

In [16]: import pandas as pd
data = {'Test1' : pd.Series([70, 55, 89],
index=['Ahmed', 'Omar', 'Ali']),
'Test2' : pd.Series([56, 82, 77, 65],
index=['Ahmed', 'Omar', 'Ali', 'Salwa'])}

df1 = pd.DataFrame(data)
print (df1)

Test1 Test2
Ahmed 70.0 56
Ali 89.0 77
Omar 55.0 82
Salwa NaN 65

257

CHAPTER 6 DATA EXPLORING AND ANALYSIS

Updating and Accessing a Data Frame’s
Column Selection

You can select a specific column using the column labels. For example,
df1['Test2'] is used to select only the column labeled Test2 in the data
frame, while df1[:] is used to display all the columns and all the rows, as
shown in Listing 6-13.

Listing 6-13. Data Frame Column Selection

In [51]: import pandas as pd
data = {'Test1' : pd.Series([70, 55, 89],
index=['Ahmed', 'Omar', 'Ali']),
'Test2' : pd.Series([56, 82, 77, 65],
index=['Ahmed', 'Omar', 'Ali', 'Salwa'])}

df1 = pd.DataFrame(data)

print (dfi['Test2']) # Column selection
print("\n")

print (dfi[:]) # Column selection

Ahmed 56
Ali 77
Omar 82
Salwa 65

Name: Test2, dtype: int64

Test1 Test2
Ahmed 70.0 56
Ali 89.0 77
Omar 55.0 82
Salwa NaN 65

258

CHAPTER 6 DATA EXPLORING AND ANALYSIS

You can select columns by using the column labels or the column
index. df1.iloc[:, [1,0]] is used to display all rows for columns 1
and 0 starting with column 1, which refers to the column named Test2.
In addition, df1[0:4:1] is used to display all the rows starting from row
0 up to row 3 incremented by 1, which gives all rows from 0 up to 3. See
Listing 6-14.

Listing 6-14. Data Frame Column and Row Selection

In [46]: df1.iloc[:, [1,0]]

Out[46]: Test2 Test1
Ahmed 56 70.0
Ali 77 89.0
Omar 82 55.0
Salwa 65 NaN

In [39]: df1[0:4:1]

Out[39]: Test1 Test2
Ahmed 70.0 56
Ali 89.0 77
Omar 55.0 82
Salwa NaN 65
Column Addition

You can simply add a new column and add its values directly using a
series. In addition, you can create a new column by processing the other
columns, as shown in Listing 6-15.

259

CHAPTER 6 DATA EXPLORING AND ANALYSIS

Listing 6-15. Adding a New Column to a Data Frame

In [66]: # add a new Column
import pandas as pd
data = {'Test1' : pd.Series([70, 55, 89],
index=['Ahmed', 'Omar', 'Ali']),
'Test2' : pd.Series([56, 82, 77, 65],
index=['Ahmed', 'Omar', 'Ali', 'Salwa'])}
df1 = pd.DataFrame(data)
print (df1)
df1['Project'] = pd.Series([90,83,67, 87],
index=["Ali', 'Omar','Salwa', 'Ahmed'])
print ("\n")
df1['Average'] = round((df1['Test1']+df1['Test2']+
df1['Project'])/3, 2)
print (df1)

Testl1 Test2
Ahmed 70.0 56
Ali 89.0 77
Omar 55.0 82
Salwa NaN 65

Testl1 Test2 Project Average

Ahmed 70.0 56 87 71.00
Ali 89.0 77 90 85.33
Omar 55.0 82 83 73.33
Salwa NaN 65 67 NaN

Column Deletion

You can delete any column using the del method. For example,
del df2['Test2'] deletes the Test2 column from the data set. In
addition, you can use the pop method to delete a column. For example,

260

CHAPTER 6 DATA EXPLORING AND ANALYSIS

df2.pop('Project") is used to delete the column Project. However, you
should be careful when you use the del or pop method since a reference
might exist. In this case, it deletes not only from the executed data frame
but also from the referenced data frame. Listing 6-16 creates the data frame
df1 and copies df1 to df2.

Listing 6-16. Creating and Copying a Data Frame

In [70]: import pandas as pd

data = {'Test1' : pd.Series([70, 55, 89],
index=['Ahmed', 'Omar', 'Ali']),
'Test2' : pd.Series([56, 82, 77, 65],
index=['Ahmed', 'Omar', 'Ali', 'Salwa'])}

print (df1)

df2 = df1

print ("\n")

print (df2)
Test1 Test2 Project Average

Ahmed 70.0 56 87 71.00
Ali 89.0 77 90 85.33
Omar 55.0 82 83 73.33
Salwa NaN 65 67 NaN
Test1 Test2 Project Average
Ahmed 70.0 56 87 71.00
Ali 89.0 77 90 85.33
Omar 55.0 82 83 73.33
Salwa NaN 65 6 7 NaN

In the previous Python script, you saw how to create df2 and assign
itdf1. In Listing 6-17, you are deleting the Test2 and Project variables
using the del and pop methods sequentially. As shown, both variables are
deleted from both data frames df1 and df2 because of the reference existing
between these two data frames as a result of using the assign (=) operator.

261

CHAPTER 6 DATA EXPLORING AND ANALYSIS
Listing 6-17. Deleting Columns from a Data Frame

In [71]: # Delete a column in data frame using del function
print ("Deleting the first column using DEL function:")
del df2['Test2']
print (df2)

Delete a column in data frame using pop function
print ("\nDeleting another column using POP function:")
df2.pop('Project’)

print (df2)

Deleting the first column using DEL function:

Testl1 Project Average

Ahmed 70.0 87 71.00
Ali 89.0 90 85.33
Omar 55.0 83 73.33
Salwa NaN 67 NaN

Deleting another column using POP function:
Test1 Average

Ahmed 70.0 71.00
Ali 89.0 85.33
Omar 55.0 73.33
Salwa NaN NaN

In [72]: print (df1)
Test1 Average

Ahmed 70.0 71.00
Ali 89.0 85.33
Omar 55.0 73.33
Salwa NaN NaN

262

In [73]:

CHAPTER 6 DATA EXPLORING AND ANALYSIS

print (df2)
Test1 Average

Ahmed 70.0 71.00
Ali 89.0 85.33
Omar 55.0 73.33
Salwa NaN NaN

To solve this problem, you can use the df. copy() method instead of

the assign operator (=). Listing 6-18 shows that you deleted the variables
Test2 and Project using the del() and pop() methods sequentially, but
only df2 has been affected, while df1 remains unchanged.

Listing 6-18. Using the Copy Method to Delete Columns from a
Data Frame

In [83]:

add a new Column
import pandas as pd
data = {'Test1' : pd.Series([70, 55, 89],
index=['Ahmed', 'Omar', 'Ali']),
'Test2' : pd.Series([56, 82, 77, 65],
index=['Ahmed', 'Omar', 'Ali', 'Salwa'])}
df1 = pd.DataFrame(data)
df1['Project'] = pd.Series([90,83,67, 87],
index=['Ali', 'Omar', 'Salwa', 'Ahmed'])
print ("\n")
df1['Average'] = round((df1['Test1']+df1['Test2']+df1
['Project'])/3, 2)
print (df1)
print ("\n")
df2= dfi.copy() # copy df1i into df2 using copy() method
print (df2)
#delete columns using del and pop methods
del df2['Test2']

263

CHAPTER 6 DATA EXPLORING AND ANALYSIS

df2.pop('Project")
print ("\n")
print (df1)
print ("\n")
print (df2)

Testl TestZ Project Average

Ahmed 70.0 5¢€ 87 71.00
Ali 89.0 77 50 85.33
Omar 55.0 82 83 73.33
Salwa NaN (33 &7 NaN

Testl TestZ Project Average

Ahmed 70.0 56 87 71.00
Ali 8%.0 77 80 85.33
Cmar 55.0 2 83 73.33
Salwa NaN €5 &7 NaN

Testl TestZ2 Project Average

Ahmed 70.0 =19 87 71.00
Rli 89.0 77 90 85.33
Cmar §5.0 82 83 73.33
Salwa NaN €5 &7 NaN

Testl Average
Ahmed 70.0 71.00

Ali 89.0 85.33
Cmarx §5.0 73.33
Salwa NaN NaN
Row Selection

In Listing 6-19, you are selecting the second row for student Omar. Also, you
use the slicing methods to retrieve rows 2 and 3.

264

Listing 6

In [106]:

Ahmed
Ali
Omar
Salwa

select
Tescl
Tesc2
Project
Average

CHAPTER 6 DATA EXPLORING AND ANALYSIS
-19. Retrieving Specific Rows

add a new Column
import pandas as pd
data = {'Test1' : pd.Series([70, 55, 89],
index=['Ahmed', 'Omar', 'Ali']),
'Test2' : pd.Series([56, 82, 77, 65],
index=['Ahmed', 'Omar', 'Ali', 'Salwa'])}
df1 = pd.DataFrame(data)
df1['Project'] = pd.Series([90,83,67, 87],index=
['Ali','Omar', 'Salwa', 'Ahmed'])
print ("\n")
df1['Average'] = round((df1['Test1']+df1['Test2']+df1
['Project'])/3, 2)
print (df1)
print ("\nselect iloc function to retrieve row number 2")
print (df1.iloc[2])
print ("\nslice rows")
print (df1[2:4])

Testl Test2 Project Average

70.0 56 g7 71.00
9.0 77 90 85.33
55.0 g2 g3 73.33
NaN 65 67 NaN

iloc function to retrieve row number 2
55.00
82.00
£3.00
73.33

Name: Omar, dcype: floaté4

slice r

Cmar
Salwa

ows

Testl Test2 Project Average
§5.0 82 83 73.33
NaN 65 &7 NaN

265

CHAPTER 6 DATA EXPLORING AND ANALYSIS

Row Addition

Listing 6-20 demonstrates how to add rows to an existing data frame.

Listing 6-20. Adding New Rows to the Data Frame

In [134]: import pandas as pd
data = {'Test1' : pd.Series([70, 55, 89],
index=['Ahmed', 'Omar', 'Ali']),
'Test2' : pd.Series([56, 82, 77, 65],
index=['Ahmed', 'Omar', 'Ali', 'Salwa']),
"Project’ : pd.Series([87, 83, 90, 67],
index=['Ahmed', 'Omar', 'Ali', 'Salwa']),
"Average' : pd.Series([71, 73.33, 85.33, 66],
index=['Ahmed', 'Omar', 'Ali', 'Salw
data = pd.DataFrame(data)
print (data)
print("\n")
df2 = pd.DataFrame([[80, 70, 90, 80]], columns
= ['Test1','Test2','Project’, 'Average'],
index=['Khalid'])
datadata.append(df2)
print (data)

Average Project Testl Test2

Ahmed 71.00 87 70.0 S56
All 85.33 90 89.0 77
Cmar 73.33 83 $5.0 82
Salwa 66.00 67 NaN £5

Average Project Testl Test2

Ahmed 71.00 87 70.0 56
AllL 85.33 90 89.0 77
Cmar 73.33 83 55.0 82
Salwa €6.00 67 NaN 65
Knhalid 80.00 90 80.0 70

266

CHAPTER 6 DATA EXPLORING AND ANALYSIS

Row Deletion

Pandas provides the df.drop() method to delete rows using the label
index, as shown in Listing 6-21.

Listing 6-21. Deleting Rows from a Data Frame
In [138]: print (data)

print ("\n")

data = data.drop('Omar")

print (data)

Average Project Testl Test2

Ahmed 71.00 87 70.0 56
Ali 85.33 80 89.0 77
Omar 73.33 83 55.0 82
Salwa €66.00 67 NaN 65
Khalid 80.00 90 80.0 70

Average Project Testl Test2

Ahmed 71.00 87 70.0 56
Ali 85.33 90 89.0 77
Salwa 66.00 67 NaN 65
Khalid £0.00 90 80.0 70

Exploring and Analyzing a Data Frame

Pandas provides various methods for analyzing data in a data frame.
The .describe() method is used to generate descriptive statistics that
summarize the central tendency, dispersion, and shape of a data set’s
distribution, excluding NaN values.

DataFrame.describe(percentiles=None, include=None, exclude=None)
[source]

DataFrame.describe() analyzes both numeric and object series, as
well as data frame column sets of mixed data types. The output will vary
depending on what is provided. Listing 6-22 analyzes the Age, Salary,

267

CHAPTER 6 DATA EXPLORING AND ANALYSIS

Height, and Weight attributes in a data frame. It also shows the mean, max,
min, standard deviation, and quantiles of all attributes. However, Salwa’s
Age is missing; you get the full description of Age attributes excluding
Salwa’s data.

Listing 6-22. Creating a Data Frame with Five Attributes

In [61]: print (df1)

data = {'Age' : pd.Series([30, 25, 44,],
index=['Ahmed', 'Omar', 'Ali']),

'‘Salary' : pd.Series([25000, 17000, 30000, 12000],
index=['Ahmed', 'Omar', 'Ali',

'Height' : pd.Series([160, 154, 175, 165],

index=['Ahmed', 'Omar', 'Ali', 'Salwa’

'Weight' : pd.Series([85, 70, 92, 65], index=['Ahmed', 'Omar',
'Ali', 'Salwa'l]),

'Gender' : pd.Series(['Male', 'Male', 'Male', 'Female'l],
index=['Ahmed', 'Omar’,

data = pd.DataFrame(data)
print (data)
print("\n")
df2 = pd.DataFrame([[42, 31000, 170, 80, 'Female']], columns
=["'Age','Salary', 'Height'
, index=['Mona'])

data = data.append(df2)
print (data)

268

Age
Anmed 30.0
Ali 44,0
Cmar 25.0

Salwa NaN

Age
Ahmed 30.0
Ali 44.0
Cmar 25.0
Salwa NaN
Mona 42.0

Gender
Male
Male
Male

Female

Gender
Male
Male
Male

Female

Female

CHAPTER 6
Height Salary Weight
160 25000 85
175 30000 92
154 17000 70
165 12000 65
Height Salary Weight
160 25000 85
175 30000 92
154 17000 70
165 12000 65
170 31000 go

DATA EXPLORING AND ANALYSIS

Applying the data.describe() method, you get the full description

of all attributes except the Gender attribute because of its string data
type. You can enforce implementation of all attributes by using the

include="all' method attribute. Also, you can apply the analysis to a

specific pattern, for example, to the Salary pattern only, which finds

the mean, min, max, std, and quantiles of all employees’ salaries. See

Listing 6-23.

Listing 6-23. Analyzing a Data Frame

In [63]: data.describe()

Q
F
o
m
0

Age

Haight

saiary

Weight

B¥¥ ez

4.000000
35250000

9215024
25.000000
25750000
365.000000
42500000
44000000

5.000000
144300000
42517055
70.000000
154.000000
160000000
165.000000
175.000000

$.000000
23000000000
8276472679
12000.000000
17000000000
25000000000
30003000000
31000.000000

5000000
78.400000
10965136
£5.000000
70.000000
§0.000000
§5.000000
£2.000000

269

CHAPTER 6 DATA EXPLORING AND ANALYSIS

In [64]: data.describe(include="all")

OCut [€4
Ags Gendsr Height ssiary Weight
count 4.000000 - 5.000000 S.000000 S5.000000
unique NaN 2 NaN NaN NaN
top NaN Mak Nan Nav Nav
freq NaN 3 NaN NaN NaN
mean 35250000 NaN 144300000 23000000000 73.400000
sta 9215024 NaN 42517055 &276.4T26T9 10963136
min 25000000 NaN 70000000 12000.000000 €5.000000
25% 25750000 NaN 154000000 17000000000 70.000000
S0% 35000000 NaN 160000000 25000000000 30.000000

75% 42500000 NaN 165000000 30000000000 &5.000000
max 44000000 NaN 175000000 31000000000 92000000

In [66]: data.Salary.describe()

Cut[€€]): count S$.000000
mean 23000.000000
std 827€.472€79
min 12000.000000
25% 17000.000000
S0% 25000.000000
75% 30000.000000
max 31000.000000

Name: Salary, dtype: £floaté€4

Listing 6-24 includes only the numeric columns in a data frame’s
description.

270

Listing 6-24. Analyzing Only Numerical Patterns

n [67]:

Age

Height

CHAPTER 6 DATA EXPLORING AND ANALYSIS

Ssiary

data.describe(include=[np.number])

Weight

sta

B ¥ 8dz

4000000
35250000

9215024
25.000000
25750000
35000000
42500000

44.000000

$.000000
144500000
42517035
70.000000
154.000000
160.000000
165.000000

175.000000

5.000000
23000.000000
B2TEATETY
12000000000
17000.000000
25000000000
30000.000000

31000.000000

5.000000
75.400000
10963136
£5.000000
70.000000
80000000
85.000000

92000000

Listing 6-25 includes only string columns in a data frame’s description.

Listing 6-25. Analyzing String Patterns Only (Gender)

In [68]

o
on
w

In [70]: data.describe(exclude=[np.number])

: data.describe(include=[np.object])

Gender

count 5
unique 2
top Male
freq 3

Gender

count 5
unique 2
top Male
freq 3

271

CHAPTER 6 DATA EXPLORING AND ANALYSIS

You can measure overweight employee by calculating the optimal weight
and comparing this with their recorded weight, as shown in Listing 6-26.

Listing 6-26. Checking the Weight Optimality

In [71]: data

Age Gender Height Salary Weight

Ahmed 30.0 Male 180 25000 85
Ali 440 Male 175 30000 92
Omar 25.0 Male 154 17000 70
Salwa NaN Female 165 12000 65
Mona 420 Female 70 31000 80

In [75]: OptimalWeight = data['Height']- 100

OptimalWeight
Cut[75]: Ahmed &0
Ali 75
Omar 54
Salwa 65
Mona 70

Name: Height, dtype: inté4

In [93]:unOptimalCases = data['Weight'] <= OptimalWeight
unOptimalCases

Cut [93 Ahmed False
Ali False
Omar False
Salwa True
Mona False

dtype: bool

272

CHAPTER 6 DATA EXPLORING AND ANALYSIS

Panel Data Structures

As mentioned earlier, a panel is a three-dimensional data structure like a

three-dimensional array.

Creating a Panel

Pandas creates a panel using the constructor pandas.Panel(data, items,
major axis, minor axis, dtype, copy).The panel can be created from
a dictionary of data frames and narrays. The data can take various forms,
such as ndarray, series, map, lists, dictionaries, constants, and also another
data frames.

The following Python script creates an empty panel:

#icreating an empty panel
import pandas as pd
p = pd.Panel ()

Listing 6-27 creates a panel with three dimensions.

Listing 6-27. Creating a Panel with Three Dimensions

In [143]: # creating an empty panel
import pandas as pd
import numpy as np

data = np.random.rand(2,4,5)
Paneldf = pd.Panel(data)
print (Paneldf)

<class 'pandas.core.panel.Panel'>

Dimensions: 2 (items) x 4 (major_axis) x 5 (minor_axis)
Items axis: 0 to 1

Major_ axis axis: 0 to

to 3
Minor_ axis axis: 0 to 4

273

CHAPTER 6 DATA EXPLORING AND ANALYSIS

Accessing Data from a Panel with a Position

Listing 6-28 creates a panel and fills it with random data, where the

first item in the panel is a 4x3 array and the second item is a 4x2 array

of random values. For the Item2 column, two values are NaN since its
dimension is 4x2. You can also access data from a panel using item labels,
as shown in Listing 6-28.

Listing 6-28. Selecting and Displaying Panel Items

In [147]: # creating an empty panel

import pandas as pd

import numpy as np

data = {'Item1' : pd.DataFrame(np.random.randn(4, 3)),
"Item2' : pd.DataFrame(np.random.randn(4, 2))}

Paneldf = pd.Panel(data)

print (Paneldf['Item1'])

print ("\n")

print (Paneldf['Item2'])

0 1 2
0 -1.069595 0.835842 0.950269
1l 1.063784 0.520086 1.342309
2 -2.236069 0.229717 0.7528612
3 1.014550 0.903234 2.01199%3
0 1 2
0 -1.126333 1.528085 NaN
1 -1.255712 0.076873 NaN
2 1.583704 -0.648342 NaN
3 0.287446 1.591275 NaN

Python displays the panel items in a data frame with two dimensions,
as shown previously. Data can be accessed using the method panel.
major axis(index) and also using the method panel.minor_
axis(index). See Listing 6-29.

274

CHAPTER 6 DATA EXPLORING AND ANALYSIS

Listing 6-29. Selecting and Displaying a Panel with Major and
Minor Dimensions

In [149]: print (Paneldf.major xs(1))

Iteml Item2
1.063784 -1.255712
0.520086 0.076873
1.342309 NaN

M= O

In [150]: print (Paneldf.minor xs(1))

Iteml Item2
0O 0.835842 1.528085
1 0.520086 0.076873
2 0.229717 -0.648342
3 0.903234 1.591275

Exploring and Analyzing a Panel

Once you have a panel, you can make statistical analysis on the
maintained data. In Listing 6-30, you can see two groups of employees,
each of which has five attributes maintained in a panel called P. You
implement the .describe() method for Groupi, as well as for the Salary
attribute in this group.

Listing 6-30. Panel Analysis

In [104]: import pandas as pd

datal = {'Age' : pd.Series([30, 25, 44,], index=['Ahmed’',
"Omar', 'Ali']),

'Salary' : pd.Series([25000, 17000, 30000, 12000],
index=["Ahmed', 'Omar', 'Ali', 'Salwa'l]),

'Height' : pd.Series([160, 154, 175, 165], index=['Ahmed",
"Omar', 'Ali', 'Salwa'l]),

275

CHAPTER 6 DATA EXPLORING AND ANALYSIS

'Weight' : pd.Series([85, 70, 92, 65], index=['Ahmed', 'Omar',
'Ali', 'Salwa'l]),

‘Gender' : pd.Series(['Male', 'Male', 'Male', 'Female'],
index=['Ahmed', 'Omar', 'Ali', 'Salwa'])}

data2 = {'Age' : pd.Series([24, 19, 33,25], index=['Ziad',
'Majid', 'Ayman', 'Ahlam']),

'‘Salary' : pd.Series([17000, 7000, 22000, 21000],
index=['Ziad', 'Majid', 'Ayman', 'Ahlam']),

'Height' : pd.Series([170, 175, 162, 177], index=['Ziad',
‘Majid', 'Ayman', ‘Ahlam']),

'Weight' : pd.Series([77, 84, 74, 90], index=['Ziad', 'Majid',
‘Ayman', 'Ahlam']),

'Gender' : pd.Series(['Male’', 'Male', 'Male', 'Female'],
index=['Ziad"', 'Majid', 'Ayman', 'Ahlam'])}

data = {'Group1': data1l, 'Group2': data2}
p = pd.Panel(data)

In [106]: p['Groupl'].describe()

Age Gender Height Salary Weight

count 20 4 4.0 4.0 40
unique 2.0 2 40 4.0 40
top 20.0 Male 1750 30000.0 700

freq 1.0 3 10 1.0 1.0

In [107]: p['Group1']['Salary'].describe()

Cut[107]: count 4.0
unique 4.0
top 30000.0
freq 1.0

Name: Salary, dtype: floaté4d

276

CHAPTER 6 DATA EXPLORING AND ANALYSIS

Data Analysis

As indicated earlier, Pandas provides numerous methods for data analysis.

The objective in this section is to get familiar with the data and summarize

its main characteristics. Also, you can define your own methods for specific

statistical analyses.

Statistical Analysis

Most of the following statistical methods were covered earlier with practical

examples of the three main data collections: series, data frames, and panels.

df.describe(): Summary statistics for numerical
columns

df.mean(): Returns the mean of all columns

df.corr(): Returns the correlation between columns

in a data frame

df.count(): Returns the number of non-null values in
each data frame column

df.max(): Returns the highest value in each column
df.min(): Returns the lowest value in each column
df.median(): Returns the median of each column

df.std(): Returns the standard deviation of each
column

Listing 6-31 creates a data frame with six columns and ten rows.

Listing 6-31. Creating a Data Frame

In [11]: import pandas as pd
import numpy as np

277

CHAPTER 6 DATA EXPLORING AND ANALYSIS

Number = [1,2,3,4,5,6,7,8,9,10]

Names = ['Ali Ahmed', 'Mohamed Ziad','Majid Salim','Salwa
Ahmed', 'Ahlam Mohamed', 'Omar Ali', 'Amna Mohammed', 'Khalid
Yousif', 'Safa Humaid', 'Amjad Tayel']

City = ['Fujairah','Dubai', 'Sharjah','AbuDhabi’,'Fujairah’,'Dub
ai', 'Sharja ', 'AbuDhabi','Sharjah','Fujairah’]

columns = ['Number', 'Name', 'City']

dataset= pd.DataFrame({ 'Number': Number , 'Name': Names,
"City': City}, columns = columns)

Gender= pd.DataFrame({'Gender':['Male','Male', 'Male', 'Female’,
'Female', 'Male', 'Female', 'Male','Female', 'Male']})

Height = pd.DataFrame(np.random.randint(120,175, size=(12, 1)))
Weight = pd.DataFrame(np.random.randint(50,110, size=(12, 1)))
dataset['Gender']= Gender

dataset['Height']= Height

dataset['Weight']= Weight

dataset.set index('Number')

Name City Gender Height Weight
Number

1 AliAhmed Fujairah Male 131 7
2 Mohamed Ziad Dubai Male 153 74
3 Majid Salim Sharjah Male 145 104
4 Salwa Ahmed AbuDhabi Female 173 &6
5 AhlamMohamed Fujairah Female 158 82
[Omar Al Dubai Male 134 89
7 Amna Mohammed Sharjah Female 136 93
8 Khalid Yousif AbuDhabi Male 128 98
9 Safa Humaid Sharjah Female 162 81
10 Amjad Tayel Fujairah Male 180 7

278

CHAPTER 6 DATA EXPLORING AND ANALYSIS

The Python script and examples in Listing 6-32 show the summary
of height and weight variables, the mean values of height and weight,
the correlation between the numerical variables, and the count of
all records in the data set. The correlation coefficient is a measure
that determines the degree to which two variables’ movements are
associated. The most common correlation coefficient, generated by the
Pearson correlation, may be used to measure the linear relationship
between two variables. However, in a nonlinear relationship, this
correlation coefficient may not always be a suitable measure of
dependence. The range of values for the correlation coefficient is -1.0
to 1.0. In other words, the values cannot exceed 1.0 or be less than -1.0,
whereby a correlation of -1.0 indicates a perfect negative correlation,
and a correlation of 1.0 indicates a perfect positive correlation. The
correlation coefficient is denoted as r. If its value greater than zero, it’s
a positive relationship; while if the value is less than zero, it’s a negative
relationship. A value of zero indicates that there is no relationship
between the two variables.

As shown, there is a weak negative correlation (-0.301503) between the
height and width of all members in the data set. Also, the initial stats show
that the height has the highest deviation; in addition, the 75th quantile of
the height is equal to 159.

Listing 6-32. Summary and Statistics of Variables

In [186]: # Summary statistics for numerical columns
print (dataset.describe())

Number Height Weight
count 10.00000 10.00000 10.000000
mean 5.50000 148.00000 85.500000
std 3.02765 15.37675 10.617072
min 1.00000 128.00000 71.000000
25% 3.25000 134.50000 76.000000
50% 5.50000 149.00000 £4.000000
75% 7.75000 158.50000 92.000000
max 10.00000 173.00000 104.000000

279

CHAPTER 6 DATA EXPLORING AND ANALYSIS

In [187]: print (dataset.mean()) # Returns the mean of all
columns

Number 5.5
Height 148.0
Weight 85.5

dtype: floaté4

In [188]: # Returns the correlation between columns in a
DataFrame
print (dataset.corr())

Number Height Weight
Number 1.000000 0.124105 0.174557
Height 0.124105 1.000000 -0.301503
Weight 0.174557 -0.301503 1.000000

In [189]: # Returns the number of non-null values in each
DataFrame column
print (dataset.count())

Number 10
Name 10
City 10
Gender 10
Height 10
Weight 10
dtvpe: inté4

280

CHAPTER 6 DATA EXPLORING AND ANALYSIS

In [190]: # Returns the highest value in each column
print (dataset.max())

Number 10
Name Salwa Ahmed
City Sharijah
Gender Male
Height 173
Weight 104

dtype: object

In [191]: # Returns the lowest value in each column
print (dataset.min())

Number 1
Name Ahlam Mchamed
City AbuDhabi
Gender Female
Height 128
Weight 71

dtype: object

In [192]: # Returns the median of each column
print (dataset.median())

Number 9.3
Height 149.0
Weight 64.0

dtype: floatéd

In [193]: # Returns the standard deviation of each column
print (dataset.std())

Number 3.027650
Height 15.376750
Weight 10.817072
dtype: flocate4d

281

CHAPTER 6 DATA EXPLORING AND ANALYSIS

Data Grouping

You can split data into groups to perform more specific analysis over

the data set. Once you perform data grouping, you can compute
summary statistics (aggregation), perform specific group operations
(transformation), and discard data with some conditions (filtration). In
Listing 6-33, you group data using City and find the count of genders per
city. In addition, you group the data set by city and display the results,
where for example rows 1 and 5 are people from Dubai. You can use
multiple grouping attributes. You can group the data set using City and
Gender. The retrieved data shows that, for instance, Fujairah has females
(row 4) and males (rows 0 and 9).

Listing 6-33. Data Grouping
In [3]: dataset.groupby('City"')['Gender'].count()

The following output shows that we have 2 students from Abu dhabi, 2
from Dubai, 3 from Fujairah and 3 from Sharjah groupped by gender.

1t City

AbuDhabi 2

Dubai 2

Fujairah 3

Sharjah 3

Name: Gender, dtype: inté4

In [4]: print (dataset.groupby('City").groups)

{*AbuDhabi‘’: Incé4Index([3, 7], drype='incéd4'), 'Dubai': Incé4Index([1, 5], dcype=‘incéd’), 'Fujairah': Incé4l
ndex([0, 4, 9), acype='intédi'), 'Sharjah’': Inctéd4lndex([2, &, 8], dtype='inté4’')

In [5]: print (dataset.groupby(['City", 'Gender']).groups)

282

CHAPTER 6 DATA EXPLORING AND ANALYSIS

Iterating Through Groups

You can iterate through a specific group, as shown in Listing 6-34. When
you iterate through the gender, it should be clear that by default the
groupby object has the same name as the group name.

Listing 6-34. Iterating Through Grouped Data

In [7]: grouped = dataset.groupby('Gender")
for name,group in grouped:
print (name)
print (group)

print ("\n")

Female

Number Name City Gender Height Weight
3 4 Salwa Ahmed AbuDhabi Female 125 57
4 5 Ahlam Mohamed Fujairah Female 170 99
3 7 Amna Mohammed Sharjah Female 180 97
8 9 Safa Humaid Sharjah Female 138 70
Male

Number Name City Gender Height Weight
] 1l Ali Ahmed Fujairah Male 130 72
1 2 Mohamed Ziad Dubai Male 129 61
2 3 Majid Salim Sharjah Male 153 51
5 3 Cmar Ali Dubai Male 135 97
7 8 Hnhalid Yousif AbuDhabi Male 170 55
9 10 Amjad Tayel Fujairah Male 163 ge

You can also select a specific group using the get_group() method, as
shown in Listing 6-35 where you group data by gender and then select only
females.

283

CHAPTER 6 DATA EXPLORING AND ANALYSIS
Listing 6-35. Selecting a Single Group

In [9]: grouped = dataset.groupby('Gender")
print (grouped.get group('Female'))

Number Name City Gender Height Weight
3 4 Salwa Ahmed AbuDhabi Female 125 $7
4 S5 Ahlam Mochamed Fujairah Female 170 99
& 7 ina Mohammed Sharjah Female 160 a7
8 9 Safa Humaid Sharjah Female 138 70

Aggregations

Aggregation functions return a single aggregated value for each

group. Once the groupby object is created, you can implement various
functions on the grouped data. In Listing 6-36, you calculate the mean
and size of height and weight for both males and females. In addition,
you calculate the summation and standard deviations for both patterns
of males and females.

Listing 6-36. Data Aggregation

In [18]: # Aggregation
grouped = dataset.groupby('Gender")
print (grouped['Height'].agg(np.mean))
print ("\n")
print (grouped['Weight'].agg(np.mean))
print ("\n")
print (grouped.agg(np.size))
print ("\n")
print (grouped['Height'].agg([np.sum, np.mean,
np.std]))

284

Gender
Female
Male
Name:

Gender
Female
Male
Name:

Gender
Female
Male

Gender
Female
Male

Transformations

CHAPTER 6

4
6

145.250000
159.333333
Height, dtype: floatb4
88.750000
83.666667
Weight, dtype: floaté4
Number Name City Height Weight
4 4 4 4
3 8 6 6
sum mean std
581 145.250000 7.274384
956 159.333333 £.891944

DATA EXPLORING AND ANALYSIS

Transformation on a group or a column returns an object that is

indexed the same size as the one being grouped. Thus, the transform

should return a result that is the same size as that of a group chunk.
See Listing 6-37.

Listing 6-37. Creating the Index

In [26]:

E
m
H

oo om - oo ks WM

print (dataset)

Name

Ali Ahmed
Mohamed Ziad
Majid Salim
Salwa Ahmed
Ahlam Mcohamed
Cmar Ali

Amna Mohammed
Khalid Yousif
Safa Humaid
Amjad Tayel

City

Fujairah
Dubai
Sharjah
AbuDhabi
Fujairah
Dubai
Sharjah
AbuDhabi
Sharjah
Fujairah

Gender

Male
Male
Male
Female
Female
Male
Female
Male
Female
Male

Height

155
165
1589
138
152
145
151
171
140
161

dataset = dataset.set_index(['Number'])

Weight

285

CHAPTER 6 DATA EXPLORING AND ANALYSIS

In Listing 6-38, you group data by Gender, then implement the function
lambda x: (x - x.mean()) / x.std()*10, and display results for both
height and weight. The lambda operator or lambda function is a way to
create a small anonymous function, i.e., a function without a name. This
function is throwaway function; in other words, it is just needed where it
has been created.

Listing 6-38. Transformation

In [28]: grouped = dataset.groupby('Gender")
score = lambda x: (x - x.mean()) / x.std()*10
print (grouped.transform(score))

Height Weight
Number
1 -4,873325 -9.911893
2 6.372810 -13.097858
3 -0.374871 -0.884990
4 -9.966479 9.730865
5 9.279136 6.346216
8 -16.119460 12.920860
i/

7.904449 -12.269352

8 13.120491 6.548929
9 -7.217106 -=3.807730
10 1.87435¢ 4.,424852
Filtration

Python provides direct filtering for data. In Listing 6-39, you applied
filtering by city, and the return cities appear more than three times in the
data set.

Listing 6-39. Filtration

In [30]: print (dataset.groupby('City").filter(lambda x: len(x)
>= 3))

286

CHAPTER 6 DATA EXPLORING AND ANALYSIS

Name City Gender Height Weight
Number
1 Ali Ahmed Fujairah Male 155 65
3 Majid Salim Sharjah Male 159 g2
5 Ahlam Mcohamed Fujairah Female 152 100
7 ma Mohammed Sharjah Female 151 67
9 Safa Humaid Sharjah Female 140 82
10 Amjad Tayel Fujairah Male 161 92

Summary

This chapter covered how to explore and analyze data in different
collection structures. Here is a list of what you just studied in this
chapter:

— How to implement Python techniques to explore and
analyze a series of data, create a series, access data from
series with the position, and apply statistical methods on a

series.

— How to explore and analyze data in a data frame, create a
data frame, and update and access data. This included
column and row selection, addition, and deletion, as well
as applying statistical methods on a data frame.

— How to apply statistical methods on a panel to explore and
analyze its data.

— How to apply statistical analysis on the derived data from
implementing Python data grouping, iterating through
groups, aggregations, transformations, and filtration
techniques.

The next chapter will cover how to visualize data using numerous
plotting packages and much more.

287

CHAPTER 6 DATA EXPLORING AND ANALYSIS
Exercises and Answers

A. Create a data frame called df from the following
tabular data dictionary that has these index labels:
[Ial) lbl’ ICI, |d|’ lel’ I_Fl) lgl’ Ihl’

IR

Animal Age Priority Visits
a cat 2.5 yes 1
b cat 3.0 yes 3
c snake 0.5 no 2
d dog NaN yes 3
e dog 5.0 no 2
f cat 2.0 no 3
g snake 4.5 no 1
h cat NaN yes 1
i dog 7.0 no 2
3 dog 3.0 no 1

Answer:
You should import both the Pandas and Numpy libraries.

import numpy as np
import pandas as pd

You must create a dictionary and list of labels and
then call the data frame method and assign the
labels list as an index, as shown in Listing 6-40.

Listing 6-40. Creating a Tabular Data Frame

In [5]: import numpy as np
import pandas as pd
import matplotlib as mpl

288

CHAPTER 6 DATA EXPLORING AND ANALYSIS

data = { 'Animal': ['cat', 'cat', 'snake', 'dog', 'dog',
‘cat', 'snake', 'cat', 'dog', 'dog'l],

‘Age': [2.5, 3, 0.5, np.nan, 5, 2, 4.5, np.nan, 7, 3],

'Visits': [1, 3, 2, 3, 2, 3, 1, 1, 2, 1],

"Priority': ['yes', 'yes', 'no', 'yes', 'no', 'no', 'no',

'yves', 'no', 'no']}

labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']

#Create a DataFrame df from this dictionary data which has the

index labels.

df = pd.DataFrame(data, index = labels, columns=['Animal’,

‘Age', 'Priority', 'Visits'])

print (df)

Animal Age Priority Visits

a cat 2.5 yes 1
b cat 3.0 yves 3
c snake 0.5 no 2
d dog NaN yes 3
e dog 5.0 no 2
f cat 2.0 no 3
g snake 4.5 no 1
h cat NaN yes 1
i dog 7.0 no 2
3 dog 3.0 no 1

B. Display a summary of the data frame’s basic
information.

You can use df.info() and df.describe() to get
a full description of your data set, as shown in
Listing 6-41.

289

CHAPTER 6 DATA EXPLORING AND ANALYSIS

Listing 6-41. Data Frame Summary

In [6]: df.info()

<class 'pandas.core.frame.DataFrame'>
Index: 10 entries, a to j
Data ceclumns (tcoctal 4 columns):

Animal 10 non-null object
Age 8 non-null floaté4d
Priority 10 non-null object
Visits 10 non-null inté&4

dtypes: floaté4(l), int64(1l), cbject(2)
memory usage: 400.0+ bytes

In [7]: df.describe()

Age Visits

count 8.000000 10.000000
mean 3.437500 1.200000
std 2007797 0.875595
min 0.500000 1.000000
25% 2375000 1.000000
50% 3.000000 2.000000
75% 4625000 2.750000
max 7.000000 3.000000

C. Return the first three rows of the data frame df.

Listing 6-42 shows the use of df.iloc[:3] and df.
head(3) to retrieve the first n rows of the data frame.

290

CHAPTER 6 DATA EXPLORING AND ANALYSIS

Listing 6-42. Selecting a Specific n Rows
In [12]: df.head(3)

Animal Age Priority Visits

a cat 25 yes 1
b cat 3.0 yes 3
c snake 05 no 2

In [13]: df.iloc[:3]

Animal Age Priority Visits

a cat 25 yes 1
b cat 30 yes 3
c snake 05 no 2

D. Selectjust the animal and age columns from the
data frame df.

The Python data frame loc() method is used

to retrieve the specific pattern df.loc[: ,
["Animal', 'Age']].In addition, an array form
retrieval can be used too with df[['Animal’,
‘Age']] . See Listing 6-43

Listing 6-43. Slicing Data Frame

In [16]: df.loc[:,['Animal’, 'Age']]
or
df [['Animal', 'Age']]

291

CHAPTER 6 DATA EXPLORING AND ANALYSIS

Animal Age

a cat 25
b cat 30
c snake 05
d dog NaN
e dog 5.0
cat 20

g snake 45
h cat NaN
i dog 7.0

E. Count the visit priority per animal.

In [8]: df.groupby('Priority')['Animal’].count()
F. Find the mean of the animals’ ages.
In [10]: df.groupby('Animal')['Age'].mean()
G. Display a summary of the data set. See Listing 6-44.

Listing 6-44. Data Set Summary

In [13]: df.groupby('Animal')['Age'].describe()

count | mean | std min | 25% |50% | 75% | max

Animal
cat 30 |25 |0.500000]|2.0 |2.25|2.5 |2.75(3.0
dog |30 |50 |2000000|3.0 |4.00(5.0 |6.00(7.0
snake |20 |25 |2828427|05 |150|25 |350({45

292

CHAPTER 7

Data Visualization

Python provides numerous methods for data visualization. Various Python
libraries can be used for data visualization, such as Pandas, Seaborn,
Bokeh, Pygal, and Ploty. Python Pandas is the simplest method for basic
plotting. Python Seaborn is great for creating visually appealing statistical
charts that include color. Python Bokeh works great for more complicated
visualizations, especially for web-based interactive presentations. Python
Pygal works well for generating vector and interactive files. However, it
does not have the flexibility that other methods do. Python Plotly is the
most useful and easiest option for creating highly interactive web-based
visualizations.

Bar charts are an essential visualization tool used to compare values
in a variety of categories. A bar chart can be vertically or horizontally
oriented by adjusting the x- and y-axes, depending on what kind of
information or categories the chart needs to present. This chapter
demonstrates the use and implementation of various visualization tools;
the chapter will use the salaries.csv file shown in Figure 7-1 as the data
set for plotting purposes.

© Dr. Ossama Embarak 2018 293
O. Embarak, Data Analysis and Visualization Using Python,
https://doi.org/10.1007/978-1-4842-4109-7_7

CHAPTER 7 DATA VISUALIZATION

» Salaries.. OssamaEmbarak

RGU Inser Page Forrr | Data | Revit | View | Deve | Add- | Help | LOAI| Nitrc | PDF. |8
‘3 _j._ = 9% E Conditional Formatting - E o]
Clipboard Font Alignment Number [57 Format as Table ~ Cells Editing
- . - - [Fcenstyles- - -
Styles ~
D41 ki fe 18 b
A | B | C D E | F | G [~]
- rank discipline phd service sex salary
2 AssocProf B 11 11 Female 103613
3| Prof A 12 6 Male 93000
4| Prof A 23 20 Male 110515
5 | Prof A 40 3 Male 131205
6 | Prof B 20 18 Male 104800
7] Prof A 20 20 Male 122400
8 | AssocProf A 20 17 Male 81285
9| Prof A 138 18 Male 126300
10| Prof A 29 19 Male 94350
1] Prof A 51 51 Male 57800
12 Prof B 39 33 Male 128250
13 Prof B 23 23 Male 134778 N
Salaries) ¢ []
Select destination and press ENTER or choo... ﬁ E = 1] +

Figure 7-1. Salaries data set

Direct Plotting

Pandas is a Python library with data frame features that supplies built-
in options for plotting visualizations in a two-dimensional tabular style.
In Listing 7-1, you read the Salaries data set and create some vectors of
variables, which are rank, discipline, phd, service, sex, and salary.

Listing 7-1. Reading the Data Set

In [3]: import pandas as pd
dataset = pd.read csv("./Data/Salaries.csv")
rank = dataset['rank’]

294

CHAPTER 7 DATA VISUALIZATION

discipline = dataset['discipline']
phd = dataset['phd']

service = dataset['service']

sex = dataset['sex']

salary = dataset['salary']

dataset.head()

out[1l]:
rank discipline phd service sex salary

0 Prof B 56 49 Male 186960
1 Prof A 12 6 Male 93000
2 Prof A 23 20 Male 110515
3 Prof A 40 31 Male 131205
4 Prof B 20 18 Male 104800

Line Plot

You can use line plotting as shown in Listing 7-2. It’s important to ensure
the data units, such as the phd, service, and salary variables, are used for
plotting. However, only the salaries are visible, while the phd and service
information is not clearly displayed on the plot. This is because the
numerical units in the salaries are in the hundreds of thousands, while the
phd and services information is in very small units.

295

CHAPTER 7 DATA VISUALIZATION

Listing 7-2. Visualizing Patterns with High Differences in Numerical
Units

In [5]: dataset[["rank", "discipline","phd","service", "sex",
"salary"]].plot()

175000 - = Q:,i ”
150000 - — Sy
125000 - \J\
100000 1

75000

50000 |

25000 1

0
0 10 20 0 40 0 60 70

Let’s visualize more comparable units such as the phd and services
information, as shown in Listing 7-3. You can observe the correlation
between phd and services over the years, except from age 55 up to 80,
where services decline, which means that some people left the service at
the age of 55 and older.

Listing 7-3. Visualizing Patterns with Close Numerical Units

In [6]: dataset[["phd","service"]].plot()

296

CHAPTER 7 DATA VISUALIZATION

10 1

—— phd

— service

In Listing 7-4, you are grouping data by service and summarizing
the salaries per service category. Then you sort the derived data set in
descending order according to the salaries. Finally, you plot the sorted
data set using a bar chart.

50 60 70

Listing 7-4. Visualizing Salaries per Service Category

In [4]: datasetl = dataset.groupby(['service']).sum()

datasetl.sort values("salary", ascending = False,

inplace=True)

dataseti1.head()

o]
=
o
ob

salary

19 178

18 9

769448
635216
603060
519500
440408

297

CHAPTER 7 DATA VISUALIZATION

In [8]: dataseti1["salary"].plot.bar()

800000
700000
600000
500000
400000
300000
200000

100000

MEP~Qomm MO~ M = WO T e N
a2y RATEESALCRIASIFREEYRRY T A~ 4R
servi

You can see that most people serve approximately 19 years, which is
why the highest accumulated salary is from this category.

Bar Plot

Listing 7-5 shows how to plot the first ten records of phd and services,
and you can add a title as well. To add a title to the chart, you need to use
.bar(title="Your title").

Listing 7-5. Bar Plotting

In [9]: dataset[['phd', 'service']].head(10).plot.bar()

298

CHAPTER 7 DATA VISUALIZATION

B phd
50 - BN service
40 1
w.
20-
10 -
0-
o — ™~ m h-g T3] 0 ~ w o

In [11]: dataset[['phd', 'service']].head(10).plot.bar
(title="Ph.D. Vs Service\n 2018")

Ph.D. Vs Service

2018
mmm phd
50 4 B service
40 o
w E
20 r
10 -
0 .
o - ~ m -1 [Ts] O r~ o (=11

299

CHAPTER 7 DATA VISUALIZATION

In [12]: dataset[['phd', 'service']].head(10).plot.bar
(title="Ph.D. Vs Service\n 2018" , color=['g"', 'red'])

Ph.D. Vs Service

2018
m phd
50 - N service
40 -
w .
20 .
10
0 o
o - ~ m < n 7] r~ ® o

Pie Chart

Pie charts are useful for comparing parts of a whole. They do not show
changes over time. Bar graphs are used to compare different groups or to
track changes over time. However, when trying to measure change over
time, bar graphs are best when the changes are larger. In addition, a pie
chart is useful for comparing small variables, but when it comes to a large
number of variables, it falls short. Listing 7-6 compares the salary package
of ten professionals from the Salaries data set.

300

CHAPTER 7 DATA VISUALIZATION

Listing 7-6. Pie Chart
In [13]: dataset["salary"].head(10).plot.pie(autopct="%.2f")

Box Plot

Box plotting is used to compare variables using some statistical values.
The comparable variables should be of the same data units; Listing 7-7
shows that when you compare phd and salary, it produces improper
figures and does not provide real comparison information since the
salary numerical units are much higher than the phd numerical values.
Plotting phd and services shows that the median and quantiles of phd
are higher than the median and quantiles of the service information;
in addition, the range of phd is wider than the range of service

information.

301

CHAPTER 7 DATA VISUALIZATION

Listing 7-7. Box Plotting

In [14]: dataset[["phd","salary"]].head(100).plot.box()

o
175000

150000 - T
125000 -
100000

75000 - _L
50000 -
25000 -

0 —O—
phd salary

In [15]: dataset[["phd","service"]].plot.box()

(o]

50 1 8

(o]

40.

30.

20.

10 A l

3 |
pllld sen:rice

302

CHAPTER 7 DATA VISUALIZATION

Histogram Plot

A histogram can be used to represent a specific variable or set of
variables. Listing 7-8 plots 20 records of the salaries variables; it
shows that salary packages of about 135,000 are the most frequent in
this data set.

Listing 7-8. Histogram Plotting

In [16]: dataset["salary"].head(20).plot.hist()

Frequency
(¥

8]
i

60000 80000 100000 120000 140000 160000 180000

Scatter Plot

A scatter plot shows the relationship between two factors of an experiment
(e.g. phd and service). A trend line is used to determine positive, negative,

or no correlation. See Listing 7-9.

303

CHAPTER 7 DATA VISUALIZATION

Listing 7-9. Scatter Plotting

In [17]: dataset.plot(kind='scatter', x='phd', y="service',
title="Popuation vs area and density\n 2018', s=0.9)

Popuation vs area and density

2018
m.
40.
y 21
s
B |
10 A
0_
0 10 20 30 40 50
phd

Seaborn Plotting System

The Python Seaborn library provides various plotting representations for
visualizing data. A strip plot is a scatter plot where one of the variables

is categorical. Strip plots can be combined with other plots to provide
additional information. For example, a box plot with an overlaid strip plot
is similar to a violin plot because some additional information about how
the underlying data is distributed becomes visible. Seaborn’s swarm plot
is virtually identical to a strip plot except that it prevents data points from
overlapping.

304

CHAPTER 7 DATA VISUALIZATION

Strip Plot

Listing 7-10 uses strip plotting to display data per salary category.

Listing 7-10. Simple Strip Plot

In [3]: # Simple stripplot sns.stripplot(x =
dataset['salary'])

60000 80000 100000 120000 140000 160000 180000
salary

In [4]: # Stripplot over categories
sns.stripplot(x = dataset['sex'], y= dataset['salary'],
data=dataset);

305

CHAPTER 7 DATA VISUALIZATION

180000 -

160000 - i .
140000 1 B
> i .
£ 120000 1 .
[]
100000 1 j -
’ 8

80000 1 .
s i
60000 4 a *

Malxle Ferrl'nale
SEX

The previous example visualizes the salary variable per gender.

You can visualize the data vertically or horizontally using Listing 7-11,
which presents two disciplines, A and B. Discipline B has a bigger range
and higher packages compared to discipline A.

Listing 7-11. Strip Plot with Vertical and Horizontal Visualizing

In [5]: # Stripplot over categories
sns.stripplot(x = dataset['discipline'], y =
dataset['salary'], data=dataset, jitter=1)

306

CHAPTER 7 DATA VISUALIZATION

L]
180000 1
L
160000 1 5 ', .
4 .
140000 1 . B
> s '.

S 120000 1 Foe, .
G .oy . 45
100000 1 M, v

g oo e
L]
&JOOO 1 ..’ ° . ..C
60000 1 =9
B A

discipline

In [6]: # Stripplot over categories Horizontal
sns.stripplot(x= dataset['salary'], y = dataset['discipline'],
data=dataset, jitter=True);

discipline

L
. .] ’
[4 " »
*? . - '.o:°
LI ™

60000 80000 100000 120000 140000 160000 180000

salary

307

CHAPTER 7 DATA VISUALIZATION

You can visualize data in a strip plot per category; Listing 7-12 uses
the assistance prof, associate prof, and full professor categories. The hue
attribute is used to determine the legend attribute.

Listing 7-12. Strip Plot per Category

In [7]: # Stripplot over categories

sns.stripplot(x = dataset['rank'], y= dataset['salary'],
data=dataset, jitter=True);

L]
180000 -
160000 - & b
) f,
140000 - ..-
E" L]
2 120000 - ‘.3 E
m * o0 ™
e e
100000 - ° ®
® ol Y
80000 - 4 :.
’ ., 3. L]
60000 - o ’ b
Prlof AssoéPror AsstIProf
rank

In [8]: # Add hue to the graph
Stripplot over categories
sns.stripplot(x ='sex', y= 'salary', hue='rank',
data=dataset, jitter=True)

308

CHAPTER 7 DATA VISUALIZATION

L]
180000 A
J . ™
160000 e :
140000 1 i P
> * B
S 120000 1 & . = B
b} oo
o’ Pl
100000 1 § e el
ks o rank * =
80000 4 . @® Prof e %
- ® AssocProf ‘.
60000 1 ® ® AsstProf A
Méle Ferrl'aale

Box Plot

You can combine a box plot and strip plot to give more information on the
generated plot (see Listing 7-13). As shown, the Male category has a higher
median salary, maximum salary, and range compared to the Female

category.
Listing 7-13. Combined Box Plot and Strip Plot Visualization

In [10]: # Draw data on top of boxplot
sns.boxplot(x = 'salary', y ='sex', data=dataset,
whis=np.inf)
sns.stripplot(x = 'salary', y ='sex', data=dataset,
jitter=True, color='0.02")

309

CHAPTER 7 DATA VISUALIZATION

Male

sex

Female -

60000 80000 100000 120000 140000 160000 180000
salary

In [13]: # box plot salaries
sns.boxplot(x = dataset['salary'])

60000 80000 100000 120000 140000 160000 180000
salary

310

CHAPTER 7 DATA VISUALIZATION

In [14]: # box plot salaries
sns.boxplot(x = dataset['salary'], notch=True)

60000 80000 100000 120000 140000 160000 180000
salary

In [15]: # box plot salaries
sns.boxplot(x = dataset['salary'], whis=2)

60000 80000 100000 120000 140000 160000 180000
salary

311

CHAPTER 7 DATA VISUALIZATION

In [16]: # box plot per rank
sns.boxplot(x = 'rank', y = 'salary', data=dataset)

180000 -
160000 -
140000 -
E 120000
R
100000 1
mooo ‘ ?
60000 4

Pr'of ﬂsso::Prof Asstll'-‘rof
rank

In [17]: # box plot per rank
sns.boxplot(x = 'rank', y = 'salary', hue="sex', data=dataset,
palette="Set3")

sex
s [Male
160000 4 .] Female
140000 4
g
Tﬂ 120000 4 —
T
100000 :
80000 1 L ;E —!
60000 1 L ¢
Prof AssocProf AsstProf
rank

312

CHAPTER 7 DATA VISUALIZATION

In [18]: # box plot per rank
sns.boxplot(x = 'rank', y = 'salary', data=dataset)
sns.swarmplot(x = 'rank', y = 'salary', data=dataset,

color="0.25")

Combined Box Plot and Strip Plot Visualization as shown in below figure.

180000 -

160000

140000
g
= 120000 -4
b

100000 1

80000 4

60000 -

Pr'of Asso‘cProf AsstIProf
rank

Swarm Plot

A swarm plot is used to visualize different categories; it gives a clear
picture of a variable distribution against other variables. For instance,
the salary distribution per gender and per profession indicates that the
male professors have the highest salary range. Most of the males are

full professors, then associate, and then assistant professors. There are
more male professors than female professors, but there are more female
associate professors than male associate professors. See Listing 7-14.

Listing 7-14. Swarm ploting of salary against gender

In [11]: # swarmplot
sns.swarmplot(x ='sex', y= 'salary', hue='rank', data=dataset,
palette="Set2", dodge=True)

313

CHAPTER 7 DATA VISUALIZATION

180000
160000 1
140000
£ 120000
:]
100000 1

80000 4

60000

In [12]:

sns.swarmplot(x
palette="Set2", dodge=False)

180000
160000 A
140000 A

o
2 120000

&

100000 1

80000 -

60000 -

314

B rank
@® Prof
o & & AssocProf
" o ® AsstProf
- %
L .a o®
< o »
e]
% . o -
'.:n ves .
o .{oo .. L]
* o.' ‘:i:
[] L]
Male Female

swarmplot
'sex', y= 'salary', hue='rank',

sex

s

.§' :

, %
A -~
*e ..
& e

",13"' rank o

- ® Prof o
™ © AssocProf '::::"

s @ AsstProf -
Mz;le Fenl'uale

sex

data=dataset,

CHAPTER 7 DATA VISUALIZATION

Joint Plot

A joint plot combines more than one plot to visualize the selected patterns
(see Listing 7-15).

Listing 7-15. Joint Plot Visualization

In [22]: sns.jointplot(x = 'salary', y = 'service',
data=dataset)

T T T T T T T

so{ @ pearsonr = 0.53;p = S.3e-0.?
o
@
40 4
°
L] o
30 1 ®e ¢
g o °
° L] -
20 A e @
L] L) [-2>1
° * o %
8 o N
10 » * &
L] o @
° o™ e

X °

60000 &0000 100000 120000 140000 160000 180000
salary

315

CHAPTER 7 DATA VISUALIZATION

In [24]: sns.jointplot('salary', 'service', data=dataset,
kind="reg")

pearsonr = 0.53; p = 5.3e-07

service

25000 50000 7500010000@2500@5000@7500020000@25000
salary

316

CHAPTER 7 DATA VISUALIZATION

In [25]: sns.jointplot('salary', 'service', data=dataset,

kind="hex")

pearsonr = 0.53; p = 5.3e-07

0 T L] T T T
60000 80000 100000 120000 140000 160000 180000
salary

317

CHAPTER 7 DATA VISUALIZATION

In [26]: sns.jointplot('salary', 'service', data=dataset,
kind="kde")

pearsonr = 0.53; p = 5.3e-07

service

10 1

=10 4

25000 50000 75000 100000125000150000175000200000
salary

318

CHAPTER 7 DATA VISUALIZATION

In [27]: from scipy.stats import spearmanr sns.

jointplot('salary', 'service', data=dataset, stat func=

spearmanr)

service

10 1

T T T T T T T

| e spearmanr = 0.55; p = 1.5e-07
°
°
@
)
@ °
o,)
° ©
© o*
® e e
°
e ®
°) [e=)
L] *)
$. »
* &
® o’ o®

i '

60000 80000 100000 120000 140000 160000 180000
salary

319

CHAPTER 7 DATA VISUALIZATION

In [31]: sns.jointplot('salary', 'service',
data=dataset).plot_joint(sns.kdeplot, n levels=6)

pearsonr = 0.53, p = 5.3e-07

service

25000 50000 75000 100000125000150000175000 200000
salary

320

CHAPTER 7 DATA VISUALIZATION

In [32]: sns.jointplot('salary', 'service',
data=dataset).plot joint(sns.kdeplot,n levels=6).
plot_marginals(sns.rugplot)

B s R

pearsonr = 0.53; p = 5.3e-07

service

25000 50000 75000 100000125000150000175000200000
salary

Matplotlib Plot

Matplotlib is a Python 2D plotting library that produces high-quality
figures in a variety of hard-copy formats and interactive environments
across platforms. In Matplotlib, you can add features one by one, such as
adding a title, labels, legends, and more.

Line Plot

In inline plotting, you should determine the x- and y-axes, and then you
can add more features such as a title, a legend, and more (see Listing 7-16).

321

CHAPTER 7 DATA VISUALIZATION

Listing 7-16. Matplotlib Line Plotting

In [2]: import matplotlib.pyplot as plt
X =[3)6)8)11)13114)17)19)21124133)37]
y = [7.5,12,13.2,15,17,22,24,37,34,38.5,42,47]

x2 =[3,6,8,11,13,14,17,19,21,24,33]

y2 = [50,45,33,24,21.5,19,14,13,10,6,3]

plt.plot(x,y, label='First Line')

plt.plot(x2, y2, label="Second Line")

plt.xlabel('Plot Number")

plt.ylabel('Important var")

plt.title('Interesting Graph\n2018 ")

plt.yticks([o,5,10,15,20,25,30,35,40,45,50],
['oB','5B"','10B",'15B"','20B", "25B"','30B"',"'35B",
'40B','45B",'50

B'])

plt.legend()

plt.show()

Interesting Graph
2018

50B 1 -
458 - \

—— First Line
Second Line

Important var
o
o

5 0 15 0 5 30 35
Plot Number

322

CHAPTER 7 DATA VISUALIZATION

In [13]: plt.plot(phd, label="Ph.D.")
plt.plot(service, label="service')
plt.xlabel('Ph.D./service")
plt.ylabel('Frequency')
plt.title('Ph.D./service\nDistribution")

plt.legend()
plt.show()
Ph.D./service
Distribution
—Ph.D.
50 —— service
40 .

Frequency
3

=

=
o
e
e

0 10 20 30 4 S0 6 7 8
Ph.D./service

In [15]: plt.plot(phd, service, 'bo', label="Ph.D. Vs
services", 1w=10)
plt.grid()
plt.legend()
plt.xlabel('Ph.D")
plt.ylabel('service")
plt.title('Ph.D./salary\nDistribution")
plt.yscale('log")

323

CHAPTER 7 DATA VISUALIZATION

Ph.D./salary
Distribution
® Ph.D. Vs services s |* e
& o &
,;-'ﬂ'.. o0
o % 4
o 100 1 %
& e o o
°®
®
ow o 0 @
o e
10° 1 ®
0 10 20 30 40 50
Ph.D

Bar Chart

Listing 7-17 shows how to create a bar chart to present students registered
for courses; there are two students who are registered for four courses.

Listing 7-17. Matplotlib Bar Chart Plotting

In [3]: Students = [2,4,6,8,10]
Courses = [4,5,3,2,1]
plt.bar(Students,Courses, label="Students/Courses")
plt.xlabel('Students ")
plt.ylabel('Courses")
plt.title('Students Courses Data\n 2018")
plt.legend()
plt.show()

324

Courses

In [4]:

CHAPTER 7 DATA VISUALIZATION

Students Courses Data
2018

4 -

3

9 .

) I

: i
2 B 6 8 10

BN Students/Courses

Students

Students = [2,4,6,8,10]
Courses = [4,5,3,2,3]
stds = [3,5,7,9,11]
Projects = [1,2,4,3,2]

plt.
plt.
plt.
plt.
plt.
plt.
plt.

bar(Students, Courses, label="Courses", color='r")
bar(stds, Projects, label="Projects", color="c")
xlabel('Students")

ylabel('Courses/Projects")

title('Students Courses and Projects Data\n 2018")
legend()

show()

325

CHAPTER 7 DATA VISUALIZATION

Students Courses and Projects Data

2018
5 1 EEE Courses
BN Projects
4 -
vi
¢
23]
a
W
8
5 2-
S

Students

Histogram Plot

Listing 7-18 shows how to create a histogram showing age frequencies;
most people in the data set are between 30 and 40. In addition, you can
create a histogram of the years of service and the number of PhDs.

Listing 7-18. Matplotlib Histogram Plotting

In [5]: Ages = [22.5, 10, 55, 8, 62, 45, 21, 34, 42, 45, 99,
75, 82,
77, 55, 43, 66, 66, 78, 89, 101, 34, 65, 56,
25, 34,
52, 25, 63, 37, 32]
binsx = [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110]
plt.hist(Ages, bins=binsx, histtype="bar', rwidth=0.7)

326

Frequency

In [18]:

CHAPTER 7 DATA VISUALIZATION

plt.xlabel('Ages")

plt.ylabel('Frequency')

plt.title('Ages frequency for sample pouplation\n 2018")
plt.show()

Ages frequence for sample pouplation
2018

0 20 40 60 80 100
Ages

plt.hist(service, bins=30, alpha=0.4, rwidth=0.8,
color="green', label="service')

plt.hist(phd, bins=30, alpha=0.4, rwidth=0.8,
color="red', label="phd")
plt.xlabel('Services/phd")
plt.ylabel('Distribution")
plt.title('Services/phd\n 2018")
plt.legend(loc="upper right")

plt.show()

327

CHAPTER 7 DATA VISUALIZATION

Visualize service years since Ph.D. had attained.

Services/phd
2018
N service
10 -
3 e
S
36
2
a i
2 .
0 -
0 10 20 30 40 50
Services/phd

In [19]: plt.hist(service, bins=10, alpha=0.4, rwidth=0.8,
color="green', label="service')
plt.hist(phd, bins=10, alpha=0.4, rwidth=0.8,
color="red', label="phd")
plt.xlabel('Services/phd")
plt.ylabel('Distribution")
plt.title('Services/phd\n 2018")
plt.legend(loc="upper right")
plt.show()

328

CHAPTER 7 DATA VISUALIZATION

Services/phd
2018

N service
s phd

0 10 20 30 40 50
Services/phd

In [21]: plt.hist(salary, bins=100)
plt.show()

60000 €0000 100000 120000 140000 160000 180000

329

CHAPTER 7 DATA VISUALIZATION

Scatter Plot

Listing 7-19 shows how to create a scatter plot to present students
registered for courses, where four students are registered for five courses.

Listing 7-19. Matplotlib Scatter Plot

In [7]: Students = [2,4,6,8,6,10, 6] Courses = [4,5,3,2,4, 3, 4]
plt.scatter(Students,Courses, label='Students/Courses’,
color="green', marker="*", s=75)
plt.xlabel('Students")
plt.ylabel('Courses")
plt.title('Students courses\n Spring 2018")

plt.legend()
plt.show()
Students courses
Spring 2018
5.0 - * * Students/Courses
45 1
404 * *
@
£ 351
S
30 * *
25 1
20 1 *
2 3 4 5 6 71 8 9 10
Students

330

CHAPTER 7 DATA VISUALIZATION

In [16]: plt.scatter(rank,salary, label='salary/rank',
color="g', marker="+', s=50)
plt.xlabel('rank') plt.ylabel('salary')
plt.title('salary/rank\n Spring 2018")
plt.legend() plt.show()

salary/rank
Spring 2018
+
180000 - + s.alary!rank
160000 -4
140000 1
g
8 i+
] 120000 *
100000 A
80000 % i
60000 { * - +
AssocProf AsstProf Prof
rank

In [20]: plt.scatter(phd,salary, label='Salary/phd', color='g',
marker="+"', s=80)
plt.xlabel('phd') plt.ylabel('salary")
plt.title('phd/ salary\n Spring 2018")
plt.legend() plt.show()

331

CHAPTER 7 DATA VISUALIZATION

phd/ salary
Spring 2018
+
180000 1+ Salary/phd
160000 - + +
+ +++ + » +
+ +
140000 - 2 &
> + +
§ 120000 4 + '&4-1"' & +
T @ &
ta | O+ 4
100000 - + +
++-++ + + 4 T
80000 1 + +
e ot +
60000 1 + + &
0 10 2 30 a0 50

Stack Plot

Stack plots present the frequency of every activity, such as the frequency
of sleeping, eating, working, and playing per day (see Listing 7-20). In
this data set, on day 2, a person spent eight hours sleeping, three hours in
eating, eight hours working, and five hours playing.

Listing 7-20. Persons Weekly Spent Time per activities using
Matplotlib Stack Plot

In [9]: days = [1,2,3,4,5]
sleeping = [7,8,6,11,7]
eating = [2,3,4,3,2]
working = [7,8,7,2,2]
playing = [8,5,7,8,13]
plt.plot([],[], color="m', label='Sleeping')
plt.plot([],[], color="c', label="Eating")
plt.plot([],[], color="r', label="Working")

332

Activities

CHAPTER 7 DATA VISUALIZATION

plt.plot([],[], color="k', label="Playing")
plt.stackplot(days, sleeping, eating, working ,
playing, colors=['m','c', 'r', 'k'])
plt.xlabel('days")

plt.ylabel('Activities")

plt.title('Persons Weekly Spent Time per activities\n
Spring 2018")

plt.legend()
plt.show()
Persons Weekly Spent Time per activities
Spring 2018

25
—— Sleeping
~—— Eating

20 — Working
— Playing

[
un
A

b
o

10 15 20 25 3.0 35 40 45 5.0
days

333

CHAPTER 7

DATA VISUALIZATION

Pie Chart

In Listing 7-21, you are using the explode attribute to slice out a specific

activity. After that, you can add the gender and title to the pie chart.

Listing 7-21. Persons Weekly Spent Time per activities using
Matplotlib Pie Chart

In [10]:

334

days = [1,2,3,4,5]

sleeping = [7,8,6,11,7]

eating = [2,3,4,3,2]

working = [7,8,7,2,2]

playing = [8,5,7,8,13]

slices = [39,14,26,41]

activities = ['sleeping', 'eating', 'working',
"playing’]

cols = ['c','m",'r", 'b","'g"]

plt.pie(slices,
labels= activities,
colors= cols,
startangle=100,
shadow=True,
explode = (0.0,0.0,0.09,0),
autopct = '%1.1f%%")
plt.title('Persons Weekly Spent Time per activities\n
Spring 2018")
plt.legend()
plt.show()

CHAPTER 7 DATA VISUALIZATION

Persons Weekly Spent Time per activities
Spring 2018

Emm sleeping
Em eating

. vorking
EEm playing

sleeping

eating
working

Summary

This chapter covered how to plot data from different collection structures.
You learned the following:

— How to directly plot data from a series, data frame, or panel
using Python plotting tools such as line plots, bar plots, pie
charts, box plots, histogram plots, and scatter plots

— How to implement the Seaborn plotting system using
strip plotting, box plotting, swarm plotting, and joint
plotting

— How to implement Matplotlib plotting using line plots,
bar charts, histogram plots, scatter plots, stack plots, and
pie charts

The next chapter will cover the techniques you've studied in this book via
two different case studies; it will make recommendations, and much more.

335

CHAPTER 7 DATA VISUALIZATION

Exercises and Answers

1. Create 500 random temperature readings for six
cities over a season and then plot the generated data
using Matplotlib.

Answer:

See Listing 7-22.

Listing 7-22. Plotting the Temperature Data of Six Cities

In [4]: import matplotlib.pyplot as plt
plt.style.use('classic")
Zmatplotlib inline
import numpy as np
import pandas as pd

In [30]: # Create temperature data
rng = np.random.RandomState(0)
seasonl = np.cumsum(rng.randn(500, 6), 0)

In [32]: # Plot the data with Matplotlib defaults
plt.plot(season1)
plt.legend('ABCDEF', ncol=2, loc='upper left');

336

2.

Answer:

CHAPTER 7 DATA VISUALIZATION

0 100 200 300 400 500

Load the well-known Iris data set, which lists
measurements of petals and sepals of three iris
species. Then plot the correlations between each
pair using the .pairplot() method.

See Listing 7-23.

Listing 7-23. Pair Correlations

In [33]:

import seaborn as sns

iris = sns.load dataset("iris"

iris.head()

sns.pairplot(iris, hue="species', size=2.5);

337

CHAPTER 7 DATA VISUALIZATION

sepal_ width
w
o

[

patal_length
© = AW b o om M

Mo W
o o

petal_width

o
w

oo

05 P " . L P T) o - :
40455055606570756085 1520253035404550 0 1 2 3 4 5 6 7 & -0500051015202530

338

pecies
setosa
versicolor
virginica

fie
. . .
i H
.
..::h!r!.-: L
= A e S
SRt J 5 | o8

sepal_length sepal_width petal_length petal_wadth

Load the well-known Tips data set, which shows the
number of tips received by restaurant staff based on
various indicator data; then plot the percentage of
tips per bill according to staff gender.

CHAPTER 7 DATA VISUALIZATION

Answer:

See Listing 7-24.

Listing 7-24. First five records in the Tips dataset

In [36]: import seaborn as sns
tips = sns.load dataset('tips")
tips.head()

total_bill tip sex smoker day time size

0 16.99 1.01 Female No Sun Dinner 2
1 10.34 166 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 2368 3.31 Male No Sun Dinner 2
-+ 2459 361 Female No Sun Dinner -

In [37]: tips['Tips Percentage'] = 100 * tips['tip'] /
tips['total bill']
grid = sns.FacetGrid(tips, row="sex", col="time",
margin titles=True)
grid.map(plt.hist, "Tips Percentage", bins=np.
linspace(0, 40, 15));

339

CHAPTER 7 DATA VISUALIZATION

340

35
30}
5
20 -

15

10 |

5

0

35
30 |
5t
20
15 |

10

time = Lunch time = Dinner

o

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35

Tips Percentage Tips Percentage

4. Load the well-known Tips data set, which shows the

number of tips received by restaurant staff based on
various indicator data; then implement the factor
plots to visualize the total bill per day according to
staff gender.

3o = Xas

3jeway = xas

CHAPTER 7 DATA VISUALIZATION

Answer:

See Listing 7-25.

Listing 7-25. Implementing Factor Plotting

In [39]: import seaborn as sns

Total Bill Amount

tips = sns.load dataset('tips")

with sns.axes style(style="ticks'):

g = sns.factorplot("day"”, "total bill"
"sex", data=tips, kind="box")

)

g.set_axis_labels("Bill Day", "Total Bill Amount")

60_
50 ‘ :
4
a0 ¢ :
¢

0 '|' 1 [T
Thur Fri Sat Sun
Bill Day

sex
Il Male
El Female

341

CHAPTER 7 DATA VISUALIZATION

5. Reimplement the previous exercise using the
Seaborn joint plot distributions.

Answer:

See Listing 7-26.

Listing 7-26. Implementing Joint Plot Distributions

In [43]: import seaborn as sns
tips = sns.load dataset('tips")
with sns.axes style('white'):
sns.jointplot("total bill", "tip",
data=tips, kind="hex")

i

pearsonr = 0.68; p = 6.7e-34

10

tip

s O

10 20 30 40 50
total_bill

342

CHAPTER 8

Case Studies

This chapter covers two case studies. I will provide some brief
information about each case and then show how to gather the data
needed for analysis, how to analyze the data, and how to visualize the
data related to specific patterns.

Case Study 1: Cause of Deaths in the United
States (1999-2015)

This study analyses the leading causes of death in the United States of
America between 1999 and 2015.

Data Gathering

It’s important to gather a study’s data set from a reliable source;
it’s also important to use an updated and accurate data set to get
unbiased findings. The data set in this case study comes from open
data from the U.S. government, which can be accessed through
https://data.gov.
You can download it from here:
https://catalog.data.gov/dataset/age-adjusted-death-rates-
for-the-top-10-leading-causes-of-death-united-states-2013

© Dr. Ossama Embarak 2018 343
O. Embarak, Data Analysis and Visualization Using Python,
https://doi.org/10.1007/978-1-4842-4109-7_8

https://data.gov
https://catalog.data.gov/dataset/age-adjusted-death-rates-for-the-top-10-leading-causes-of-death-united-states-2013
https://catalog.data.gov/dataset/age-adjusted-death-rates-for-the-top-10-leading-causes-of-death-united-states-2013

CHAPTER 8 CASE STUDIES

This case study will try to answer the following questions:
e« Whatis the total number of records in the dataset?
o« What were the causes of death in this data set?

o« What was the total number of deaths in the United
States from 1999 to 2015?

e What is the number of deaths per each year from 1999
to 20152

o Which ten states had the highest number of deaths
overall?

o What were the top causes of deaths in the United States
during this period?

Data Analysis

Let’s first read and clean the data set.
e« Whatis the total number of recorded death cases?

See Listing 8-1.

Listing 8-1. Cleaned Records of Death Causes in the United States

In [2]: import pandas as pd
data = pd.read csv("NCHS.csv")

data.head(3)
Year 113 Cause Name Cause Name State Deaths Age-adjusted Death Rate
0 1999 Accidents (unintentional injuries) (V01-X59,Y8 = Unintentional Injuries Alabama 23130 522
1 1999 Accidents (unintentional injuries) (V01-X59.Y8... Unintentional Injuries Alaska 2940 559
2 1999 Accidents (unintentional injunes) (V01-X59,Y8 Unintentional Inunes Anzona 22140 448

344

CHAPTER 8 CASE STUDIES

In [3]: data.shape # 15028 rows and 6 columns

Out[3]: (15028, 6)
Remove all rows with na cases.

In [4]: data = data.dropna()
data.shape
Out[4]: (14917, 6)

Approximately 14,917 death cases were recorded in different U.S. states.
Now let’s clean the data to find the number of death causes in the

data set.
o What were the causes of death in this dataset?
See Listing 8-2.
Listing 8-2. Unique Death Causes in the United States

In [7]: causes = data["Cause Name"].unique()

causes
: array(['Unintentional Injuries’, 'All Causes', "Alzheimer's disease”,
'Homicide', 'Stroke', '"Chronic liver disease and cirrhosis',

'CLRD', 'Diabetes', 'Diseases of Heart',

'Essential hypertension and hypertensive renal disease’,
'Influenza and pneumonia', 'Cancer', 'Suicide', 'Kidney Disease',
"Parkinson's disease”, 'Pneumonitis due to solids and liquids',
'Septicemia'], dtype=cbject)

Remove A1l Causes from the Cause Name column.

345

CHAPTER 8 CASE STUDIES

In [8]: data = data[data["Cause Name"] !="All Causes"]
causes = data["Cause Name"].unique()
causes

(o]
ot

[2]: array(['Unintentional Injuries', "Alzheimer's disease", 'Homicide',
'Stroke', 'Chronic liver disease and cirrhesis', 'CLRD',
'Diabetes', 'Diseases of Heart',
'Essential hypertension and hypertensive renal disease',
'Influenza and pneumonia', 'Cancer', ‘'Suicide', 'FKidney Disease’,
"Parkinson's disease"”, 'Fneumonitis due to solids and liquids’,
'Septicemia'], dtype=cbject)

In [9]: len(causes)

Out[9]: 16

As shown, there are 16 death causes according to the loaded data set.
Clean the data to find the unique states included in the study.
See Listing 8-3.

Listing 8-3. Unique States in the Study

In [11]: state = data["State"].unique()
state

array(['Alabama’', 'Alaska', 'Arizona', 'Arkansas',6 'California’,
'Colorado’, 'Connecticut', ‘'Delaware’, 'District of Columbia’,
'Florida’, 'Georgia', 'Hawaii', 'Idaho’, 'Illincis', 'Indiana’,
'Iowa', "Fansas', 'Rentucky', 'Louisiana', 'Maine', 'Maryland’',
'Massachusetts', '"Michigan', 'Minnesota', 'Mississippi',
'"Missouri', 'Montana', 'Nebraska', 'Nevada', 'New Hampshire',
'HNew Jersey', 'New Mexico', "New York', 'North Carolina’,
'Morth Dakota', 'Chio’', 'Oklahoma', 'Oregon', 'Pennsylvania’,
'Rhode Island', 'South Carolina', 'South Dakota', 'Tennessee',
'Texas', 'United States', 'Utah', 'Vermeont', 'Virginia',
'Washington', 'West Virginia', 'Wisconsin', 'Wyoming'],

dtype=object)

346

In [12]: data1
state

state

array(['Alabama’',

'Celerade’,

'Florida',
'Iowa',

'Texas’,

In [13]: len(state)

Out[13]: 51

There are 51 states included in the study.

'Ransas’',
'Massachusetts',
'Missouri',
'New Jersey',
'Noxth Dakota',
'Rhode Island',
'Utah’,
'West Virginia',

'‘ARlaska’,

'Connecticut’,
'Georgia',
'Rentucky’,
'Michigan’,
'Montana',
'New Mexico',
"Chio',
'Scuth Carclina',
'Vermont',
'Wiscensin',

'Arizona',

'Hawaii',

'Delaware’,

'Louisiana’,
'Minnesota',
'Nekbraska',
'New York',
'Cklahema',

'Virginia',
'Wyoming'], dtype=cbiject)

CHAPTER 8 CASE STUDIES

data[data["State"] !="United States"]
data1["State"].unique()

'Arkansas', 'California’,
'District of Columbia’',
'Idaho', 'Illincis', 'Indiana',
'Maine', 'Maryland’',
'Mississippi’,
'Nevada', "New Hampshire',
'Noerth Careolina’',
'Oregon', 'Pennsylvania',
'Scuth Daketa', 'Tennessee',
'Washington’,

o« What was the total number of deaths in the United
States from 1999 to 2015?

In [15]: data["Deaths"].sum()

Out[15]: 69279057.0

The total number of deaths during the given period

is 69,279,057.

e Whatis the number of deaths for each year from 1999

to 20157

See Listing 8-4.

347

CHAPTER 8 CASE STUDIES

Listing 8-4. Study’s Death Trends per Year

In [16]: dyear= data.groupby(["Year"]).sum()
dyear

Deaths Age-adjusted Death Rate

Year

1999 4052876.0 38550.3
2000 4054097.0 381383
2001 4063971.0 37645.3
2002 41047960 37503.0
2003 40972450 38904.3
2004 3999321.0 35359.7
2005 4062908.0 35368.7
2006 328990847.0 234113.0
2007 3979212.0 324053
2008 40289420 332701
2009 3967385.0 320525
2010 4001895.0 319298
2011 40481450 31522.9
2012 40€9794.0 30965.9
2013 4151084.0 20520.9
2014 42132088.0 308621
2015 4383717.0 31498.7

348

CHAPTER 8 CASE STUDIES
In [18]: dyear["Deaths"].plot(title="Death per year \n
1999-2015")

Death per year
1999-2015

4400000 -

4300000 -

4200000 1

4100000 -

4000000 -

2000 2002 2004 2006 2008 2010 2012 2014
Year

The number of deaths declined between 2002 and 2009. Then there
was a continuous growth in the number of deaths from 2010 to 2013.
Finally, there was a sharp increase in the number of deaths in 2013
and 2014.

Data Visualization

Plotting data gives a clear idea about patterns behind the data and helps to
make the right decisions in business.

o Which ten states had the highest number of deaths
overall?

See Listing 8-5.

349

CHAPTER 8 CASE STUDIES

Listing 8-5. Top Ten States with the Highest Number of Deaths in
the United States

In [19]: datal = data[data["State"] !="United States"]
dataset2 = datai.groupby("State").sum()
dataset2.sort values("Deaths", ascending=False ,
inplace = True)
dataset2.head(10)

Q
ct
w

Year Deaths Age-adjusted Death Rate

State
California 545904 2422459.0 10101.2
Florida 545904 2397507.0 10158.8
Texas 545904 2270961.0 11339.7
New York 545904 2170019.0 10228.5
Pennsylvania 545904 17859820 11334.1
Ohio 545904 1529552.0 11931.3
lllinois 545904 14£80489.0 11170.8
Michigan 545904 1248155.0 11845.7
North Carolina 545904 10638235.0 1M1737.3
New Jersey 545904 1003705.0 10448.7

350

CHAPTER 8 CASE STUDIES

In [20]: dataset2["Deaths"].head(10).plot.bar(title= "Top ten
states with highest death number \n 1999-2015 ")

Top ten states with highest death number

1999-2015
3500000 -
3000000 -
2500000 -
2000000 1
1500000 -
1000000 -
500000 A
0.
-] L] w -] o W c o >
= o o S — = ‘© [i] £ b
= L v = e -
C 2 23
: 5
= =
State

California had the highest number of deaths in the United States, with

Florida coming in second.

o What were the top causes of deaths in the United States
during this period?

See Listing 8-6.

351

CHAPTER 8 CASE STUDIES

Listing 8-6. Top Ten Causes of Death in the United States

In [21]: dataset1l = data[data["Cause Name"] !="All Causes"]
dataset2 = dataseti.groupby("Cause Name").sum()
dataset2.sort values("Deaths", ascending=False ,
inplace = True)
dataset2.head(10)

Year Deaths Age-adjusted Death Rate

Cause Name

Diseases of Heart 1774188 21879846.0 178315.3
Cancer 1774188 19292996.0 160163.8

Stroke 1774188 4875996.0 414538

CLRD 1774188 45802600 39545.5

Unintentional Injuries 1774188 4032020.0 37368.6
Alzheimer's disease 1774188 25148180 214358
Diabetes 1774188 247268420 20851.9

Influenza and pneumonia 1774188 19748840 168498.5
Kidney Disease 1774188 15158680 12555.4

Suicide 1774188 1209756.0 11580.1

352

CHAPTER 8 CASE STUDIES

In [22]: dataset2["Deaths"].head(10).plot.bar(title="Top ten
causes of death in USA \n 1999-2015 ")

Top ten causes of death in USA

le7 1999-2015
20
15
10
05
0.0
: £ & 8 32 g 38 g g ¥
= 3 & ° 8 S = A
wn ‘© w o b >
v = L c v
Vi o LY (=
3 g E T &
n § o] wl
= € ©N® 8
c < c
> k)
£

Cause Name

Diseases of the heart represent the biggest cause of death followed
by cancer.

Findings

Table 8-1 summarizes the study findings.

353

CHAPTER 8 CASE STUDIES

Table 8-1. Case Study 1: Findings

Investigation Question

Findings

1. What is the total number of
records in the dataset?

2. What were the causes
of death in this data set?

3. What was the total number
of deaths in the United States
from 1999 to 2015?

4. What is the number of
deaths per year from
1999 t0 2015?

5. Which ten states had the highest
number of deaths overall?

6. What were the top causes of
deaths in the United States
during this period?

There were approximately 14,917 deaths
recorded in the United States.

There are 16 causes of death according to
the study data set.

The total number of deaths during the
given period is 69,279,057.

From 2002 to 2009 the number of deaths
declined, then there an increase from 2010
10 2013.In 2013 and 2014, there was a
sharp increase in the number of deaths.

California had the most deaths in the
United States, with Florida in second place.

Diseases of the heart represent the highest
causes of death followed by cancer.

Case Study 2: Analyzing Gun Deaths
in the United States (2012-2014)

This study analyzes gun deaths in the United States of America between

2012 and 2014.

This case study will try to answer the following questions:

e Whatis the number of annual suicide gun deaths in the
United States from 2012 to 2014, by gender?

354

CHAPTER 8 CASE STUDIES

e What is the number of gun deaths by race in the United
States per 100,000 people from 2012 to 2014?

e What is the annual number of gun deaths in the United
States on average from 2012 to 2014, by cause?

e Whatis the percentage per 100,000 people of annual
gun deaths in the United States from 2012 to 2014, by

cause?

o Whatis the percentage of annual suicide gun deaths in
the United States from 2012 to 2014, by year?

Data Gathering

The data set for this study comes from GitHub and can be accessed
here:

https://github.com/fivethirtyeight/guns-data.git

Load and clean the dataset and prepare it for processing.
See Listing 8-7.

Listing 8-7. Reading Gun Deaths in the United States (2012-2014)
Data Set

In [25]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(style="white', color_codes=True)
#matplotlib inline

355

https://github.com/fivethirtyeight/guns-data.git

CHAPTER 8 CASE STUDIES

In [26]: dataset = pd.read csv('Death data.csv', index col=0)

print(dataset.shape)

dataset.index.name = 'Index'
dataset.columns = map(str.capitalize, dataset.columns)

dataset.head(5)
(100798, 10)

cut[26]: Year Month Intent Police Sex Age Race Hispanic Place Education

Index

1 2012 1 Suicide 0 M 34.0 Asian/Pacific Islander 100 Home BA+
2 2012 1 Suicide 0 F 210 White 100 Strest Some college
3 2012 1 Suicide 0 M 60.0 White 100 Other specified BA+
4 2012 2 Suicide 0 M 540 White 100 Home BA+
5 2012 2 Suicide 0 M 31.0 White 100 Other specified HSIGED

Organize the data set by year and then by month.

In [27]: dataset Gun = dataset
dataset Gun.sort values(['Year', 'Month'],

inplace=True)

Data Analysis

Now let’s look at the data and make some analysis.

¢ How many males and females are included in this

study?

356

CHAPTER 8 CASE STUDIES

In [28]: dataset Gun.Sex.value counts(normalize=False)
Out[28]: M 86349

F 14449

Name: Sex, dtype: int64

How many educated females are included in this
study?

As shown here, there are 14,243 educated females
involved in this study.

Group the data set by gender.

In [8]: dataset_byGender = dataset Gun.groupby('Sex").
count()
dataset_byGender

Year Month Intent Police Age Race Hispanic Place Education

Sex

F 14449 14449 14449 14449 14446 14449 14449 14386 14243
M 86349 86349 86348 86349 86334 86349 86349 85028 85133

Data Visualization

In this case study, we will try to find the answers to the numerous

questions posed earlier. Let’s get started.

What is the number of suicide gun deaths in the United
States from 2012 to 2014, by gender?

See Listing 8-8.

357

CHAPTER 8 CASE STUDIES

Listing 8-8. Gun Death by Gender

In [29]: dataset suicide Gender =dataset Gun[
dataset Gun["Intent"] =="Suicide"]
dataset suicide Gender.Sex.value counts
(normalize=False).plot.bar(title="Annual U.S.\\suicide
gun deaths \n 2012-2014, by gender')

Annual U.S.\suicide gun deaths
2012-2014, by gender

50000

40000

30000

20000

10000

It’s clear that there are huge differences between males and females.
The number of male suicides by gun is above 50,000, while the female
death rate is below 10,000, which shows how males are more likely to
commit suicide using a gun.

n [31]: dataset byGender.plot.bar(title="Annual U.S. suicide
gun deaths \n 2012-2014, by gender")

358

CHAPTER 8 CASE STUDIES

Annual U.S. suicide gun deaths
2012-2014, by gender

Year
Month
Intent
Police
Age
Race
Hispanic
Place
Education

80000

60000

40000

20000

o Whatis the number of gun deaths by race in the United
States per 100,000 people from 2012 to 2014?

See Listing 8-9.
Listing 8-9. Analyzing and Visualizing Gun Death Percentage by
Race

n [32]: dataset_byRace = dataset (dataset_byRace.Race.value_
counts(ascending=False)*100/100000)

Out[32]: White ©6.237
Black 23.296
Hispanic 9.022
Asian/Pacific Islander 1.326
Native American/Native Alaskan 0.917

Name: Race, dtype: floaté4

359

CHAPTER 8 CASE STUDIES

The highest death rate was for white people, then black, and then
Hispanic. There are a few other races listed, but the rates are small
comparatively.

n [33]:(dataset_byRace.Race.value counts(ascending=False)
*100/100000) .plot.bar(title="Percent death toll from guns in
the United States \nfrom 2012 to 2014, by race')

Percentage of Average annualideath toll from guns in the United States
from 2012 to 2014, by race

€0
50
40
30
20
: B _

te

Wh
Black
Hispanic

Asian/Pacific Islander

Native American/Native Alaskan

o Whatis the number of gun deaths in the United States
on average from 2012 to 2014, by cause?

See Listing 8-10.

360

CHAPTER 8 CASE STUDIES

Listing 8-10. Visualizing Gun Death by Cause

In [14]: dataset _byRace.Intent.value counts(sort =True,
ascending=False)

Suicide 63175
Homicide 35176
Accidental 1635
Undetermined 807

Name: Intent, dtype: inté64

In [17]: dataset byRace.Intent.value counts(sort=True).plot.
bar(title="Annual number of gun deaths in the United States on
average \n from 2012 to 2014, by cause')

Annual number\of gun deaths in the United States on average
from 2012 to 2014, by cause

60000

50000

40000

30000

20000

10000

Suicide
Accidental I

Homicide
Undetermined

361

CHAPTER 8 CASE STUDIES

The figure shows a high number of suicide and homicide deaths
compared to a low number of deaths due to accidents.

e What is the percentage per 100,000 people of annual
gun deaths in the United States from 2012 to 2014, by
cause?

See Listing 8-11.
Listing 8-11. Visualizing Gun Death per 100,000 by Cause

In [40]: dataset byRace.Intent.value counts(ascending=False)
*100/100000

Out[40]: Suicide 63.175
Homicide 35.176
Accidental 1.639
Undetermined 0.807

Name: Intent, dtype: float64

In [41]: (dataset byRace.Intent.value counts(ascending=False)
*100/100000) .plot.bar(title="Rate gun deaths in the U.S. per
100,000 population \n2012-2014, by race')

362

CHAPTER 8 CASE STUDIES

The 100k Percentage of gun deaths tools in the U.S.
2012-2014, by cause

60
50
40
20
10
0 .|

3 ¥ B 2

2 S 8 £

2 E © E

(=] o QU

T b]

=

5

This shows that there are 60 suicide cases for every 100,000 people. In
addition, there are 30 homicide cases for every 100,000.

e What is the percentage of suicide gun deaths in the
United States from 2012 to 2014, by year?

See Listing 8-12.

Listing 8-12. Visualizing Gun Death by Year

n [42]: dataset suicide=dataset[dataset["Intent"]
=="Suicide"]

datasetSuicide= dataset suicide.Year.value_
counts(ascending=False) *100/100000
datasetSuicide.sort values(ascending=True)

363

CHAPTER 8 CASE STUDIES

Out[42]:

2012 20.666

2013 21.175

2014 21.334

Name: Year, dtype: float64

In [43]:datasetSuicide.sort values(ascending=True).plot.
bar(title="Percentage of annual suicide gun deaths in the
United States \nfrom 2012 to 2014, by year"')

Percentage of annual suicide gun deaths in the United States
from 2012 to 2014, by year

20.0
17.5
15.0
125
10.0
n
5.0
25

0.0

2014

2012
2013

The figure shows almost the same number of suicides each year over
three years, which means that this is a regular pattern.

Findings

Table 8-2 shows the findings.

364

Table 8-2. Case Study 2: Findings

CHAPTER 8 CASE STUDIES

Investigation Question

Findings

1. What is the number of U.S.
suicide gun deaths from 2012
to 2014, by gender?

2. What is the number of gun deaths
in the United States per a 100,000
population from 2012 to 2014?

3. What are the annual number of
gun deaths in the United States on
average from 2012 to 2014,
by cause?

4. What is the 100,000 percentage
of annual guns death tolls in the
United States from 2012 to 2014,
by cause?

5. What is the percentage of
annual suicide gun deaths in
the United States from 2012
to 2014, by year?

Male suicide gun deaths is over
50,000, while females suicide gun
deaths is below 10,000, which shows
how males are more likely to commit
suicide with a gun.

The highest number of deaths is for while
people, then black, and then Hispanic.

There is a high number of suicide and
homicide deaths compared to a low
number of deaths due to accidents.

The 100,000 percentages shows that
there are 60 suicide cases for every
100,000 people, which somehow is
not a high rate. In addition, there are
30 homicide cases for every 100,000
people.

The analysis shows almost the same
number of suicides each year over a
period of three years, which means that
this is a regular pattern in society.

365

CHAPTER 8 CASE STUDIES

Summary

This chapter covered how to apply Python techniques on two different
case studies. Here’s what you learned:

e How to determine the problem under investigation

e How to determine the main questions to answer

o Howto find a reliable data source

o How to explore the collected data to remove anomalies
e How to analyze and visualize cleaned data

e How to discuss findings

366

Index

A

Anaconda, 7

Anaconda Navigator, 7

Analysis model, 206

Azure Jupyter Notebooks, 6
folder creation, 10
new library, creation, 9
registering and logging, 8

B

Bar chart, 293
Beautiful Soup package, 228
Business intelligence (BI), 86

C

Case study, 354
causes of death (United States)
cleaned records, 344
data gathering, 343
death trends, 348
findings, 353
top ten causes, 353
top ten states, 351
unique death, 345-346

© Dr. Ossama Embarak 2018

gun death (United States)
annual suicide, 354
by cause, 361
data analysis, 357
data gathering, 355-356
by gender, 357
by race, 359
by year, 363
Comma-separated
values (CSV), 212
conda command, 93
Correlation coefficient, 279

D

Data acquisition, 205

Data aggregation, 284

Data analysis, 205
aggregation, 284
correlation coefficient, 279
data frame

creation, 277-278

filtration, 286
get_group() method, 283, 284
grouping, 282
iterating, group, 283
statistical methods, 277

367

O. Embarak, Data Analysis and Visualization Using Python,

https://doi.org/10.1007/978-1-4842-4109-7

https://doi.org/10.1007/978-1-4842-4109-7

INDEX

Data analysis (cont.)
transformation, 285-286
variables, statistics, 279-281

Data cleaning, 205
CSV file

CleanData_REGION()
function, 217
CleanData_Sales()
function, 217
NaN cases, 216
na_values attribute, 217
nrows attribute, 214
pd.read_csv(), 214
.rename() method, 215
sales data, 212-213
tail() method, 214
unique values, 216
usecols attribute, 214
missing data, 207
missing values
bfill/backfill
methods, 210
boolean value, 208
data frame, NaN, 207
dropna() function, 211
filling forward, 210
NaN rows dropping, 211
NaN, scalar value, 209
null cases checking, 208
Python methods, 207
replace()
method, 211
noisy data (NA or NaN), 207
Data collection, 125

368

Data frame, 277

analyzing

creating, attributes, 268

.describe() method, 267,

269-270

measure, optimal, 272

NaN values, 267

numerical patterns, 271

string patterns, 271
assign() method, 165-166
column addition, 260
column deletion

copy() method, 261, 263-264

del method, 260, 262-263

pop method, 260
column selection, 258-259
creation

dictionary, 256

list, 255

Pandas, 255

series, 257
defined, 243
dictionary of Ndarray, 160
dictionary of series, 158-159
dictionary of tuples, 162
indexing and selection, 167-170
list of dicts, 161-162
Numpy functions, 171
operations, 163-165, 168-170
record array, creation, 161
row

addition, 266

deletion, 267

selection, 264-265

transposing, 170

Data integration

columns dropping, 220
.concat() method, 221
export files, 219

loading data sets, 219
merge() method, 218, 221
row union, 222

Data visualization, 206

BI, 86
decision making, 89
dynamic graphs, 105-106
easier approaches, 90
Geoplotlib, 108
goals, 86-87
histogram graph, 103-104
install/update Python
packages, 93-94
joint distribution graph, 102-103
kernel density
estimation, 100-102
libraries, 94-95
matplotlib, plotting
formats, 96-98
needs, 87-88
numpy attributes, 97
pandas, 108
plotly.offline, 106-107
plotting formats, 109-116
Python packages
Geoplotlib, 108
Matplotlib, 95-98
Pandas, 108
Plotly, 105-108

INDEX

Seaborn, 99-102
quick response, 89
real-time data, 90
Rlanguage vs. Python, 91-92
seaborn, plotting formats,

100-105
simplicity, 90
sns.jointplot, 102-103
sns.kdeplot, 100
sns.pairplot, 104-105
team involvement, 90
technologies, 88-89
types, 92

unify interpretation, 90-92

df.drop() method, 267
Dictionary, 139, 141

accessing, 139-140
creation, 138-139
deletion, 141
functions, 141-143
methods, 143-145
sorting, 145
updation, 139-140

Direct plotting

bar plot, 298
box plot, 301-302
histogram plot, 303
line plot
bar chart, 297
data units, 295
visualizing, 296-298
Pandas, 294
pie charts, 300
scatter plot, 303-304

369

INDEX

E,F

ElementTree (ET) module, 233
Explanation, data visualization, 92
Exploration, data visualization, 92
Exploratory analysis, 205

G

GitHub, 355

H

HTML file
Beautiful Soup, 228-229
data extraction, 231-232
html variable, 228
parsing tags, 228
reading and parsing, 227
URLs extraction, 232

Integrated development
environments (IDEs), 6
I/0 processing
accessing directories, 187-188
close() method, 186
file attributes, 185-186
file.read() method, 186
File.write() method, 186-187
getcwd() method, 187
input() function, 183
modes description, 185

370

open() function, 184
remove() method, 187
rename() method, 187
screen data, 183-184
isnull() function, 208
Iteration statements, Python
break statement, 37, 39
continue statement, 37, 39
control statement, 37
pass statement, 37, 39
range() method, 38

J, K

JSON file
accessing data, 226
data manipulation, 223
online resource, 224-225
read_json function, 223

L

Lambda function, 286
Lambdas and Numpy library
anonymous functions, 60
creating arrays, 63
filter() function, 62
map() function, 61
operations, 63
reduce() function, 62-63
Lists
accessing, 126-127
addition, 127-128
aliasing, 136-137

append() method, 128
creation, 126
deletion, 128-129
functions, 131-132
indexing, 130

join() method, 135
methods, 132
operations, 129
parsing lines, 135-136
remove() method, 128
slicing, 130

sorting, 133

and strings, 134-135
traversing, 133
updation, 127-128

Matplotlib plotting, 206
bar chart, 324
histogram plot, 326
line plot, 321
pie chart, 334
scatter plot, 330
stack plot, 332

N, O
notnull() functions, 208
NumPy, 206-208, 255

PQ

Pandas, 206, 208, 211, 223, 244, 255,
257,267,273, 277
pandas.Panel constructor, 273

INDEX

pandas.Series, 244
Panel
accessing, position, 274-275
analysis, 275-276
creation, 273
defined, 243, 273
dictionary of data frame,
173-174
3D Ndarray, 172
selection and slicing, 175-176
panel.major_axis(index)
method, 274
panel.minor_axis(index)
method, 274
pip command, 93
plotting formats
area plot graph, 114-115
bar plot graph, 110-111
box plot graph, 113-114
direct plot graph, 109
histograms plot graph, 112-113
scatter plot graph, 115-116
pop method, 260
Python
argument, 27
basic syntax, 14-15
break, continue, and pass
statements, 40
calendar module, 30
comments, 25
conversion, 26
correlation analysis, 71-72
data cleaning techniques, 64
data frame

371

INDEX

Python (cont.) Seaborn Python library, 69-70
central tendency, 73 selection statements
two-dimensional series, 68 if-else statement, 34
virtual structure, 68 if statement, 32
date and time, 28 nested if statement, 34-35
definition, 2 series
describe() method, 72 iloc() and loc() attributes, 65
editors, 6-7 lock() attribute, 66
features, 3-4 ilock() attribute, 66
formatted strings, 25 Numpy operation, 66-67
getting help, 14 structure and query, 65
iteration statements Spyder IDE, 13
(see Iteration statements, statistical data analysis, 69
Python) tabular data and data

learning resources, 4-6 formats, 54-55
line indentation, 15-16 time module methods, 30
manipulation techniques, 64 try and except statements, 41-42
multiline statements, 16-17 variables
multiple statements, 18 assign operator, 20
operators data types, 19

arithmetic, 22 equal (=) operator, 19

assign, 23-24 multiple assigns, 20

bitwise, 22 names and keywords, 21

logical, 24 statements and
pandas, 293-294 expressions, 21

data frame, 55, 57-59 versions, 3

features, 55 PythonAnywhere, 7

library, 55-56

panels, 59

series, 56-57 R
quotation marks, 17 Reading and writing files, 186
regression analysis, 70 Regular expression
replacement field ({}), 27-28 alternatives, 198
reserved keywords, 15 anchors, 199

372

e-mails extraction, 192-193
extracting lines, 191-192
extracting

Nonwhitespace, 194-195
finall() method, 201
greedy/nongreedy extraction, 196
implementations, 196-197
vs. method, 199-200
numerical values, 195-196
processing text file, 191
repetition characters, 198
special characters, 195-197
syntax, 188-190

S

SciPy, 206
Seaborn plotting
box plot, 309
joint plot, 315
strip plot
category visualization, 308
display data, 305
vertical and horizontal
visualizing, 306
swarm plot, 313-314
Series, data structure
analyzing
calculation, 248-249
copying, 249-251
.describe() method, 248
creation
data series, 245-246
default index, 244-245

INDEX

scalar, 246

series() method, 244
data accessing, 246-247
defined, 243
dictionary, creation, 154-155
name attribute, 157-158
Ndarray

creation, 151-154

operations, 153

slicing, 152
operations

line visualization, 253

math operations, 251-252

multiplots, 254

plotting systems, 253
scalar value, creation, 155-156
vectorizing

operations, 156-157
Slicing methods, 264
String
backward indexing, 42
conversions and formatting
symbols, 45-46

definition, 42
find operator, 53
format symbols, 43
forward indexing, 42
iterating and slicing, 48-49
iteration statements, 46-48
methods/functions, 49-52
operators, 43, 52
parsing and extracting, 53-54
slicing and concatenation, 45
traversal, 46

373

INDEX

T,UYV

Tuples, 148
accessing, 148-150
concatenation, 148, 150
creation, 146-147
deletion, 149
operations, 150
slicing, 149
sorting, 147

w

WinPython, 7

374

X,Y,Z

XML file

data extraction, 235
Element class, 233
ElementTree class, 233
find()method, 233
get() method, 233

	Table of Contents
	About the Author
	About the Technical Reviewers
	Introduction
	Chapter 1: Introduction to Data Science with Python
	The Stages of Data Science
	Why Python?
	Basic Features of Python
	Python Learning Resources

	Python Environment and Editors
	Portable Python Editors (No Installation Required)
	Azure Notebooks
	Offline and Desktop Python Editors

	The Basics of Python Programming
	Basic Syntax
	Lines and Indentation
	Multiline Statements
	Quotation Marks in Python
	Multiple Statements on a Single Line
	Read Data from Users

	Declaring Variables and Assigning Values
	Multiple Assigns
	Variable Names and Keywords
	Statements and Expressions

	Basic Operators in Python
	Arithmetic Operators
	Relational Operators
	Assign Operators
	Logical Operators

	Python Comments
	Formatting Strings
	Conversion Types
	The Replacement Field, {}
	The Date and Time Module
	Time Module Methods
	Python Calendar Module

	Fundamental Python Programming Techniques
	Selection Statements
	Iteration Statements
	The Use of Break, Continues, and Pass Statements
	try and except
	String Processing
	String Special Operators
	String Slicing and Concatenation
	String Conversions and Formatting Symbols
	Loop Through String
	Python String Functions and Methods
	The in Operator
	Parsing and Extracting Strings

	Tabular Data and Data Formats
	Python Pandas Data Science Library
	A Pandas Series
	A Pandas Data Frame
	A Pandas Panels

	Python Lambdas and the Numpy Library
	The map() Function
	The filter() Function
	The reduce () Function
	Python Numpy Package

	Data Cleaning and Manipulation Techniques
	Abstraction of the Series and Data Frame
	Running Basic Inferential Analyses
	Summary
	Exercises and Answers

	Chapter 2: The Importance of Data Visualization in Business Intelligence
	Shifting from Input to Output
	Why Is Data Visualization Important?
	Why Do Modern Businesses Need Data Visualization?
	The Future of Data Visualization
	How Data Visualization Is Used for Business Decision-Making
	Faster Responses
	Simplicity
	Easier Pattern Visualization
	Team Involvement
	Unify Interpretation

	Introducing Data Visualization Techniques
	Loading Libraries
	Popular Libraries for Data Visualization in Python
	Matplotlib
	Seaborn
	Plotly
	Geoplotlib
	Pandas

	Introducing Plots in Python

	Summary
	Exercises and Answers

	Chapter 3: Data Collection Structures
	Lists
	Creating Lists
	Accessing Values in Lists
	Adding and Updating Lists
	Deleting List Elements
	Basic List Operations
	Indexing, Slicing, and Matrices
	Built-in List Functions and Methods
	List Functions
	List Methods

	List Sorting and Traversing
	Lists and Strings
	Parsing Lines
	Aliasing

	Dictionaries
	Creating Dictionaries
	Updating and Accessing Values in Dictionaries
	Deleting Dictionary Elements
	Built-in Dictionary Functions
	Built-in Dictionary Methods

	Tuples
	Creating Tuples
	Concatenating Tuples
	Accessing Values in Tuples
	Basic Tuples Operations

	Series
	Creating a Series with index
	Creating a Series from a Dictionary
	Creating a Series from a Scalar Value
	Vectorized Operations and Label Alignment with Series
	Name Attribute

	Data Frames
	Creating Data Frames from a Dict of Series or Dicts
	Creating Data Frames from a Dict of Ndarrays/Lists
	Creating Data Frames from a Structured or Record Array
	Creating Data Frames from a List of Dicts
	Creating Data Frames from a Dict of Tuples
	Selecting, Adding, and Deleting Data Frame Columns
	Assigning New Columns in Method Chains
	Indexing and Selecting Data Frames
	Transposing a Data Frame
	Data Frame Interoperability with Numpy Functions

	Panels
	Creating a Panel from a 3D Ndarray
	Creating a Panel from a Dict of Data Frame Objects
	Selecting, Adding, and Deleting Items

	Summary
	Exercises and Answers

	Chapter 4: File I/O Processing and Regular Expressions
	File I/O Processing
	Data Input and Output
	Opening and Closing Files
	File Object Attributes
	Reading and Writing to Files
	Directories in Python

	Regular Expressions
	Regular Expression Patterns
	Special Character Classes
	Repetition Classes
	Alternatives
	Anchors

	Summary
	Exercises and Answer

	Chapter 5: Data Gathering and Cleaning
	Cleaning Data
	Checking for Missing Values
	Handling the Missing Values

	Reading and Cleaning CSV Data
	Merging and Integrating Data
	Reading Data from the JSON Format
	Reading Data from the HTML Format
	Reading Data from the XML Format
	Summary
	Exercises and Answers

	Chapter 6: Data Exploring and Analysis
	Series Data Structures
	Creating a Series
	Accessing Data from a Series with a Position
	Exploring and Analyzing a Series
	Operations on a Series

	Data Frame Data Structures
	Creating a Data Frame
	Updating and Accessing a Data Frame’s Column Selection
	Column Addition
	Column Deletion
	Row Selection
	Row Addition
	Row Deletion
	Exploring and Analyzing a Data Frame
	Panel Data Structures
	Creating a Panel
	Accessing Data from a Panel with a Position
	Exploring and Analyzing a Panel

	Data Analysis
	Statistical Analysis
	Data Grouping
	Iterating Through Groups
	Aggregations
	Transformations
	Filtration

	Summary
	Exercises and Answers

	Chapter 7: Data Visualization
	Direct Plotting
	Line Plot
	Bar Plot
	Pie Chart
	Box Plot
	Histogram Plot
	Scatter Plot

	Seaborn Plotting System
	Strip Plot
	Box Plot
	Swarm Plot
	Joint Plot

	Matplotlib Plot
	Line Plot
	Bar Chart
	Histogram Plot
	Scatter Plot
	Stack Plot
	Pie Chart

	Summary
	Exercises and Answers

	Chapter 8: Case Studies
	Case Study 1: Cause of Deaths in the United States (1999–2015)
	Data Gathering
	Data Analysis
	Data Visualization
	Findings

	Case Study 2: Analyzing Gun Deaths in the United States (2012–2014)
	Data Gathering
	Data Analysis
	Data Visualization
	Findings

	Summary

	Index

