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Introduction

This book looks at Python from a data science point of view and teaches 

the reader proven techniques of data visualization that are used to make 

critical business decisions. Starting with an introduction to data science 

using Python, the book then covers the Python environment and gets 

you acquainted with editors like Jupyter Notebooks and the Spyder 

IDE. After going through a primer on Python programming, you will 

grasp the fundamental Python programming techniques used in data 

science. Moving on to data visualization, you will learn how it caters to 

modern business needs and is key to decision-making. You will also take 

a look at some popular data visualization libraries in Python. Shifting 

focus to collecting data, you will learn about the various aspects of data 

collections from a data science perspective and also take a look at Python’s 

data collection structures. You will then learn about file I/O processing 

and regular expressions in Python, followed by techniques to gather and 

clean data. Moving on to exploring and analyzing data, you will look at 

the various data structures in Python. Then, you will take a deep dive into 

data visualization techniques, going through a number of plotting systems 

in Python. In conclusion, you will go through two detailed case studies, 

where you’ll get a chance to revisit the concepts you’ve grasped so far.

This book is for people who want to learn Python for the data science 

field in order to become data scientists. No specific programming 

prerequisites are required besides having basic programming knowledge.
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Specifically, the following list highlights what is covered in the book:

• Chapter 1 introduces the main concepts of data science 

and its life cycle. It also demonstrates the importance 

of Python programming and its main libraries for data 

science processing. You will learn how different Python 

data structures are used in data science applications. 

You will learn how to implement an abstract series 

and a data frame as a main Python data structure. You 

will learn how to apply basic Python programming 

techniques for data cleaning and manipulation. You 

will learn how to run the basic inferential statistical 

analyses. In addition, exercises with model answers are 

given for practicing real-life scenarios.

• Chapter 2 demonstrates how to implement data 

visualization in modern business. You will learn how 

to recognize the role of data visualization in decision- 

making and how to load and use important Python 

libraries for data visualization. In addition, exercises 

with model answers are given for practicing real-life 

scenarios.

• Chapter 3 illustrates data collection structures in 

Python and their implementations. You will learn how 

to identify different forms of collection in Python. You 

will learn how to create lists and how to manipulate list 

content. You will learn about the purpose of creating a 

dictionary as a data container and its manipulations. 

You will learn how to maintain data in a tuple form 

and what the differences are between tuple structures 

and dictionary structures, as well as the basic tuples 

operations. You will learn how to create a series from 

INTRODUCTIONINTRODUCTION
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other data collection forms. You will learn how to create 

a data frame from different data collection structures 

and from another data frame. You will learn how to 

create a panel as a 3D data collection from a series or 

data frame. In addition, exercises with model answers 

are given for practicing real-life scenarios.

• Chapter 4 shows how to read and send data to users, 

read and pull data stored in historical files, and open 

files for reading, writing, or for both. You will learn 

how to access file attributes and manipulate sessions. 

You will learn how to read data from users and apply 

casting. You will learn how to apply regular expressions 

to extract data, use regular expression alternatives, 

and use anchors and repetition expressions for data 

extractions as well. In addition, exercises with model 

answers are given for practicing real-life scenarios.

• Chapter 5 covers data gathering and cleaning to have 

reliable data for analysis. You will learn how to apply 

data cleaning techniques to handle missing values. 

You will learn how to read CSV data format offline or 

pull it directly from online clouds. You will learn how 

to merge and integrate data from different sources. 

You will learn how to read and extract data from the 

JSON, HTML, and XML formats. In addition, exercises 

with model answers are given for practicing real-life 

scenarios.

• Chapter 6 shows how to use Python scripts to explore 

and analyze data in different collection structures. 

You will learn how to implement Python techniques 

to explore and analyze a series of data, create a series, 

INTRODUCTIONINTRODUCTION



xx

access data from a series with a position, and apply 

statistical methods on a series. You will learn how to 

explore and analyze data in a data frame, create a data 

frame, and update and access data in a data frame 

structure. You will learn how to manipulate data in 

a data frame such as including columns, selecting 

rows, adding, or deleting data, and applying statistical 

operations on a data frame. You will learn how to 

apply statistical methods on a panel data structure to 

explore and analyze stored data. You will learn how 

to statistically analyze grouped data, iterate through 

groups, and apply aggregations, transformations, and 

filtration techniques. In addition, exercises with model 

answers are given for practicing real-life scenarios.

• Chapter 7 shows how to visualize data from different 

collection structures. You will learn how to plot data 

from a series, a data frame, or a panel using Python 

plotting tools such as line plots, bar plots, pie charts, 

box plots, histograms, and scatter plots. You will learn 

how to implement the Seaborn plotting system using 

strip plots, box plots, swarm plots, and joint plots. You 

will learn how to implement Matplotlib plotting using 

line plots, bar charts, histograms, scatter plots, stack 

plots, and pie charts. In addition, exercises with model 

answers are given for practicing real-life scenarios.

• Chapter 8 investigates two real-life case studies, starting 

with data gathering and moving through cleaning, data 

exploring, data analysis, and visualizing. Finally, you’ll 

learn how to discuss the study findings and provide 

recommendations for decision-makers.

INTRODUCTIONINTRODUCTION
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CHAPTER 1

Introduction to Data 
Science with Python
The amount of digital data that exists is growing at a rapid rate, doubling 

every two years, and changing the way we live. It is estimated that by 2020, 

about 1.7MB of new data will be created every second for every human 

being on the planet. This means we need to have the technical tools, 

algorithms, and models to clean, process, and understand the available 

data in its different forms for decision-making purposes. Data science is 

the field that comprises everything related to cleaning, preparing, and 

analyzing unstructured, semistructured, and structured data. This field 

of science uses a combination of statistics, mathematics, programming, 

problem-solving, and data capture to extract insights and information 

from data.

 The Stages of Data Science

Figure 1-1 shows different stages in the field of data science. Data scientists 

use programming tools such as Python, R, SAS, Java, Perl, and C/C++ 

to extract knowledge from prepared data. To extract this information, 

they employ various fit-to-purpose models based on machine leaning 

algorithms, statistics, and mathematical methods.
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Data science algorithms are used in products such as internet 

search engines to deliver the best results for search queries in less time, 

in recommendation systems that use a user’s experience to generate 

recommendations, in digital advertisements, in education systems, in 

healthcare systems, and so on. Data scientists should have in-depth 

knowledge of programming tools such as Python, R, SAS, Hadoop 

platforms, and SQL databases; good knowledge of semistructured formats 

such as JSON, XML, HTML. In addition to the knowledge of how to work 

with unstructured data.

 Why Python?

Python is a dynamic and general-purpose programming language that is 

used in various fields. Python is used for everything from throwaway scripts 

to large, scalable web servers that provide uninterrupted service 24/7.  

It is used for GUI and database programming, client- and server-side 

Figure 1-1. Data science project stages

Chapter 1  IntroduCtIon to data SCIenCe wIth python
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web programming, and application testing. It is used by scientists writing 

applications for the world’s fastest supercomputers and by children first 

learning to program. It was initially developed in the early 1990s by Guido 

van Rossum and is now controlled by the not-for-profit Python Software 

Foundation, sponsored by Microsoft, Google, and others.

The first-ever version of Python was introduced in 1991. Python is now 

at version 3.x, which was released in February 2011 after a long period 

of testing. Many of its major features have also been backported to the 

backward-compatible Python 2.6, 2.7, and 3.6.

 Basic Features of Python

Python provides numerous features; the following are some of these 

important features:

• Easy to learn and use: Python uses an elegant syntax, 

making the programs easy to read. It is developer- 

friendly and is a high-level programming language.

• Expressive: The Python language is expressive, which 

means it is more understandable and readable than 

other languages.

• Interpreted: Python is an interpreted language. In other 

words, the interpreter executes the code line by line. This 

makes debugging easy and thus suitable for beginners.

• Cross-platform: Python can run equally well on 

different platforms such as Windows, Linux, Unix, 

Macintosh, and so on. So, Python is a portable 

language.

• Free and open source: The Python language is freely 

available at www.python.org. The source code is also 

available.

Chapter 1  IntroduCtIon to data SCIenCe wIth python
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• Object-oriented: Python is an object-oriented language 

with concepts of classes and objects.

• Extensible: It is easily extended by adding new modules 

implemented in a compiled language such as C or C++, 

which can be used to compile the code.

• Large standard library: It comes with a large standard 

library that supports many common programming 

tasks such as connecting to web servers, searching text 

with regular expressions, and reading and modifying 

files.

• GUI programming support: Graphical user interfaces 

can be developed using Python.

• Integrated: It can be easily integrated with languages 

such as C, C++, Java, and more.

 Python Learning Resources

Numerous amazing Python resources are available to train Python 

learners at different learning levels. There are so many resources out 

there, though it can be difficult to know how to find all of them. The 

following are the best general Python resources with descriptions of what 

they provide to learners:

 –  Python Practice Book is a book of Python exercises to  

help you learn the basic language syntax. (See https://

anandology.com/python-practice-book/index.html.)

 – Agile Python Programming: Applied for Everyone provides a 

practical demonstration of Python programming as an 

agile tool for data  cleaning, integration, analysis, and 

visualization fits for academics, professionals, and 

Chapter 1  IntroduCtIon to data SCIenCe wIth python

https://anandology.com/python-practice-book/index.html
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researchers. (See http://www.lulu.com/shop/ossama-

embarak/agile-python-programming-applied-for-

everyone/paperback/product-23694020.html.)

 – “A Python Crash Course” gives an awesome overview of 

the history of Python, what drives the programming 

community, and example code. You will likely need to 

read this in combination with other resources to really let 

the syntax sink in, but it’s a great resource to read several 

times over as you continue to learn. (See https://www.

grahamwheeler.com/posts/python-crash-course.html.)

 – “A Byte of Python” is a beginner’s tutorial for the Python 

language. (See https://python.swaroopch.com/.)

 – The O’Reilly book Think Python: How to Think Like a 

Computer Scientist is available in HTML form for free 

on the Web. (See https://greenteapress.com/wp/

think-python/.)

 – Python for You and Me is an approachable book with 

sections for Python syntax and the major language 

constructs. The book also contains a short guide at the 

end teaching programmers to write their first Flask web 

application. (See https://pymbook.readthedocs.io/

en/latest/.)

 – Code Academy has a Python track for people completely 

new to programming. (See www.codecademy.com/

catalog/language/python.)

 – Introduction to Programming with Python goes over 

the basic syntax and control structures in Python. The 

free book has numerous code examples to go along 

with each topic. (See www.opentechschool.org/.)

Chapter 1  IntroduCtIon to data SCIenCe wIth python

https://www.lulu.com/shop/ossama-embarak/agile-python-programming-applied-for-everyone/paperback/product-23694020.html
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 – Google has a great compilation of material you should 

read and learn from if you want to be a professional 

programmer. These resources are useful not only for 

Python beginners but for any developer who wants to 

have a strong professional career in software. (See 

techdevguide.withgoogle.com.)

 – Looking for ideas about what projects to use to learn to 

code? Check out the five programming projects for 

Python beginners at knightlab.northwestern.edu.

 – There’s a Udacity course by one of the creators of 

Reddit that shows how to use Python to build a blog. 

It’s a great introduction to web development concepts. 

(See mena.udacity.com.)

 Python Environment and Editors

Numerous integrated development environments (IDEs) can be used for 

creating Python scripts.

 Portable Python Editors (No Installation 
Required)

These editors require no installation:

Azure Jupyter Notebooks: The open source Jupyter 

Notebooks was developed by Microsoft as an 

analytic playground for analytics and machine 

learning.

Chapter 1  IntroduCtIon to data SCIenCe wIth python

https://techdevguide.withgoogle.com
https://knightlab.northwestern.edu
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Python(x,y): Python(x,y) is a free scientific and 

engineering development application for numerical 

computations, data analysis, and data visualization 

based on the Python programming language, Qt 

graphical user interfaces, and Spyder interactive 

scientific development environment.

WinPython: This is a free Python distribution for the 

Windows platform; it includes prebuilt packages for 

ScientificPython.

Anaconda: This is a completely free enterprise-

ready Python distribution for large-scale data 

processing, predictive analytics, and scientific 

computing.

PythonAnywhere: PythonAnywhere makes it easy to 

create and run Python programs in the cloud. You 

can write your programs in a web-based editor or 

just run a console session from any modern web 

browser.

Anaconda Navigator: This is a desktop 

graphical user interface (GUI) included in the 

Anaconda distribution that allows you to launch 

applications and easily manage Anaconda 

packages (as shown in Figure 1-2), environments, 

and channels without using command-line 

commands. Navigator can search for packages 

on the Anaconda cloud or in a local Anaconda 

repository. It is available for Windows, macOS, 

and Linux.
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The following sections demonstrate how to set up and use Azure 

Jupyter Notebooks.

 Azure Notebooks

The Azure Machine Learning workbench supports interactive data science 

experimentation through its integration with Jupyter Notebooks.

Azure Notebooks is available for free at https://notebooks.azure.

com/. After registering and logging into Azure Notebooks, you will get a 

menu that looks like this:

Figure 1-2. Anaconda Navigator
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Once you have created your account, you can create a library for 

any Python project you would like to start. All libraries you create can be 

displayed and accessed by clicking the Libraries link.

Let’s create a new Python script.

 1. Create a library.

Click New Library, enter your library details, and click 

Create, as shown here:

A new library is created, as shown in Figure 1-3.
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 2. Create a project folder container.

Organizing the Python library scripts is important. 

You can create folders and subfolders by selecting 

+New from the ribbon; then for the item type select 

Folder, as shown in Figure 1-3.

Figure 1-3. Creating a folder in an Azure project

 3. Create a Python project.

Move inside the created folder and create a new Python project.
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Your project should look like this:

 

 4. Write and run a Python script.

Open the Created Hello World script by clicking it, and start writing 

your Python code, as shown in Figure 1-4.
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In Figure 1-4, all the green icons show the options that can be 

applied on the running file. For instance, you can click + to add new 

lines to your file script. Also, you can save, cut, and move lines up and 

down. To execute any segment of code, press Ctrl+Enter, or click Run 

on the ribbon.

 

Figure 1-4. A Python script file on Azure
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 Offline and Desktop Python Editors

There are many offline Python IDEs such as Spyder, PyDev via Eclipse, 

NetBeans, Eric, PyCharm, Wing, Komodo, Python Tools for Visual Studio, 

and many more.

The following steps demonstrate how to set up and use Spyder. You 

can download Anaconda Navigator and then run the Spyder software, as 

shown in Figure 1-5.

On the left side, you can write Python scripts, and on the right side you 

can see the executed script in the console.

 The Basics of Python Programming

This section covers basic Python programming.

Figure 1-5. Python Spyder IDE
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 Basic Syntax

A Python identifier is a name used to identify a variable, function, class, 

module, or other object in the created script. An identifier starts with a 

letter from A to Z or from a to z or an underscore (_) followed by zero or 

more letters, underscores, and digits (0 to 9).

Python does not allow special characters such as @, $, and % within 

identifiers. Python is a case-sensitive programming language. Thus, 

Manpower and manpower are two different identifiers in Python.

The following are the rules for naming Python identifiers:

• Class names start with an uppercase letter. All other 

identifiers start with a lowercase letter.

• Starting an identifier with a single leading underscore 

indicates that the identifier is private.

• Starting an identifier with two leading underscores 

indicates a strongly private identifier.

• If the identifier also ends with two trailing underscores, 

the identifier is a language-defined special name.

The help? method can be used to get support from the Python user 

manual, as shown in Listing 1-1.

Listing 1-1. Getting Help from Python

In [3]:      help?

Signature:   help(*args, **kwds)

Type:        _Helper

String form: Type help() for interactive help, or help(object) 

for help about object.

Namespace:   Python builtin
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File:        ~/anaconda3_501/lib/python3.6/_sitebuiltins.py

Docstring:

Define the builtin 'help'.

This is a wrapper around pydoc.help that provides a helpful 

message

when 'help' is typed at the Python interactive prompt.

Calling help() at the Python prompt starts an interactive help 

session.

Calling help(thing) prints help for the python object 'thing'.

The smallest unit inside a given Python script is known as a token, 

which represents punctuation marks, reserved words, and each individual 

word in a statement, which could be keywords, identifiers, literals, and 

operators.

Table 1-1 lists the reserved words in Python. Reserved words are the 

words that are reserved by the Python language already and can’t be 

redefined or declared by the user.

Table 1-1. Python Reserved Keywords

and exec not continue global with yield in

assert finally or def if return else is

break for pass except lambda while try

class from print del import raise elif

 Lines and Indentation

Line indentation is important in Python because Python does not depend 

on braces to indicate blocks of code for class and function definitions 

or flow control. Therefore, a code segment block is denoted by line 

indentation, which is rigidly enforced, as shown in Listing 1-2.
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Listing 1-2. Line Indentation Syntax Error

In [4]:age, mark, code=10,75,"CIS2403"

      print (age)

      print (mark)

           print (code)

File "<ipython-input-4-5e544bb51da0>", line 4

print (code)

IndentationError: unexpected indent

 Multiline Statements

Statements in Python typically end with a new line. But a programmer 

can use the line continuation character (\) to denote that the line should 

continue, as shown in Listing 1-3. Otherwise, a syntax error will occur.

Listing 1-3. Multiline Statements

In [5]:TV=15

            Mobile=20 Tablet = 30

total = TV +

Mobile +

      Tablet

print (total)

File "<ipython-input-5-68bc7095f603>", line 5

total = TV +

SyntaxError: invalid syntax

The following is the correct syntax:

In [6]: TV=15

       Mobile=20

       Tablet = 30

       total = TV + \
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       Mobile + \

       Tablet

       print (total)

65

The code segment with statements contained within the [], {}, or () 

brackets does not need to use the line continuation character, as shown in 

Listing 1-4.

Listing 1-4. Statements with Quotations

In [7]: days = ['Monday', 'Tuesday', 'Wednesday',

'Thursday', 'Friday']

print (days)

['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']

 Quotation Marks in Python

Python accepts single ('), double ("), and triple (''' or """) quotes to 

denote string literals, as long as the same type of quote starts and ends the 

string. However, triple quotes are used to span the string across multiple 

lines, as shown in Listing 1-5.

Listing 1-5. Quotation Marks in Python

In [8]:sms1 = 'Hellow World'

      sms2 = "Hellow World"

      sms3 = """ Hellow World"""

      sms4 = """ Hellow

            World"""

      print (sms1)

      print (sms2)

      print (sms3)

      print (sms4)
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Hellow World

Hellow World

Hellow World

Hellow

World

 Multiple Statements on a Single Line

Python allows the use of \n to split line into multiple lines. In addition, 

the semicolon (;) allows multiple statements on a single line if neither 

statement starts a new code block, as shown in Listing 1-6.

Listing 1-6. The Use of the Semicolon and New Line Delimiter

In [9]: TV=15; name="Nour"; print (name); print ("Welcome  

to\nDubai Festival 2018")

Nour

Welcome to

Dubai Festival 2018

 Read Data from Users

The line code segment in Listing 1-7 prompts the user to enter a name and 

age, converts the age into an integer, and then displays the data.

Listing 1-7. Reading Data from the User

In [10]:name = input("Enter your name ")

      age = int (input("Enter your age "))

      print ("\nName =", name); print ("\nAge =", age)
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Enter your name Nour

Enter your age 12

Name = Nour

Age = 12

 Declaring Variables and Assigning Values

There is no restriction to declaring explicit variables in Python. Once you 

assign a value to a variable, Python considers the variable according to 

the assigned value. If the assigned value is a string, then the variable is 

considered a string. If the assigned value is a real, then Python considers 

the variable as a double variable. Therefore, Python does not restrict you 

to declaring variables before using them in the application. It allows you to 

create variables at the required time.

Python has five standard data types that are used to define the 

operations possible on them and the storage method for each of them.

• Number

• String

• List

• Tuple

• Dictionary

The equal (=) operator is used to assign a value to a variable, as shown 

in Listing 1-8.
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Listing 1-8. Assign Operator

In [11]: age = 11

      name ="Nour"

      tall=100.50

In [12]: print (age)

      print (name)

      print (tall)

11

Nour

100.5

 Multiple Assigns

Python allows you to assign a value to multiple variables in a single 

statement, which is also known as multiple assigns. You can assign a single 

value to multiple variables or assign multiple values to multiple variables, 

as shown in Listing 1-9.

Listing 1-9. Multiple Assigns

In [13]:age= mark = code =25

      print (age)

      print (mark)

      print (code)

25

25

25

In [14]:age, mark, code=10,75,"CIS2403"

      print (age)

      print (mark)

      print (code)
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10

75

CIS2403

 Variable Names and Keywords

A variable is an identifier that allocates specific memory space and 

assigns a value that could change during the program runtime. Variable 

names should refer to the usage of the variable, so if you want to create 

a variable for student age, then you can name it as age or student_age. 

There are many rules and restrictions for variable names. It’s not allowed 

to use special characters or white spaces in variable naming. For instance, 

variable names shouldn’t start with any special character and shouldn’t 

be any of the Python reserved keywords. The following example shows 

incorrect naming: {?age, 1age, age student, and, if, 1_age, etc}. 

The following shows correct naming for a variable: {age, age1, age_1, 

if_age, etc}.

 Statements and Expressions

A statement is any unit of code that can be executed by a Python 

interpreter to get a specific result or perform a specific task. A program 

contains a sequence of statements, each of which has a specific purpose 

during program execution. The expression is a combination of values, 

variables, and operators that are evaluated by the interpreter to do a 

specific task, as shown in Listing 1-10.

Listing 1-10. Expression and Statement Forms

In [16]:# Expressions

      x=0.6              # Statement

      x=3.9 * x * (1-x)  # Expressions

      print (round(x, 2))

0.94
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 Basic Operators in Python

Operators are the constructs that can manipulate the value of operands. Like 

different programming languages, Python supports the following operators:

• Arithmetic operators

• Relational operators

• Assign operators

• Logical operators

• Membership operators

• Identity operators

• Bitwise operators

 Arithmetic Operators

Table 1-2 shows examples of arithmetic operators in Python.

Table 1-2. Python Arithmetic Operators

Operators Description Example Output

// performs floor division (gives the integer 

value after division)

print (13//5) 2

+ performs addition print (13+5) 18

- performs subtraction print (13-5) 8

* performs multiplication print (2*5) 10

/ performs division print (13/5) 2.6

% returns the remainder after division 

(modulus)

print (13%5) 3

** returns an exponent (raises to a power) print (2**3) 8
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 Relational Operators

Table 1-3 shows examples of relational operators in Python.

Table 1-3. Python Relational Operators

Operators Description Example Output

< Less than print (13<5) False

> Greater than print (13>5) true

<= Less than or equal to print (13<=5) False

>= Greater than or equal to print (2>=5) False

== equal to print (13==5) False

!= not equal to print (13! =5) true

 Assign Operators

Table 1-4 shows examples of assign operators in Python.

Table 1-4. Python Assign Operators

Operators Description Example Output

= assigns x=10

print (x)

10

/= divides and assigns x=10; x/=2

print (x)

5.0

+= adds and assigns x=10; x+=7

print (x)

17

-= Subtracts and assigns x=10; x-=6

print (x)

4

(continued)
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 Logical Operators

Table 1-5 shows examples of logical operators in Python.

Table 1-5. Python Logical Operators

Operators Description Example Output

and Logical and (when both conditions  

are true, the output will be true)

x=10>5 and 4>20

print (x)

False

or Logical or (if any one condition  

is true, the output will be true)

x=10>5 or 4>20

print (x)

true

not Logical not (complements the 

condition; i.e., reverses it)

x=not (10<4)

print (x)

true

Operators Description Example Output

*= Multiplies and assigns x=10; x*=5

print (x)

50

%= Modulus and assigns x=13; x%=5

print (x)

3

**= exponent and assigns x=10; x**=3

print(x)

1000

//= Floor division and assigns x=10; x//=2

print(x)

5

Table 1-4. (continued)

A Python program is a sequence of Python statements that have 

been crafted to do something. It can be one line of code or thousands of 

code segments written to perform a specific task by a computer. Python 

statements are executed immediately and do not wait for the entire 
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program to be executed. Therefore, Python is an interpreted language that 

executes line per line. This differs from other languages such as C#, which 

is a compiled language that needs to handle the entire program.

 Python Comments

There are two types of comments in Python: single-line comments and 

multiline comments.

The # symbol is used for single-line comments.

Multiline comments can be given inside triple quotes, as shown in 

Listing 1-11.

Listing 1-11. Python Comment Forms

In [18]: # Python single line comment

In [19]: ''' This

      Is

      Multi-line comment'''

 Formatting Strings

The Python special operator % helps to create formatted output. This 

operator takes two operands, which are a formatted string and a value. The 

following example shows that you pass a string and the 3.14259 value in 

string format. It should be clear that the value can be a single value, a tuple 

of values, or a dictionary of values.

In [20]: print ("pi=%s"%"3.14159")

pi=3.14159
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 Conversion Types

You can convert values using different conversion specifier syntax, as 

summarized in Table 1-6.

Table 1-6. Conversion Syntax

Syntax Description

%c Converts to a single character

%d, %i Converts to a signed decimal integer or long integer

%u Converts to an unsigned decimal integer

%e, %E Converts to a floating point in exponential notation

%f Converts to a floating point in fixed-decimal notation

%g Converts to the value shorter of %f and %e

%G Converts to the value shorter of %f and %E

%o Converts to an unsigned integer in octal

%r Converts to a string generated with repr()

%s Converts to a string using the str() function

%x, %X Converts to an unsigned integer in hexadecimal

For example, the conversion specifier %s says to convert the value to 

a string. Therefore, to print a numerical value inside string output, you 

can use, for instance, print("pi=%s" % 3.14159). You can use multiple 

conversions within the same string, for example, to convert into double, 

float, and so on.

In [1]:print("The value of %s is = %02f" % ("pi", 3.14159))

The value of pi is = 3.141590
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You can use a dot (.) followed by a positive integer to specify the 

precision. In the following example, you can use a tuple of different data 

types and inject the output in a string message:

In [21]:print ("Your name is %s, and your height is %.2f while 

your weight is %.2d" % ('Ossama', 172.156783, 75.56647))

Your name is Ossama, and your height is 172.16 while your 

weight is 75

In the previous example, you can see that %.2f is replaced with the 

value 172.16 with two decimal fractions after the decimal point, while %2d 

is used to display decimal values only but in a two-digit format.

You can display values read directly from a dictionary, as shown next, 

where %(name)s says to take as a string the dictionary value of the key Name 

and %(height).2f says to take it as a float with two fraction values, which 

are the dictionary values of the key height:

In [23]:print ("Hi %(Name)s, your height is %(height).2f" 

%{'Name':"Ossama", 'height': 172.156783})

Hi Ossama, your height is 172.16

 The Replacement Field, {}

You can use the replacement field, {}, as a name (or index). If an index is 

provided, it is the index of the list of arguments provided in the field. It’s 

not necessary to have indices with the same sequence; they can be in a 

random order, such as indices 0, 1, and 2 or indices 2, 1, and 0.

In [24]:x = "price is"

        print ("{1} {0} {2}".format(x, "The", 1920.345))

The price is 1920.345
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Also, you can use a mix of values combined from lists, dictionaries, 

attributes, or even a singleton variable. In the following example, you 

will create a class called A(), which has a single variable called x that is 

assigned the value 9.

Then you create an instance (object) called w from the class A(). 

Then you print values indexed from variable {0} and the {1[2]} value 

from the list of values ["a," "or," "is"], where 1 refers to the index 

of printing and 2 refers to the index in the given list where the string 

index is 0. {2[test]} refers to index 2 in the print string and reads 

its value from the passed dictionary from the key test. Finally, {3.x} 

refers to the third index, which takes its value from w, which is an 

instance of the class A().

In [34]:class A():x=9 w=A()

       print ("{0} {1[2]} {2[test]} {3.x}".format("This", ["a", 

"or", "is"], {"test": "another"},w))

This is another 9

In [34]:print ("{1[1]} {0} {1[2]} {2[test]}{3.x}".

format("This", ["a", "or", "is"], {"test": "another"},w))

or This is another 9

 The Date and Time Module

Python provides a time package to deal with dates and times. You can 

retrieve the current date and time and manipulate the date and time using 

the built-in methods.

The example in Listing 1-12 imports the time package and calls its 

.localtime() function to retrieve the current date and time.
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Listing 1-12. Time Methods

In [42]:import time localtime = time.asctime(time.

localtime(time.time()))

print ("Formatted time :", localtime)

print(time.localtime())

print (time.time())

Formatted time : Fri Aug 17 19:12:07 2018

time.struct_time(tm_year=2018, tm_mon=8, tm_mday=17,  

tm_hour=19, tm_min=12, tm_sec=7, tm_wday=4, tm_yday=229,  

tm_isdst=0)

1534533127.8304486

 Time Module Methods

Python provides various built-in time functions, as in Table 1-7, that can be 

used for time-related purposes.

Table 1-7. Built-in Time Methods

Methods Description

time() returns time in seconds since January 1, 1970.

asctime(time) returns a 24-character string, e.g., Sat Jun 16 21:27:18 2018.

sleep(time) used to stop time for the given interval of time.

strptime 

(String,format)

returns a tuple with nine time attributes. It receives a string 

of date and a format.

time.struct_time(tm_year=2018, tm_mon=6, 

tm_mday=16, tm_hour=0, tm_min=0, tm_sec=0, 

tm_wday=3, tm_yday=177, tm_isdst=-1)

(continued)

Chapter 1  IntroduCtIon to data SCIenCe wIth python



30

Table 1-8. Built-in Calendar Module Functions

Methods Description

prcal(year) prints the whole calendar of the year.

f irstweekday() returns the first weekday. It is by default 0, 

which specifies Monday.

isleap(year) returns a Boolean value, i.e., true or false. 

returns true in the case the given year is a leap 

year; otherwise, false.

   

monthcalendar(year,month)

returns the given month with each week as 

one list.

leapdays(year1,year2) returns the number of leap days from year1 

to year2.

prmonth(year,month) prints the given month of the given year.

Table 1-7. (continued)

Methods Description

 gtime()/ 

gtime(sec)

returns struct_time, which contains nine time attributes.

mktime() returns the seconds in floating point since the epoch.

 strftime 

(format)/

strftime 

(format,time)

returns the time in a particular format. If the time is not 

given, the current time in seconds is fetched.

 Python Calendar Module

Python provides a calendar module, as in Table 1-8, which provides many 

functions and methods to work with a calendar.
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You can use the Calendar package to display a 2018 calendar as shown 

here:

In [45]:import calendar

              calendar.prcal(2018)
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 Fundamental Python Programming 
Techniques

This section demonstrates numerous Python programming syntax 

structures.

 Selection Statements

The if statement is used to execute a specific statement or set of 

statements when the given condition is true. There are various forms of if 

structures, as shown in Table 1-9.

The if statement is used to make decisions based on specific 

conditions occurring during the execution of the program. An action or set 

of actions is executed if the outcome is true or false otherwise. Figure 1-6 

shows the general form of a typical decision-making structure found in 

most programming languages including Python. Any nonzero and non- 

null values are considered true in Python, while either zero or null values 

are considered false.

Table 1-9. if Statement Structure

Form if statement if-else Statement Nested if Statement

Structure if(condition):

statements

if(condition):

statements

else:

statements

if (condition):

statements

elif (condition):

statements

else:

statements
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Listing 1-13 demonstrates two examples of a selection statement, 

remember the indentation is important in the Python structure. The first 

block shows that the value of x is equal to 5; hence, the condition is testing 

whether x equals 5 or not. Therefore, the output implements the statement 

when the condition is true.

Listing 1-13. The if-else Statement Structure

In [13]:#Comparison operators

      x=5

      if x==5:

             print ('Equal 5')

elif x>5:

      print ('Greater than 5')

elif x<5:

      print ('Less than 5')

Equal 5

Figure 1-6. Selection statement structure
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In [14]:year=2000

      if year%4==0:

            print("Year(", year ,")is Leap")

else:

            print (year , "Year is not Leap" )

Year( 2000 )is Leap

Indentation determines which statement should be executed. In 

Listing 1-14, the if statement condition is false, and hence the outer print 

statement is the only executed statement.

Listing 1-14. Indentation of Execution

In [12]:#Indentation

      x=2

      if x>2:

             print ("Bigger than 2")

             print (" X Value bigger than 2")

      print ("Now we are out of if block\n")

Now we are out of if block

The nested if statement is an if statement that is the target of another 

if statement. In other words, a nested if statement is an if statement 

inside another if statement, as shown in Listing 1-15.

Listing 1-15. Nested Selection Statements

In [2]:a=10

      if a>=20:

             print ("Condition is True" )

else:

             if a>=15:

                   print ("Checking second value" )
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 else:

                   print ("All Conditions are false" )

All Conditions are false

 Iteration Statements

There are various iteration statement structures in Python. The for 

loop is one of these structures; it is used to iterate the elements of 

a collection in the order that they appear. In general, statements 

are executed sequentially, where the first statement in a function is 

executed first, followed by the second, and so on. There may be a 

situation when you need to execute a block of code several numbers  

of times.

Control structures allow you to execute a statement or group of 

statements multiple times, as shown by Figure 1-7.

Figure 1-7. A loop statement
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Table 1-10 demonstrates different forms of iteration statements. The 

Python programming language provides different types of loop statements 

to handle iteration requirements.

Python provides various support methods for iteration statements 

where it allows you to terminate the iteration, skip a specific iteration, 

or pass if you do not want any command or code to execute. Table 1-11 

summarizes control statements within the iteration execution.

Table 1-10. Iteration Statement Structure

1 for loop

executes a sequence of statements multiple times and abbreviates the 

code that manages the loop variable.

2 Nested loops

you can use one or more loop inside any another while, for, or do..

while loop.

3 while loop

repeats a statement or group of statements while a given condition is true. 

It tests the condition before executing the loop body.

4 do {....} while ()

repeats a statement or group of statements while a given condition is true. 

It tests the condition after executing the loop body.
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The range() statement is used with for loop statements where you 

can specify one value. For example, if you specify 4, the loop statement 

starts from 1 and ends with 3, which is n-1. Also, you can specify 

the start and end values. The following examples demonstrate loop 

statements.

Listing 1-16 displays all numerical values starting from 1 up to n-1, 

where n=4.

Listing 1-16. for Loop Statement

In [23]:# use the range statement

       for a in range (1,4):

       print ( a )

1

2

3

Listing 1-17 displays all numerical values starting from 0 up to n-1, 

where n=4.

Table 1-11. Loop Control Statements

1 Break statement

terminates the loop statement and transfers execution to the statement 

immediately following the loop.

2 Continue statement

Causes the loop to skip the remainder of its body and immediately retests 

its condition prior to reiterating.

3 Pass statement

the pass statement is used when a statement is required syntactically but 

you do not want any command or code to execute.
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Listing 1-17. Using the range() Method

In [24]:# use the range statement

      for a in range (4):

            print ( a )

0

1

2

3

Listing 1-18 displays the while iteration statement.

Listing 1-18. while Iteration Statement

In [32]:ticket=4

      while ticket>0:

            print ("Your ticket number is ", ticket)

            ticket -=1

Your ticket number is 4

Your ticket number is 3

Your ticket number is 2

Your ticket number is 1

Listing 1-19 iterates all numerical values in a list to find the maximum 

value.

Listing 1-19. Using a Selection Statement Inside a Loop Statement

In [2]:largest = None

      print ('Before:', largest)

      for val in [30, 45, 12, 90, 74, 15]:

if largest is None or val>largest:

      largest = val

      print ("Loop", val, largest)

print ("Largest", largest)
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Before: None

Loop 30 30

Loop 45 45

Loop 90 90

Largest 90

In the previous examples, the first and second iterations used the for 

loop with a range statement. In the last example, iteration goes through a 

list of elements and stops once it reaches the last element of the iterated 

list.

A break statement is used to jump statements and transfer the 

execution control. It breaks the current execution, and in the case of an 

inner loop, the inner loop terminates immediately. However, a continue 

statement is a jump statement that skips execution of current iteration. 

After skipping, the loop continues with the next iteration. The pass 

keyword is used to execute nothing. The following examples demonstrate 

how and when to employ each statement.

 The Use of Break, Continues, and Pass 
Statements

Listing 1-20 shows the break, continue, and pass statements.

Listing 1-20. Break, Continue, and Pass Statements

In [44]:for letter in 'Python3':

       if letter == 'o':

             break

        print (letter)

Chapter 1  IntroduCtIon to data SCIenCe wIth python



40

P

y

t

h

In [45]: a=0

        while a<=5:

             a=a+1

             if a%2==0:

              continue

             print (a)

 print ("End of Loop" )

1

3

5

End of Loop

In [46]: for i in [1,2,3,4,5]:

              if i==3:

                   pass

              print ("Pass when value is", i )

            print (i)

1

2

Pass when value is 3

3

4

5

As shown, you can iterate over a list of letters, as shown in Listing 1-20, 

and you can iterate over the word Python3 and display all the letters. You 

stop iteration once you find the condition, which is the letter o. In addition, 
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you can use the pass statement when a statement is required syntactically 

but you do not want any command or code to execute. The pass statement 

is a null operation; nothing happens when it executes.

 try and except

try and except are used to handle unexpected values where you would 

like to validate entered values to avoid error occurrence. In the first 

example of Listing 1-21, you use try and except to handle the string “Al 

Fayoum,” which is not convertible into an integer, while in the second 

example, you use try and except to handle the string 12, which is 

convertible to an integer value.

Listing 1-21. try and except Statements

In [14]: # Try and Except

astr='Al Fayoum'

      errosms=''

try:

             istr=int(astr) # error

except:

             istr=-1

             errosms="\nIncorrect entry"

print ("First Try:", istr , errosms)

First Try: -1

Incorrect entry

In [15]:# Try and Except

                   astr='12'

                   errosms=' '

                   try:

                    istr=int(astr) # error

                   except:
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 istr=-1

 errosms="\nIncorrect entry"

                   print ("First Try:", istr , errosms)

First Try: 12

 String Processing

A string is a sequence of characters that can be accessed by an expression 

in brackets called an index. For instance, if you have a string variable 

named var1, which maintains the word PYTHON, then var1[1] will return 

the character Y, while var1[-2] will return the character O. Python 

considers strings by enclosing text in single as well as double quotes. 

Strings are stored in a contiguous memory location that can be accessed 

from both directions (forward and backward), as shown in the following 

example, where

• Forward indexing starts with 0, 1, 2, 3, and so on.

• Backward indexing starts with -1, -2, -3, -4, and so on.

 

 String Special Operators

Table 1-12 lists the operators used in string processing. Say you have the 

two variables a= 'Hello' and b = 'Python'. Then you can implement the 

operations shown in Table 1-12.
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Table 1-12. String Operators

Operator Description Outputs

+ Concatenation: adds values on either side of the 

operator

a + b will give 

HelloPython.

* repetition: creates new strings, concatenating 

multiple copies of the same string

a*2 will give 

-HelloHello.

[] Slice: gives the character from the given index a[1] will give e.

[ : ] range slice: gives the characters from the given 

range

a[1:4] will give 

ell.

in Membership: returns true if a character exists in 

the given string

H in a will give 

true.

not in Membership: returns true if a character does not 

exist in the given string

M not in a will 

give true.

Various symbols are used for string formatting using the operator %. 

Table 1-13 gives some simple examples.

Table 1-13. String Format Symbols

Format Symbol Conversion

%c Character

%s String conversion via 

str() prior to formatting

%i Signed decimal integer

%d Signed decimal integer

%u unsigned decimal integer

(continued)
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Format Symbol Conversion

%o octal integer

%x hexadecimal integer 

(lowercase letters)

%X hexadecimal integer 

(uppercase letters)

%e exponential notation (with 

lowercase e)

%E exponential notation (with 

uppercase E)

%f Floating-point real number

%g the shorter of %f and %e

%G the shorter of %f and %E

Table 1-13. (continued)

 String Slicing and Concatenation

String slicing refers to a segment of a string that is extracted using 

an index or using search methods. In addition, the len() method is 

a built-in function that returns the number of characters in a string. 

Concatenation enables you to join more than one string together to form 

another string.

The operator [n:m] returns the part of the string from the nth character 

to the mth character, including the first but excluding the last. If you omit 

the first index (before the colon), the slice starts at the beginning of the 

string. In addition, if you omit the second index, the slice goes to the 

end of the string. The examples in Listing 1-22 show string slicing and 

concatenation using the + operator.
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Listing 1-22. String Slicing and Concatenation

In [3]:var1 = 'Welcome to Dubai'

      var2 = "Python Programming"

      print ("var1[0]:", var1[0])

      print ("var2[1:5]:", var2[1:5])

      var1[0]: W

      var2[1:5]: ytho

In [5]:st1="Hello"

      st2=' World'

      fullst=st1 + st2

      print (fullst)

Hello World

In [11]:# looking inside strings

      fruit = 'banana'

      letter= fruit[1]

      print (letter)

      index=3

      w = fruit[index-1]

      print (w)

      print (len(fruit))

a

n

6

 String Conversions and Formatting Symbols

It is possible to convert a string value into a float, double, or integer if the 

string value is applicable for conversion, as shown in Listing 1-23.
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Listing 1-23. String Conversion and Format Symbols

In [14]:#Convert string to int

      str3 = '123'

      str3= int (str3)+1

      print (str3)

124

In [15]:#Read and convert data

      name=input('Enter your name: ')

      age=input('Enter your age: ')

      age= int(age) + 1

      print ("Name: %s"% name ,"\t Age:%d"% age)

Enter your name: Omar

Enter your age: 41

Name: Omar    Age:42

 Loop Through String

You can use iteration statements to go through a string forward or 

backward. A lot of computations involve processing a string one character 

at a time. String processing can start at the beginning, select each character 

in turn, do something to it, and continue until the end. This pattern of 

processing is called a traversal. One way to write a traversal is with a while 

loop, as shown in Listing 1-24.

Listing 1-24. Iterations Through Strings

In [30]:# Looking through string

        fruit ='banana'

        index=0

        while index< len(fruit):

               letter = fruit [index]
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               print (index, letter)

               index=index+1

0 b

1 a

2 n

3 a

4 n

5 a

In [31]:print ("\n Implementing iteration with continue")

      while True:

            line = input('Enter your data>')

            if line[0]=='#':

                  continue

            if line =='done':

                  break

            print (line )

      print ('End!')

Implementing iteration with continue

Enter your data>Higher Colleges of Technology

Higher Colleges of Technology

Enter your data>#

Enter your data>done

End!

In [32]:print ("\nPrinting in reverse order")

      index=len(fruit)-1

      while index>=0 :

            letter = fruit [index]

            print (index, letter )

            index=index-1
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Printing in reverse order

5 a

4 n

3 a

2 n

1 a

0 b

Letterwise iteration

In [33]:Country='Egypt'

      for letter in Country:

            print (letter)

E

g

y

p

t

You can use iterations as well to count letters in a word or to count 

words in lines, as shown in Listing 1-25.

Listing 1-25. Iterating and Slicing a String

In [2]:# Looking and counting

      word='banana'

      count=0

      for letter in word:

            if letter =='a':

                  count +=1

      print ("Number of a in ", word, "is :", count )

Number of a in banana is : 3
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In [3]:# String Slicing

      s="Welcome to Higher Colleges of Technology"

      print (s[0:4])

      print (s[6:7])

      print (s[6:20])

      print (s[:12])

      print (s[2:])

      print (s [:])

      print (s)

Welc

e

e to Higher Co Welcome to H

lcome to Higher Colleges of Technology Welcome to Higher 

Colleges of Technology

Welcome to Higher Colleges of Technology

 Python String Functions and Methods

Numerous built-in methods and functions can be used for string 

processing; Table 1-14 lists these methods.

Table 1-14. Built-in String Methods

Method/Function Description

capitalize() Capitalizes the first character of the string.

count(string, 

begin,end)

Counts a number of times a substring occurs in a string 

between the beginning and end indices.

endswith(suffix, 

begin=0,end=n)

returns a Boolean value if the string terminates with a 

given suffix between the beginning and end.

(continued)
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Table 1-14. (continued)

Method/Function Description

find(substring,  

beginIndex, 

endIndex)

returns the index value of the string where the substring is 

found between the begin index and the end index.

index(subsring, 

beginIndex, 

endIndex)

throws an exception if the string is not found and works 

same as the find() method.

isalnum() returns true if the characters in the string are 

alphanumeric (i.e., letters or numbers) and there is at least 

one character. otherwise, returns false.

isalpha() returns true when all the characters are letters and there 

is at least one character; otherwise, false.

isdigit() returns true if all the characters are digits and there is at 

least one character; otherwise, false.

islower() returns true if the characters of a string are in lowercase; 

otherwise, false.

isupper() returns false if the characters of a string are in uppercase; 

otherwise, false.

isspace() returns true if the characters of a string are white space; 

otherwise, false.

len(string) returns the length of a string.

lower() Converts all the characters of a string to lowercase.

upper() Converts all the characters of a string to uppercase.

startswith(str, 

begin=0,end=n)

returns a Boolean value if the string starts with the given 

str between the beginning and end.

(continued)
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Listing 1-26 shows how to use built-in methods to remove white space 

from a string, count specific letters within a string, check whether the 

string contains another string, and so on.

Listing 1-26. Implementing String Methods

In [29]:var1 =' Higher Colleges of Technology '

      var2='College'

      var3='g'

      print (var1.upper())

      print (var1.lower())

      print ('WELCOME TO'.lower())

      print (len(var1))

       print (var1.count(var3, 2, 29) ) # find how many g 

letters in var1

      print ( var2.count(var3) )

HIGHER COLLEGES OF TECHNOLOGY

higher colleges of technology

welcome to

Method/Function Description

swapcase() Inverts the case of all characters in a string.

lstrip() removes all leading white space of a string and can also 

be used to remove a particular character from leading 

white spaces.

rstrip() removes all trailing white space of a string and can also 

be used to remove a particular character from trailing 

white spaces.

Table 1-14. (continued)
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31

3

1

In [33]:print (var1.endswith('r'))

      print (var1.startswith('O'))

      print (var1.find('h', 0, 29))

       print (var1.lstrip()) # It removes all leading whitespace 

of a string in var1

       print (var1.rstrip()) # It removes all trailing 

whitespace of a string in var1

       print (var1.strip()) # It removes all leading and 

trailing whitespace

      print ('\n')

      print (var1.replace('Colleges', 'University'))

False

False

4

Higher Colleges of Technology

 Higher Colleges of Technology

Higher Colleges of Technology

Higher University of Technology

 The in Operator

The word in is a Boolean operator that takes two strings and returns true if 

the first appears as a substring in the second, as shown in Listing 1-27.

Listing 1-27. The in Method in String Processing

In [43]:var1 =' Higher Colleges of Technology '

      var2='College'

      var3='g'
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      print ( var2 in var1)

      print ( var2 not in var1)

True

False

 Parsing and Extracting Strings

The find operator returns the index of the first occurrence of a substring 

in another string, as shown in Listing 1-28. The atpost variable is used to 

maintain a returned index of the substring @ as it appears in the Maindata 

string variable.

Listing 1-28. Parsing and Extracting Strings

In [39]:# Parsing and Extracting strings

             Maindata = 'From ossama.embarak@hct.ac.ae Sunday 

Jan 4 09:30:50 2017' atpost = Maindata.find('@')

            print ("\n<<<<<<<<<<<<<<>>>>>>>>>>>>>")

            print (atpost)

            print (Maindata[ :atpost])

            data = Maindata[ :atpost]

            name=data.split(' ')

            print (name)

            print (name[1].replace('.', ' ').upper())

            print ("\n<<<<<<<<<<<<<<>>>>>>>>>>>>>")

<<<<<<<<<<<<<<>>>>>>>>>>>>>

19

From ossama.embarak

['From', 'ossama.embarak']

OSSAMA EMBARAK

<<<<<<<<<<<<<<>>>>>>>>>>>>>
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In [41]:# Another way to split strings

              Maindata = 'From ossama.embarak@hct.ac.ae Sunday 

Jan 4 09:30:50 2017'

             name= Maindata[ :atpost].replace('From','').upper()

             print (name.replace('.',' ').upper().lstrip())

             print ("\n<<<<<<<<<<<<<<>>>>>>>>>>>>>")

             sppos=Maindata.find(' ', atpost)

             print (sppos)

             print (Maindata[ :sppos])

             host = Maindata [atpost + 1 : sppos ]

             print (host)

             print ("\n<<<<<<<<<<<<<<>>>>>>>>>>>>>")

OSSAMA EMBARAK

<<<<<<<<<<<<<<>>>>>>>>>>>>>

29

From ossama.embarak@hct.ac.ae

hct.ac.ae

<<<<<<<<<<<<<<>>>>>>>>>>>>>

 Tabular Data and Data Formats

Data is available in different forms. It can be unstructured data, 

semistructured data, or structured data. Python provides different 

structures to maintain data and to manipulate it such as variables, lists, 

dictionaries, tuples, series, panels, and data frames. Tabular data can be 

easily represented in Python using lists of tuples representing the records 

of the data set in a data frame structure. Though easy to create, these 

kinds of representations typically do not enable important tabular data 

manipulations, such as efficient column selection, matrix mathematics, or 

spreadsheet-style operations. Tabular is a package of Python modules for 

working with tabular data. Its main object is the tabarray class, which is a 
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data structure for holding and manipulating tabular data. You can put data 

into a tabarray object for more flexible and powerful data processing. The 

Pandas library also provides rich data structures and functions designed to 

make working with structured data fast, easy, and expressive. In addition, 

it provides a powerful and productive data analysis environment.

A Pandas data frame can be created using the following constructor:

pandas.DataFrame( data, index, columns, dtype, copy)

A Pandas data frame can be created using various input forms such as 

the following:

• List

• Dictionary

• Series

• Numpy ndarrays

• Another data frame

Chapter 3 will demonstrate the creation and manipulation of the data 

frame structure in detail.

 Python Pandas Data Science Library

Pandas is an open source Python library providing high-performance 

data manipulation and analysis tools via its powerful data structures. The 

name Pandas is derived from “panel data,” an econometrics term from 

multidimensional data. The following are the key features of the Pandas library:

• Provides a mechanism to load data objects from 

different formats

• Creates efficient data frame objects with default and 

customized indexing

• Reshapes and pivots date sets
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• Provides efficient mechanisms to handle missing data

• Merges, groups by, aggregates, and transforms data

• Manipulates large data sets by implementing various 

functionalities such as slicing, indexing, subsetting, 

deletion, and insertion

• Provides efficient time series functionality

Sometimes you have to import the Pandas package since the standard 

Python distribution doesn’t come bundled with the Pandas module. 

A lightweight alternative is to install Numpy using popular the Python 

package installer pip. The Pandas library is used to create and process 

series, data frames, and panels.

 A Pandas Series

A series is a one-dimensional labeled array capable of holding data of any 

type (integer, string, float, Python objects, etc.). Listing 1-29 shows how to 

create a series using the Pandas library.

Listing 1-29. Creating a Series Using the Pandas Library

In [34]:#Create series from array using pandas and numpy

      import pandas as pd

      import numpy as np

      data = np.array([90,75,50,66])

      s = pd.Series(data,index=['A','B','C','D'])

      print (s)

A 90

B 75

C 50

D 66

dtype: int64
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In [36]:print (s[1])

75

In [37]:#Create series from dictionary using pandas

      import pandas as pd

      import numpy as np

      data = {'Ahmed' : 92, 'Ali' : 55, 'Omar' : 83}

      s = pd.Series(data,index=['Ali','Ahmed','Omar'])

      print (s)

Ali 55

Ahmed 92

Omar 83

dtype: int64

In [38]:print (s[1:])

Ahmed 92

Omar 83

dtype: int64

 A Pandas Data Frame

A data frame is a two-dimensional data structure. In other words, data is 

aligned in a tabular fashion in rows and columns. In the following table, 

you have two columns and three rows of data. Listing 1-30 shows how to 

create a data frame using the Pandas library.

Name Age

ahmed 35

ali 17

omar 25
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Listing 1-30. Creating a Data Frame Using the Pandas Library

In [39]:import pandas as pd

      data = [['Ahmed',35],['Ali',17],['Omar',25]]

      DataFrame1 = pd.DataFrame(data,columns=['Name','Age'])

      print (DataFrame1)

   Name   Age

0  Ahmed  35

1  Ali    17

2  Omar   25

You can retrieve data from a data frame starting from index 1 up to the 

end of rows.

In [40]: DataFrame1[1:]

Out[40]:     Name   Age

         1   Ali    17

         2   Omar   25

You can create a data frame using a dictionary.

In [41]:import pandas as pd

       data = {'Name':['Ahmed', 'Ali', 'Omar',  

'Salwa'],'Age':[35,17,25,30]}

      dataframe2 = pd.DataFrame(data, index=[100, 101, 102, 103])

      print (dataframe2)

      Age    Name

100   35     Ahmed

101   17     Ali

102   25     Omar

103   30     Salwa
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You can select only the first two rows in a data frame.

In [42]: dataframe2[:2]

Out[42]:     Age   Name

       100   35    Ahmed

       101   17    Ali

You can select only the name column in a data frame.

In [43]: dataframe2['Name']

Out[43]:100         Ahmed

101    Ali

102    Omar

103    Salwa

Name: Name, dtype: object

 A Pandas Panels

A panel is a 3D container of data that can be created from different data 

structures such as from a dictionary of data frames, as shown in Listing 1-31.

Listing 1-31. Creating a Panel Using the Pandas Library

In [44]:# Creating a panel

      import pandas as pd

      import numpy as np

       data = {'Temperature Day1' : pd.DataFrame(np.random.

randn(4, 3)),'Temperature Day2' : pd.DataFrame 

(np.random.randn(4, 2))}

      p = pd.Panel(data)

      print (p['Temperature Day1'])

        0        1          2

0   1.152400    -1.298529   1.440522
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1   -1.404988   -0.105308   -0.192273

2   -0.575023   -0.424549   0.146086

3   -1.347784   1.153291   -0.131740

 Python Lambdas and the Numpy Library

The lambda operator is a way to create small anonymous functions, in 

other words, functions without names. These functions are throwaway 

functions; they are just needed where they have been created. The lambda 

feature is useful mainly for Lisp programmers. Lambda functions are used 

in combination with the functions filter(), map(), and reduce().

Anonymous functions refer to functions that aren’t named and are 

created by using the keyword lambda. A lambda is created without using 

the def keyword; it takes any number of arguments and returns an 

evaluated expression, as shown in Listing 1-32.

Listing 1-32. Anonymous Function

In [34]:# Anonymous Function Definition

              summation=lambda val1, val2: val1 + val2#Call 

summation as a function

          print ("The summation of 7 + 10 = ", summation(7,10) )

The summation of 7 + 10 = 17

In [46]:result = lambda x, y : x * y

        result(2,5)

Out[46]: 10

In [47]:result(4,10)

Out[47]: 40
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 The map() Function

The map() function is used to apply a specific function on a sequence of 

data. The map() function has two arguments.

r = map(func, seq)

Here, func is the name of a function to apply, and seq is the sequence 

(e.g., a list) that applies the function func to all the elements of the 

sequence seq. It returns a new list with the elements changed by func, as 

shown in Listing 1-33.

Listing 1-33. Using the map() Function

In [65]:def fahrenheit(T):

             return ((float(9)/5)*T + 32)

          def celsius(T):

             return (float(5)/9)*(T-32)

        Temp = (15.8, 25, 30.5,25)

        F = list ( map(fahrenheit, Temp))

        C = list ( map(celsius, F))

        print (F)

        print (C)

[60.44, 77.0, 86.9, 77.0]

[15.799999999999999, 25.0, 30.500000000000004, 25.0]

In [72]:Celsius = [39.2, 36.5, 37.3, 37.8]

Fahrenheit = map(lambda x: (float(9)/5)*x + 32, Celsius)

for x in Fahrenheit:

      print(x)

102.56

97.7

99.14

100.03999999999999
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 The filter() Function

The filter() function is an elegant way to filter out all elements of a list 

for which the applied function returns true.

For instance, the function filter(func, list1) needs a function 

called func as its first argument. func returns a Boolean value, in other 

words, either true or false. This function will be applied to every element 

of the list list1. Only if func returns true will the element of the list be 

included in the result list.

The filter() function in Listing 1-34 is used to return only even 

values.

Listing 1-34. Using the filter() Function

In [79]:fib = [0,1,1,2,3,5,8,13,21,34,55]

        result = filter(lambda x: x % 2==0, fib)

        for x in result:

             print(x)

0

2

8

34

 The reduce () Function

The reduce() function continually applies the function func to a sequence 

seq and returns a single value.

The reduce() function is used to find the max value in a sequence of 

integers, as shown in Listing 1-35.
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Listing 1-35. Using the reduce() Function

In [81]: f = lambda a,b: a if (a > b) else b

reduce(f, [47,11,42,102,13])

102

In [82]: reduce(lambda x,y: x+y, [47,11,42,13])

113

 Python Numpy Package

Numpy is a Python package that stands for “numerical Python.” It is a 

library consisting of multidimensional array objects and a collection of 

routines for processing arrays.

The Numpy library is used to apply the following operations:

• Operations related to linear algebra and random 

number generation

• Mathematical and logical operations on arrays

• Fourier transforms and routines for shape 

manipulation

For instance, you can create arrays and perform various operations 

such as adding or subtracting arrays, as shown in Listing 1-36.

Listing 1-36. Example of the Numpy Function

In [83]:a=np.array([[1,2,3],[4,5,6]])

        b=np.array([[7,8,9],[10,11,12]])

        np.add(a,b)

Out[83]: array([[ 8, 10, 12], [14, 16, 18]])

In [84]:np.subtract(a,b) #Same as a-b

Out[84]: array([[-6, -6, -6], [-6, -6, -6]])
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 Data Cleaning and Manipulation Techniques

Keeping accurate data is highly important for any data scientist. 

Developing an accurate model and getting accurate predictions from 

the applied model depend on the missing values treatment. Therefore, 

handling missing data is important to make models more accurate and 

valid.

Numerous techniques and approaches are used to handle missing data 

such as the following:

• Fill NA forward

• Fill NA backward

• Drop missing values

• Replace missing (or) generic values

• Replace NaN with a scalar value

The following examples are used to handle the missing values in a 

tabular data set:

In [31]: dataset.fillna(0) # Fill missing values with zero value

In [35]: dataset.fillna(method='pad') # Fill methods Forward

In [35]: dataset.fillna(method=' bfill') # Fill methods Backward

In [37]: dataset.dropna() # remove all missing data

Chapter 5 covers different gathering and cleaning techniques.

 Abstraction of the Series and Data Frame

A series is one of the main data structures in Pandas. It differs from lists 

and dictionaries. An easy way to visualize this is as two columns of data. 

The first is the special index, a lot like the dictionary keys, while the 

second is your actual data. You can determine an index for a series, or 
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Python can automatically assign indices. Different attributes can be used 

to retrieve data from a series’ iloc() and loc() attributes. Also, Python 

can automatically retrieve data based on the passed value. If you pass an 

object, then Python considers that you want to use the index label–based 

loc(). However, if you pass an index integer parameter, then Python 

considers the iloc() attribute, as indicated in Listing 1-37.

Listing 1-37. Series Structure and Query

In [6]: import pandas as pd

         animals = ["Lion", "Tiger", "Bear"]

         pd.Series(animals)

Out[6]: 0 Lion

 1 Tiger

 2 Bear

dtype: object

You can create a series of numerical values.

In [5]: marks = [95, 84, 55, 75]

        pd.Series(marks)

Out[5]: 0   95

        1   84

        2   55

        3   75

        dtype: int64

You can create a series from a dictionary where indices are the 

dictionary keys.

In [11]: quiz1 = {"Ahmed":75, "Omar": 84, "Salwa": 70}

      q = pd.Series(quiz1)

      q
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Out[11]: Ahmed   75

         Omar    84

         Salwa   70

         dtype: int64

The following examples demonstrate how to query a series.

You can query a series using a series label or the lock() attribute.

In [13]: q.loc['Ahmed']

Out[13]: 75

In [20]: q['Ahmed']

Out[20]: 75

You can query a series using a series index or the ilock() attribute.

In [19]: q.iloc[2]

Out[19]: 70

In [21]: q[2]

Out[21]: 70

You can implement a Numpy operation on a series.

In [25]:s = pd.Series([70,90,65,25, 99])

        s

Out[25]:0   70

        1   90

        2   65

        3   25

        4   99

        dtype: int64
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In [27]:total =0

      for val in s:

             total += val

      print (total)

349

You can get faster results by using Numpy functions on a series.

In [28]: import numpy as np

          total = np.sum(s)

          print (total)

349

It is possible to alter a series to add new values; it is automatically 

detected by Python that the entered values are not in the series, and hence 

it adds it to the altered series.

In [29]:s = pd.Series ([99,55,66,88])

          s.loc['Ahmed'] = 85

          s

Out[29]: 0   99

         1   55

         2   66

         3   88

     Ahmed   85

     dtype: int64

You can append two or more series to generate a larger one, as shown 

here:

In [32]: test = [95, 84, 55, 75]

      marks = pd.Series(test)

      s = pd.Series ([99,55,66,88])

      s.loc['Ahmed'] = 85
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NewSeries = s.append(marks)

NewSeries

Out[32]: 0   99

         1   55

         2   66

         3   88

     Ahmed   85

         0   95

         1   84

         2   55

         3   75

     dtype: int64

The data frame data structure is the main structure for data collection 

and processing in Python. A data frame is a two-dimensional series object, 

as shown in Figure 1-8, where there’s an index and multiple columns of 

content each having a label.

Figure 1-8. Data frame virtual structure
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Data frame creation and queries were discussed earlier in this chapter 

and will be discussed again in the context of data collection structures in 

Chapter 3.

 Running Basic Inferential Analyses

Python provides numerous libraries for inference and statistical analysis such 

as Pandas, SciPy, and Numpy. Python is an efficient tool for implementing 

numerous statistical data analysis operations such as the following:

• Linear regression

• Finding correlation

• Measuring central tendency

• Measuring variance

• Normal distribution

• Binomial distribution

• Poisson distribution

• Bernoulli distribution

• Calculating p-value

• Implementing a Chi-square test

Linear regression between two variables represents a straight line 

when plotted as a graph, where the exponent (power) of both of the 

variables is 1. A nonlinear relationship where the exponent of any variable 

is not equal to 1 creates a curve shape.

Let’s use the built-in Tips data set available in the Seaborn Python 

library to find linear regression between a restaurant customer’s total bill 

value and each bill’s tip value, as shown in Figure 1-9. The function in 

Seaborn to find the linear regression relationship is regplot.
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In [40]:import seaborn as sb

       from matplotlib import pyplot as plt

       df = sb.load_dataset('tips')

       sb.regplot(x = "total_bill", y = "tip", data = df)

       plt.xlabel('Total Bill')

       plt.ylabel('Bill Tips')

       plt.show()

Correlation refers to some statistical relationship involving 

dependence between two data sets, such as the correlation between the 

price of a product and its sales volume.

Let’s use the built-in Iris data set available in the Seaborn Python library 

and try to measure the correlation between the length and the width of the 

sepals and petals of three species of iris, as shown in Figure 1- 10.

Figure 1-9. Regression analysis
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In [42]: import matplotlib.pyplot as plt

          import seaborn as sns

          df = sns.load_dataset('iris')

          sns.pairplot(df, kind="scatter")

          plt.show()

Figure 1-10. Correlation analysis
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In statistics, variance is a measure of how dispersed the values are from 

the mean value. Standard deviation is the square root of variance. In other 

words, it is the average of the squared difference of values in a data set 

from the mean value. In Python, you can calculate this value by using the 

function std() from the Pandas library.

In [58]: import pandas as pd

d = {

'Name': pd.Series(['Ahmed','Omar','Ali','Salwa','Majid',

 'Othman','Gameel','Ziad','Ahlam','Zahrah',

 'Ayman','Alaa']),

'Age': pd.Series([34,26,25,27,30,54,23,43,40,30,28,46]),

'Height':pd.Series([114.23,173.24,153.98,172.0,153.20,164.6,

 183.8,163.78,172.0,164.8 ])}

df = pd.DataFrame(d) #Create a DataFrame

print (df.std())# Calculate and print the standard deviation

Age     9.740574

Height 18.552823

Out[46]: [Text(0,0.5,'Frequency'), Text(0.5,0,'Binomial')]

You can use the describe() method to find the full description of a 

data frame set, as shown here:

In [59]: print (df.describe())

       Age Height

count 12.000000 12.000000

mean 33.833333 164.448333

std 9.740574 18.552823

min 23.000000 114.230000

25% 26.750000 161.330000
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50% 30.000000 168.400000

75% 40.750000 173.455000

max 54.000000 183.800000

Central tendency measures the distribution of the location of values of 

a data set. It gives you an idea of the average value of the data in the data 

set and an indication of how widely the values are spread in the data set.

The following example finds the mean, median, and mode values of 

the previously created data frame:

In [60]: print ("Mean Values in the Distribution")

         print (df.mean())

         print ("*******************************")

         print ("Median Values in the Distribution")

         print (df.median())

         print ("*******************************")

         print ("Mode Values in the Distribution")

         print (df['Height'].mode())

Mean Values in the Distribution

Age 33.833333

Height    164.448333

dtype: float64

*******************************

Median Values in the Distribution

Age 30.0

Height    168.4

dtype: float64

*******************************

Mode Values of height in the Distribution

0     172.0

dtype: float64
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 Summary

This chapter introduced the data science field and the use of Python 

programming for implementation. Let’s recap what was covered in this 

chapter.

 – The data science main concepts and life cycle

 –  The importance of Python programming and its main 

libraries used for data science processing

 –  Different Python data structure use in data science 

applications

 – How to apply basic Python programming techniques

 –  Initial implementation of abstract series and data frames 

as the main Python data structure

 – Data cleaning and its manipulation techniques

 – Running basic inferential statistical analyses

The next chapter will cover the importance of data visualization in 

business intelligence and much more.

 Exercises and Answers

 1. Write a Python script to prompt users to enter 

two values; then perform the basic arithmetical 

operations of addition, subtraction, multiplication, 

and division on the values.

Answer:

In [2]: # Store input numbers:

num1 = input('Enter first number: ')
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num2 = input('Enter second number: ')

sumval = float(num1) + float(num2)     # Add two numbers

minval = float(num1) - float(num2)     # Subtract two numbers

mulval = float(num1) * float(num2)     # Multiply two numbers

divval = float(num1) / float(num2)     #Divide two numbers

# Display the sum

print('The sum of {0} and {1} is {2}'.format(num1, num2, 

sumval))

# Display the subtraction

print('The subtraction of {0} and {1} is {2}'.format(num1, num2, 

minval))

# Display the multiplication

print('The multiplication of {0} and {1} is {2}'.format(num1, 

num2, mulval))

# Display the division

print('The division of {0} and {1} is {2}'.format(num1, num2, 

divval))

Enter first number: 10

Enter second number: 5

The sum of 10 and 5 is 15.0

The subtraction of 10 and 5 is 5.0

The multiplication of 10 and 5 is 50.0

The division of 10 and 5 is 2.0

 2. Write a Python script to prompt users to enter 

the lengths of a triangle sides. Then calculate the 

semiperimeters. Calculate the triangle area and 

display the result to the user. The area of a triangle is 

(s*(s-a)*(s-b)*(s-c))-1/2.
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Answer:

In [3]:a = float(input('Enter first side: '))

       b = float(input('Enter second side: '))

       c = float(input('Enter third side: '))

       s = (a + b + c) / 2 # calculate the semiperimeter

       area = (s*(s-a)*(s-b)*(s-c)) ** 0.5 # calculate the area

       print('The area of the triangle is %0.2f' %area)

Enter first side: 10

Enter second side: 9

Enter third side: 7

The area of the triangle is 30.59

 3. Write a Python script to prompt users to enter the 

first and last values and generate some random 

values between the two entered values.

Answer:

In [7]:import random

a = int(input('Enter the starting value : '))

b = int(input('Enter the end value : '))

print(random.randint(a,b))

random.sample(range(a, b), 3)

Enter the starting value : 10

Enter the end value : 100

14

Out[7]: [64, 12, 41]

 4. Write a Python program to prompt users to enter a 

distance in kilometers; then convert kilometers to 

miles, where 1 kilometer is equal to 0.62137 miles. 

Display the result.
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Answer:

In [9]: # convert kilometers to miles

kilometers = float(input('Enter the distance in kilometers: ')) 

# conversion factor

Miles = kilometers * 0.62137

print('%0.2f kilometers is equal to %0.2f miles'

 %(kilometers, Miles))

Enter the distance in kilometers: 120

120.00 kilometers is equal to 74.56 miles

 5. Write a Python program to prompt users to enter a 

Celsius value; then convert Celsius to Fahrenheit, 

where T(°F) = T(°C) x 1.8 + 32. Display the result.

Answer:

In [11]: # convert Celsius to Fahrenheit

       Celsius = float(input('Enter temperature in Celsius: '))

       # conversion factor

       Fahrenheit = (Celsius * 1.8) + 32

       print('%0.2f Celsius is equal to %0.2f Fahrenheit'

 %(Celsius, Fahrenheit))

Enter temperature in Celsius: 25

25.00 Celsius is equal to 77.00 Fahrenheit

 6. Write a program to prompt users to enter their 

working hours and rate per hour to calculate gross 

pay. The program should give the employee 1.5 

times the hours worked above 30 hours. If Enter 

Hours is 50 and Enter Rate is 10, then the calculated 

payment is Pay: 550.0.
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Answer:

In [6]:Hflage=True

      Rflage=True

      while Hflage & Rflage :

             hours = input ('Enter Hours:')

             try:

                   hours = int(hours)

                   Hflage=False

             except:

                   print ("Incorrect hours number !!!!")

             try:

                   rate = input ('Enter Rate:')

                   rate=float(rate)

                   Rflage=False

             except:

                    print ("Incorrect rate !!")

      if hours>40:

             pay= 40 * rate + (rate*1.5) * (hours - 40)

      else:

              pay= hours * rate

      print ('Pay:',pay)

Enter Hours: 50

Enter Rate: 10

Pay: 550.0

 7. Write a program to prompt users to enter a value; 

then check whether the entered value is positive or 

negative value and display a proper message.

Chapter 1  IntroduCtIon to data SCIenCe wIth python



79

Answer:

In [1]: Val = float(input("Enter a number: "))

      if Val > 0:

             print("{0} is a positive number".format(Val))

      elif Val == 0:

             print("{0} is zero".format(Val))

      else:

             print("{0} is negative number".format(Val))

Enter a number: -12

-12.0 is negative number

 8. Write a program to prompt users to enter a value; 

then check whether the entered value is odd or even 

and display a proper message.

Answer:

In [4]:# Check if a Number is Odd or Even

      val = int(input("Enter a number: "))

      if (val % 2) == 0:

             print("{0} is an Even number".format(val))

      else:

             print("{0} is an Odd number".format(val))

Enter a number: 13

13 is an Odd number

 9. Write a program to prompt users to enter an age; then 

check whether each person is a child, a teenager, an 

adult, or a senior. Display a proper message.
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Age Category

< 13 Child

13 to 17 teenager

18 to 59 adult

> 59 Senior

Answer:

In [6]:age = int(input("Enter age of a person : "))

      if(age < 13):

             print("This is a child")

      elif(age >= 13 and age <=17):

             print("This is a teenager")

      elif(age >= 18 and age <=59):

             print("This is an adult")

      else:

             print("This is a senior")

Enter age of a person : 40

This is an adult

 10. Write a program to prompt users to enter a car’s 

speed; then calculate fines according to the 

following categories, and display a proper message.

Speed Limit Fine Value

< 80 0

81 to 99 200

100 to 109 350

> 109 500
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Answer:

In [7]:Speed = int(input("Enter your car speed"))

         if(Speed < 80):

             print("No Fines")

         elif(Speed >= 81 and Speed <=99):

             print("200 AE Fine ")

         elif(Speed >= 100 and Speed <=109):

             print("350 AE Fine ")

         else:

             print("500 AE Fine ")

Enter your car speed120

500 AE Fine

 11. Write a program to prompt users to enter a 

year; then find whether it’s a leap year. A year is 

considered a leap year if it’s divisible by 4 and 100 

and 400. If it’s divisible by 4 and 100 but not by 400, 

it’s not a leap year. Display a proper message.

Answer:

In [11]:year = int(input("Enter a year: "))

      if (year % 4) == 0:

            if (year % 100) == 0:

                  if (year % 400) == 0:

                         print("{0} is a leap year".

format(year))

                  else:

                         print("{0} is not a leap year".

format(year))
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            else:

                  print("{0} is a leap year".format(year))

       else:

          print("{0} is not a leap year".format(year))

Enter a year: 2000

2000 is a leap year

 12. Write a program to prompt users to enter a 

Fibonacci sequence. The Fibonacci sequence is 

the series of numbers 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ....  

The next number is found by adding the two 

numbers before it. For example, the 2 is found by 

adding the two numbers before it (1+1). Display a 

proper message.

Answer:

In [14]:nterms = int(input("How many terms you want? "))

             # first two terms

             n1 = 0

             n2 = 1

             count = 2

             # check if the number of terms is valid

             if nterms <= 0:

                   print("Please enter a positive integer")

             elif nterms == 1:

                   print("Fibonacci sequence:")

                   print(n1)
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             else:

                   print("Fibonacci sequence:")

                    print(n1,",",n2,end=', ') # end=', ' is used 

to continue printing in the same line

                   while count < nterms:

                         nth = n1 + n2

                         print(nth,end=' , ')

                         # update values

                         n1 = n2

                         n2 = nth

                         count += 1

How many terms you want? 8

Fibonacci sequence:

0 , 1, 1 , 2 , 3 , 5 , 8 , 13 ,
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CHAPTER 2

The Importance of 
Data Visualization in 
Business Intelligence
Data visualization is the process of interpreting data and presenting it in 

a pictorial or graphical format. Currently, we are living in the era of big 

data, where data has been described as a raw material for business. The 

volume of data used in businesses, industries, research organizations, 

and technological development is massive, and it is rapidly growing every 

day. The more data we collect and analyze, the more capable we can 

be in making critical business decisions. However, with the enormous 

growth of data, it has become harder for businesses to extract crucial 

information from the available data. That is where the importance of data 

visualization becomes clear. Data visualization helps people understand 

the significance of data by summarizing and presenting a huge amount of 

data in a simple and easy-to-understand format in order to communicate 

the information clearly and effectively.
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 Shifting from Input to Output

A decision-maker for any business wants to access highly visual business 

intelligence (BI) tools that can help to make the right decisions quickly. 

Business intelligence has become more mainstream; hence, vendors are 

beginning to focus on both ends of the pipeline and improve the quality 

of data input. There is also a strong focus on ensuring that the output is 

well-structured and clearly presented. This focus on output has largely 

been driven by the demands of consumers, who have been enticed by 

what visualization can offer. A BI dashboard can be a great way to compile 

several different data visualizations to provide an at-a-glance overview of 

business performance and areas for improvement.

 Why Is Data Visualization Important?

A picture is worth a thousand words, as they say. Humans just understand 

data better through pictures rather than by reading numbers in rows 

and columns. Accordingly, if the data is presented in a graphical format, 

people are more able to effectively find correlations and raise important 

questions.

Data visualization helps the business to achieve numerous goals.

 –  Converting the business data into interactive graphs for 

dynamic interpretation to serve the business goals

 –  Transforming data into visually appealing, interactive 

dashboards of various data sources to serve the business 

with the insights

 –  Creating more attractive and informative dashboards of 

various graphical data representations

 –  Making appropriate decisions by drilling into the data 

and finding the insights

Chapter 2  the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe



87

 –  Figuring out the patterns, trends, and correlations in the 

data being analyzed to determine where they must 

improve their operational processes and thereby grow 

their business

 –  Giving a fuller picture of the data under analysis

 –  Organizing and presenting massive data intuitively to 

present important findings from the data

 –  Making better, quick, and informed decisions with data 

visualization

 Why Do Modern Businesses Need Data 
Visualization?

With the huge volume of data collected about business activities using 

different means, business leaders need proper techniques to easily drill 

down into the data to see where they can improve operational processes 

and grow their business. Data visualization brings business intelligence 

to reality. Data visualization is needed by modern businesses for these 

reasons:

 –  Data visualization helps companies to analyze its differ-

ent processes so the management can focus on the areas 

for improvement to generate more revenue and improve 

productivity.

 – It brings business intelligence to life.

 –  It applies a creative approach to understanding the 

hidden information within the business data.

 –  It provides a better and faster way to identify patterns, 

trends, and correlation in the data sets that would remain 

undetected with just text.

Chapter 2  the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe



88

 –  It identifies new business opportunities by predicting 

upcoming trends or sales volumes and the revenue they 

will generate.

 –   It supplies managers with information they need to make 

more effective comparisons between data sets by plotting 

them on the same visualization.

 –  It enables managers to understand the correlations 

between the operating conditions and the business 

performance.

 –  It helps businesses to discover the gray areas of the 

business and make the right decisions for improvement.

 –  Data visualization helps managers to understand custom-

ers’ behaviors and interests and hence retains customers 

and market share.

 The Future of Data Visualization

Data visualization is moving from being an art to being a science field. 

Data science technologies impose the need to move from relatively 

simple graphs to multifaceted relational maps. Multidimensional 

visualizations will boost the role that data visualizations can play in 

the Internet of Things, network and complexity theories, nanoscience, 

social science research, education systems, conative science, space, 

and much more. Data visualization will play a vital role, now and in 

the future, in applying many concepts such as network theory, Internet 

of Things, complexity theory, and more. For instance, network theory 

employs algorithms to understand and model pair-wise relationships 

between objects to understand relationships and interactions in a variety 

of domains, such as crime prevention and disease management, social 
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network analysis, biological network analysis, network optimization, and 

link analysis.

Data visualization will be used intensively to analyze and visualize 

data streams collected from billions of interconnected devices, 

from smart appliances and wearables to automobile sensors and 

environmental and smart cities monitors. Internet of Things device 

data will provide extraordinary insight into what’s happening around 

the globe. In this context, data visualization will improve safety 

levels, drive operational efficiencies, help to better understand 

several worldwide phenomena, and improve and customize provided 

intercontinental services.

 How Data Visualization Is Used for  
Business Decision-Making

Data visualization is a real asset for any business to help make real- 

time business decisions. It visualizes extracted information into logical 

and meaningful parts and helps users avoid information overload by 

keeping things simple, relevant, and clear. There are many ways in which 

visualizations help a business to improve its decision-making.

 Faster Responses

Quick response to customers’ or users’ requirements is important for any 

company to retain their clients, as well as to keep their loyalty. With the 

massive amount of data collected daily via social networks or via companies’ 

systems, it becomes incredibly useful to put useful interpretations of the 

collected data into the hands of managers and decision-makers so they can 

quickly identify issues and improve response times.
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 Simplicity

It is impossible to make efficient decisions based on large amounts 

of raw data. Therefore, data visualization gives the full picture of the 

scoped parameters and simplifies the data by enabling decision-makers 

to  cherry- pick the relevant data they need and dive into a detailed view 

wherever is needed.

 Easier Pattern Visualization

Data visualization provides easier approaches to identifying upcoming 

trends and patterns within data sets and hence enables businesses to make 

efficient decisions and prepare strategies in advance.

 Team Involvement

Data visualizations process not only historical data but also real-time data. 

Different organization units gain the benefit of having direct access to the 

extracted information displayed by data visualization tools. This increases 

the levels of collaboration between departments to help them achieve 

strategic goals.

 Unify Interpretation

Data visualizations can produce charts and graphics that lead to the same 

interpretations by all who use the extracted information for decision- 

making. There are many data visualization tools such as R, Python, Matlab, 

Scala, and Java. Table 2-1 compares the most common languages, which 

are the R and Python languages.
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Table 2-1. The R Language vs. Python

Parameter R Python

Main use Data analysis and 

statistics.

Deployment and production.

Users scholars and researchers. programmers and developers.

Flexibility easy-to-use available 

library.

It’s easy to construct new models 

from scratch.

Integration runs locally. Well-integrated with app.

runs through the cloud.

Database size handles huge size. handles huge size.

IDE examples rstudio. spyder, Ipython notebook, 

Jupyter notebook, etc.

Important packages 

and libraries

tydiverse, ggplot2,  

Caret, zoo.

pandas, numpy, scipy, scikit-

learn, tensorflow, Caret.

Advantages •  Comprehensive 

statistical analysis 

package.

•  open source; anyone 

can use it.

•  It is cross-platform 

and can run on many 

operating systems.

•  anyone can fix bugs 

and make code 

enhancements.

•  python is a general- purpose 

language that is easy and 

intuitive.

•  useful for mathematical 

computation.

•  Can share data online via 

clouds and IDes such as 

Jupyter notebook. 

• Can be deployed.

• fast processing.

• high code readability.

•  supports multiple systems and 

platforms.

•  easy integration with other 

languages such as C and Java.

(continued)
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 Introducing Data Visualization Techniques

Data visualization aims to understand data by extracting and graphing 

information to show patterns, spot trends, and identify outliers. There are 

two basic types of data visualization.

• Exploration helps to extract information from the 

collected data.

• Explanation demonstrates the extracted information.

There are many types of 2D data visualizations, such as temporal, 

multidimensional, hierarchical, and network. In the following section, 

we demonstrate numerous data visualization techniques provided by the 

Python programming language.

Table 2-1. (continued)

Parameter R Python

Disadvantages •  Quality of some 

packages is not good.

•  r can consume all the 

memory because of its 

memory management.

•  slow and high learning 

curve.

•  Dependencies between 

library.

•  there is no regular 

and direct update for r 

packages and bugs.

•  Comparatively smaller pool of 

python developers.

•  python doesn’t have as many 

libraries as r.

•  not good for mobile 

development.

•  Database access limitations.
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 Loading Libraries

Some libraries are bundled with Python, while others should be directly 

downloaded and installed.

For instance, you can install Matplotlib using pip as follows:

python -m pip install -U pip setuptools

python -m pip install matplotlib

You can install, search, or update Python packages with Jupyter 

Notebook or with a desktop Python IDE such as Spyder. Table 2-2 shows 

how to use the pip and conda commands.

Let’s list all the installed or upgraded Python libraries using the pip 

and conda commands.

conda list

pip list

Table 2-2. Installing and Upgrading Python Packages

Description pip conda Anaconda

Works with python and anaconda anaconda only

search a package pip search matplolib conda search 

matplolib

Install a package pip install matplolib conda install 

matplolib

upgrade a package pip install  

matplolib-upgrade

conda install 

matplolib-upgrade

Display installed packages pip list conda list
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Similarly, you can install or upgrade packages or specific Python 

packages such as Matplotlib on Jupyter Notebooks, as shown in Listing 2-1.

Listing 2-1. Installed or Upgraded Packages

In [5]: try:

      import matplotlib

            except:

             import pip pip.main(['install', 'matplotlib'])

             import matplotlib

It is possible to import any library and use alias names, as shown here:

In [ ]:import matplotlib.pyplot as plt import numpy as np

      import pandas as pd

      import seaborn as sns

      import pygal from mayavi

      import mlab

      etc....

Once you load any library to your Python script, then you can call the 

package functions and attributes.

 Popular Libraries for Data Visualization 
in Python

The Python language provides numerous data visualization libraries for 

plotting data. The most used and common data visualization libraries are 

Pygal, Altair, VisPy, PyQtGraph, Matplotlib, Bokeh, Seaborn, Plotly, and 

ggplot, as shown in Figure 2-1.
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Each of these libraries has its own features. Some of these libraries 

may be adopted for implementation and dependent on other libraries. 

For example, Seaborn is a statistical data visualization library that uses 

Matplotlib. In addition, it needs Pandas and maybe NumPy for statistical 

processing before visualizing data.

 Matplotlib

Matplotlib is a Python 2D plotting library for data visualization built 

on Numpy arrays and designed to work with the broader SciPy stack. It 

produces publication-quality figures in a variety of formats and interactive 

environments across platforms. There are two options for embedding 

graphics directly in a notebook.

Figure 2-1. Data visualization libraries
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• The %matplotlib notebook will lead to interactive plots 

embedded within the notebook.

• The %matplotlib inline will lead to static graphs images 

of your plot embedded in the notebook.

Listing 2-2 plots fixed data using Matplotlib and adjusts the plot 

attributes. 

Listing 2-2. Importing and Using the Matplotlib Library

In [12]:import numpy as np

       import matplotlib.pyplot as plt

%matplotlib inline

plt.style.use('seaborn-whitegrid')

X = [590,540,740,130,810,300,320,230,470,620,770,250]

Y = [32,36,39,52,61,72,77,75,68,57,48,48]

plt.scatter(X,Y)

plt.xlim(0,1000)

plt.ylim(0,100)

#scatter plot color

plt.scatter(X, Y, s=60, c='red', marker='^')

#change axes ranges

plt.xlim(0,1000)

plt.ylim(0,100)

#add title

plt.title('Relationship Between Temperature and Iced  

Coffee Sales')

#add x and y labels

plt.xlabel('Sold Coffee')

plt.ylabel('Temperature in Fahrenheit')
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#show plot

plt.show()

Figure 2-2 shows a visualization in the Matplot library.

Listing 2-3 plots fixed data using Matplotlib and adjusts the plot 

attributes.

Listing 2-3. Importing Numpy and Calling Its Functions

In [20]:%matplotlib inline

      import matplotlib.pyplot as plt

import numpy as np

plt.style.use('seaborn-whitegrid')

# Create empty figure

fig = plt.figure()

ax = plt.axes()

x = np.linspace(0, 10, 1000)

Figure 2-2. Visualizing data using Matplotlib
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ax.plot(x, np.sin(x));

plt.plot(x, np.sin(x))

plt.plot(x, np.cos(x))

# set the x and y axis range

plt.xlim(0, 11)

plt.ylim(-2, 2)

plt.axis('tight')

#add title

plt.title('Plotting data using sin and cos')

Figure 2-3 shows the accumulated attributes added to the same graph. 

All altered attributes are applied to the same graph as shown above.

There are many different plotting formats generated by the Matplotlib 

package; some of these formats will be discussed in Chapter 7.

Figure 2-3. Determining the adapted function (sin and cos) by 
Matplotlib
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 Seaborn

Seaborn is a Python data visualization library based on Matplotlib that 

provides a high-level interface for drawing attractive and informative 

statistical graphics (see Listing 2-4).

Listing 2-4. Importing and Using the Seaborn Library

In [34]: import matplotlib.pyplot as plt

%matplotlib inline

import numpy as np

import pandas as pd

import seaborn as sns

plt.style.use('classic')

plt.style.use('seaborn-whitegrid')

# Create some data

data = np.random.multivariate_normal([0, 0], [[5, 2], [2, 2]], 

size=2000)

data = pd.DataFrame(data, columns=['x', 'y'])

# Plot the data with seaborn

sns.distplot(data['x'])

sns.distplot(data['y']);

Figure 2-4 shows a Seaborn graph.
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Let’s use the distribution using a kernel density estimation, which 

Seaborn does with sns.kdeplot. You can use the same data set, called 

Data, as in the previous example (see Figure 2-5).

Figure 2-4. Seaborn graph
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In [35]: for col in 'xy':

      sns.kdeplot(data[col], shade=True)

Figure 2-5. Seaborn kernel density estimation graph

Passing the full two-dimensional data set to kdeplot as follows, you 

will get a two-dimensional visualization of the data (see Figure 2-6):

In [36]: sns.kdeplot(data);
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Let’s use the joint distribution and the marginal distributions together 

using sns.jointplot, as shown here (see Figure 2-7):

In [37]:     with sns.axes_style('white'):

       sns.jointplot("x", "y", data, kind='kde');

Figure 2-6. Two-dimensional kernel density graph
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Use a hexagonally based histogram in the joint plot, as shown here (see 

Figure 2-8):

In [38]:     with sns.axes_style('white'):

       sns.jointplot("x", "y", data, kind='hex')

Figure 2-7. Joint distribution graph
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You can also visualize multidimensional relationships among the 

samples by calling sns.pairplot (see Figure 2-9):

In [41]: sns.pairplot(data);

Figure 2-8. A hexagonally based histogram graph
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There are many different plotting formats generated by the Seaborn 

package; some of these formats will be discussed in Chapter 7.

 Plotly

The Plotly Python graphing library makes interactive, publication-quality 

graphs online. Different dynamic graphs formats can be generated online 

or offline.

Listing 2-5 implements a dynamic heatmap graph (see Figure 2-10).

Figure 2-9. Multidimensional relationships graph
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Listing 2-5. Importing and Using the Plotly Library

In [67]:     import plotly.graph_objs as go

             import numpy as np

             x = np.random.randn(2000)

             y = np.random.randn(2000)

              iplot([go.Histogram2dContour(x=x, y=y, 

contours=dict (coloring='heatmap')), 

go.Scatter(x=x, y=y, mode='markers', 

marker=dict(color='white', size=3, 

opacity=  opacity=0.3))], show_link=False)

Use plotly.offline to execute the Plotly script offline within a 

notebook (Figure 2-11), as shown here:

In [90]:     import plotly.offline as offline

                    import plotly.graph_objs as go

                     offline.plot({'data': [{'y': [14, 22, 30, 

44]}],

Figure 2-10. Dynamic heatmap graph
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                    'layout': {'title': 'Offline Plotly', 'font':

                    dict(size=16)}}, image='png')

Out[90]: 'file:///home/nbuser/library/temp-plot.html'

Executing the Plotly Python script, as shown in Listing 2-6, will 

open a web browser with the dynamic Plotly graph drawn, as shown in 

Figure 2-12.

Listing 2-6. Importing and Using the Plotly Package

In [64]:from plotly import __version__

       from plotly.offline import download_plotlyjs, 

init_notebook_mode, plot, iplot init_notebook_

mode(connected=True)

      print  (__version__)

<inline script removed for security reasons>

3.1.0

Figure 2-11. Offline Plotly graph
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In [91]: import plotly.graph_objs as go

      plot([go.Scatter(x=[95, 77, 84], y=[75, 67, 56])])

Out[91]: 'file:///home/nbuser/library/temp-plot.html'

Plotly graphs are more suited to dynamic and online data visualization, 

especially for real-time data streaming, which isn’t covered in this book.

 Geoplotlib

Geoplotlib is a toolbox for creating a variety of map types and plotting 

geographical data. Geoplotlib needs Pyglet as an object-oriented 

programming interface. This type of plotting is not covered in this book.

 Pandas

Pandas is a Python library written for data manipulation and analysis. 

You can use Python with Pandas in a variety of academic and commercial 

domains, including finance, economics, statistics, advertising, web 

analytics, and much more. Pandas is covered in Chapter 6.

Figure 2-12. Plotly dynamic graph
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 Introducing Plots in Python

As indicated earlier, numerous plotting formats can be used, even offline 

or online ones. The following are examples of direct plotting.

Listing 2-7 implements a basic plotting plot. Figure 2-13 shows the 

graph.

Listing 2-7. Running Basic Plotting

In [116]: import pandas as pd import numpy as np

 df = pd.DataFrame(np.random.randn(200,6),index= pd.date_

range('1/9/2009', periods=200), columns= list('ABCDEF'))

df.plot(figsize=(20, 10)).legend(bbox_to_anchor=(1, 1))

Listing 2-8 creates a bar plot graph (see Figure 2-14).

Listing 2-8. Direct Plotting

In [123]: import pandas as pd

          import numpy as np

Figure 2-13. Direct plot graph
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df = pd.DataFrame(np.random.rand(20,5), columns=['Jan','Feb', 

'March','April', 'May'])

df.plot.bar(figsize=(20, 10)).legend(bbox_to_anchor=(1.1, 1))

Listing 2-9 sets stacked=True to produce a stacked bar plot (see 

Figure 2-15).

Listing 2-9. Create a stacked bar plot 

In [124]: import pandas as pd

df = pd.DataFrame(np.random.rand(20,5), columns=['Jan','Feb', 

'March','April', 'May']) df.plot.bar(stacked=True,  

figsize=(20, 10)).legend(bbox_to_anchor=(1.1, 1))

Figure 2-14. Direct bar plot graph
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To get horizontal bar plots, use the barh method, as shown in Listing 2-10. 

Figure 2-16 shows the resulting graph.

Listing 2-10. Bar Plots

In [126]: import pandas as pd

df = pd.DataFrame(np.random.rand(20,5), columns=['Jan','Feb', 

'March','April', 'May']) df.plot.barh(stacked=True,  

figsize=(20, 10)).legend(bbox_to_anchor=(1.1, 1))

Figure 2-15. Stacked bar plot graph

Figure 2-16. Horizontal bar plot graph
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Histograms can be plotted using the plot.hist() method; you can 

also specify the number of bins, as shown in Listing 2-11. Figure 2-17 

shows the graph.

Listing 2-11. Using the Bar’s bins Attribute 

In [131]: import pandas as pd

df = pd.DataFrame(np.random.rand(20,5), columns=['Jan','Feb', 

'March','April', 'May'])

df.plot.hist(bins= 20, figsize=(10,8)).legend

bbox_to_anchor=(1.2, 1))

Listing 2-12 plots multiple histograms per column in the data set 

(see Figure 2-18).

Figure 2-17. Histogram plot graph
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Listing 2-12. Multiple Histograms per Column

In [139]: import pandas as pd

          import numpy as np

df=pd.DataFrame({'April':np.random.randn(1000)+1,'May':np.random. 

randn(1000),'June': np.random.randn(1000) - 1}, columns=['April',  

'May', 'June'])

df.hist(bins=20)

Listing 2-13 implements a box plot (see Figure 2-19).

Listing 2-13. Creating a Box Plot

In [140]:import pandas as pd

           import numpy as np

Figure 2-18. Column base histograms plot graph
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           df =  pd.DataFrame(np.random.rand(20,5), 

columns=['Jan','Feb','March','April', 'May'])

           df.plot.box()

Listing 2-14 implements an area plot (see Figure 2-20).

Listing 2-14. Creating an Area Plot

In [145]: import pandas as pd

            import numpy as np

            df =  pd.DataFrame(np.random.rand(20,5), 

columns= ['Jan','Feb','March','April', 'May'])

             df.plot.area(figsize=(6, 4)).legend 

(bbox_to_anchor=(1.3, 1))

Figure 2-19. Box plot graph
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Listing 2-15 creates a scatter plot (see Figure 2-21).

Listing 2-15. Creating a Scatter Plot

In [150]: import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.rand(20,5),columns= ['Jan','Feb', 

'March','April', 'May'])

df.plot.scatter(x='Feb', y='Jan', title='Temperature over two 

months ')

Figure 2-20. Area plot graph
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See Chapter 7 for more graphing formats.

 Summary

This chapter demonstrated how to implement data visualization in 

modern business. Let’s recap what you studied in this chapter.

 – Understand the importance of data visualization.

 –  Acknowledge the usage of data visualization in modern 

business and its future implementations.

 –  Recognize the role of data visualization in 

decision-making.

Figure 2-21. Scatter plot graph
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 –  Load and use important Python data visualization libraries.

 –  Revise exercises with model answers for practicing and 

simulating real-life scenarios.

The next chapter will cover data collection structure and much more.

 Exercises and Answers

 1. What is meant by data visualization?

Answer:

Data visualization is the process of interpreting the data in the form of 

pictorial or graphical format.

 2. Why is data visualization important?

Answer:

Data Visualization helps business to achieve numerous goals through 

the following.

 –  Convert the business data into interactive graphs for 

dynamic interpretation to serve the business goals.

 –  Transforming data into visually appealing, interactive 

dashboards of various data sources to serve the business 

with the insights.

 –  Create more attractive and informative dashboard of 

various graphical data representation.

 –  Make appropriate decisions by drilling into the data and 

finding the insights.

 –  Figure out the patterns, trends and correlations in the data 

being analyzed to determine where they must improve their 

operational processes and thereby grow their business.
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 – Give full picture of the data under analysis.

 –  Enable to organize and present massive data intuitively to 

present important findings from the data.

 – Make better, quick and informed decisions.

 3. Why do modern businesses need data visualization?

Answer:

Data visualization is needed by the modern business to support the 

following areas.

 –  Analyze the business different processes where the 

management can focus on the areas of improvement to 

generate more revenue and improve productivity.

 – Bring business intelligences to life.

 –  Apply creative approach to improve the abilities to 

understand the hidden information within the business 

data.

 –  Provide better and faster way to identify patterns,  

trends, and correlation in the data sets that would remain 

undetected with a text.

 –  Identify new business opportunities by predicting  

upcoming trends or sales volumes and the revenue they 

would generate.

 –  Helps to spot trends in data that may not have been  

noticeable from the text alone.

 –  Supply managers with information they need to make 

more effective comparisons between data sets by plotting 

them on the same visualization.
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 –  Enable managers to understand the correlations between 

the operating conditions and business performance.

 –  Help to discover the gray areas of the business and hence 

take right decisions for improvement.

 –  Helps to understand customers’ behaviors and interests, 

and hence retains customers and market.

 4. How is data visualization used for business 

decision-making?

Answer:

There are many ways in which visualization help the business to 

improve decision making.

Faster Times Response: It becomes incredibly 

useful to put useful interpretation of the collected 

data into the hands of managers and decision 

makers enabling them to quickly identify issues and 

improve response times.

Simplicity: data visualization techniques gives the 

full picture of the scoped parameters and simplify 

the data by enabling decision makers to cherry-pick 

the relevant data they need and dive to detailed 

wherever is needed.

Easier Pattern Visualization: provides easier 

approaches to identify upcoming trends and 

patterns within datasets, and hence enable to take 

efficient decisions and prepare strategies in advance. 

Team Involvement: increase the levels of 

collaboration between departments and keep them 

on the same page to achieve strategic goals.
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Unify Interpretation: produced charts and graphics 

have the same interpretation by all beneficial who 

use extracted information for decisions making and 

hence avoid any misleading.

 5. Write a Python script to create a data frame for the 

following table:

Name Mobile_Sales TV_Sales

Ahmed 2540 2200

Omar 1370 1900

Ali 1320 2150

Ziad 2000 1850

Salwa 2100 1770

Lila 2150 2000

Answer:

In [ ]: import pandas as pd

       import numpy as np

       import matplotlib.pyplot as plt

salesMen = ['Ahmed', 'Omar', 'Ali', 'Ziad', 'Salwa', 'Lila']

Mobile_Sales = [2540, 1370, 1320, 2000, 2100, 2150]

TV_Sales = [2200, 1900, 2150, 1850, 1770, 2000]

df = pd.DataFrame()

df ['Name'] =salesMen

df ['Mobile_Sales'] = Mobile_Sales

df['TV_Sales']=TV_Sales

df.set_index("Name",drop=True,inplace=True)

In [13]: df
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Figure 2-22. Bar plot of sales

Out[13]: Name    Mobile_Sales    TV_Sales

         Ahmed   2540            2200

         Omar    1370            1900

         Ali     1320            2150

         Ziad    2000            1850

         Salwa   2100            1770

         Lila    2150            2000

For the created data frame in the previous question, do the following:

 A. Create a bar plot of the sales volume.

Answer:

In [5]: df.plot.bar( figsize=(20, 10), rot=0).legend(bbox_to_

anchor=(1.1, 1)) plt.xlabel('Salesmen') plt.ylabel('Sales')

plt.title('Sales Volume for two salesmen in \nJanuary and April 2017')

plt.show()

See also Figure 2-22.
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Figure 2-23. Pie chart of sales

 B. Create a pie chart of item sales.

Answer:

In [6]: df.plot.pie(subplots=True)

See also Figure 2-23.

 C. Create a box plot of item sales.

Answer:

In [8]: df.plot.box()

See also Figure 2-24.
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 D. Create an area plot of item sales.

Answer:

In [9]: df.plot.area(figsize=(6, 4)).legend(bbox_to_anchor=(1.3,

                     1))

See also Figure 2-25.

Figure 2-24. Box plot of sales
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 E. Create a stacked bar plot of item sales.

Answer:

In [11]: df.plot.bar(stacked=True, figsize=(20, 10)).legend

                    (bbox_to_anchor=(1.1, 1))

See also Figure 2-26.

Figure 2-25. Area plot of sales

Figure 2-26. Stacked bar plot of sales
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CHAPTER 3

Data Collection 

Structures

Lists, dictionaries, tuples, series, data frames, and panels are Python data 

collection structures that can be used to maintain a collection of data. 

This chapter will demonstrate these various structures in detail with 

practical examples.

 Lists

A list is a sequence of values of any data type that can be accessed 

forward or backward. Each value is called an element or a list item. Lists 

are mutable, which means that you won’t create a new list when you 

modify a list element. Elements are stored in the given order. Various 

operations can be conducted on lists such as insertion, sort, and 

deletion. A list can be created by storing a sequence of different types 

of values separated by commas. A Python list is enclosed between a 

square brackets ([]), and elements are stored in the index based on a 

starting index of 0.
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 Creating Lists

You can have lists of string values and integers, empty lists, and nested 

lists, which are lists inside other lists. Listing 3-1 shows how to create a list.

Listing 3-1. Creating Lists

In [1]: # Create List

        List1 = [1, 24, 76]

        print (List1)

        colors=['red', 'yellow', 'blue']

        print (colors)

        mix=['red', 24, 98.6]

        print (mix)

        nested= [ 1, [5, 6], 7]

        print (nested)

        print ([])

[1, 24, 76]

['red', 'yellow', 'blue']

['red', 24, 98.6]

[1, [5, 6], 7]

[]

 Accessing Values in Lists

You can access list elements forward or backward. For instance, in 

Listing 3-2, list2 [3: ] returns elements starting from index 3 to the 

end of the list since list2 has four elements where [4,5] is the element 

of index 3, which is in the form of nested list. Then you get [[4,5]] 
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as a result of print (list2 [3:]). You can also access a list element 

backward using negative indices. For example, list3[-3] will return 

the third element in the backward sequence n-3, i.e., index 1. Here’s an 

example:

 

Listing 3-2. Accessing Lists

In [9]: list1 = ['Egypt', 'chemistry', 2017, 2018]

        list2 = [1, 2, 3, [4, 5] ]

        list3 = ["a", 3.7, '330', "Omar"]

        print (list1[2])

        print (list2 [3:])

        print (list3 [-3:-1])

        print (list3[-3])

        2017

        [[4, 5]]

        [3.7, '330']

        3.7

 Adding and Updating Lists

You can update single or multiple elements of lists by giving the slice on 

the left side of the assign operator, and you can add elements to a list with 

the append() method, as shown in Listing 3-3.
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Listing 3-3. Adding and Updating List Elements

In [50]: courses=["OOP","Networking","MIS","Project"] 

students=["Ahmed", "Ali",

         "Salim", "Abdullah", "Salwa"] OOP_marks = [65, 85, 92]

         OOP_marks.append(50)    # Add new element

         OOP_marks.append(77)    # Add new element

         print (OOP_marks[ : ])  # Print list before updating

         OOP_marks[0]=70         # update new element

         OOP_marks[1]=45         # update new element

         list1 = [88, 93]

          OOP_marks.extend(list1) # extend list with another 

list print

          (OOP_marks[ : ])        # Print list after updating

[65, 85, 92, 50, 77]

[70, 45, 92, 50, 77, 88, 93]

As shown in Listing 3-3, you can add a new element to the list using the 

append() method. You can also update an element in the list by using the 

list name and the element index. For example, OOP_marks[1]=45 changes 

the value of index 1 from 85 to 45.

 Deleting List Elements

To remove a list element, either you can delete it using the del statement 

in the element index, or you can remove the element using the remove() 

method via the element value in the list. If you use the remove() method 

to remove an element that is repeated more than one time in the list, it 

removes only the first occurrence of that element inside the list. Also, you 

can use the pop() method to remove a specific element by its index value, 

as shown in Listing 3-4.
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Listing 3-4. Deleting an Element from a List

In [48]: OOP_marks = [70, 45, 92, 50, 77, 45]

         print (OOP_marks)

         del OOP_marks[0] # delete an element using del

         print (OOP_marks)

          OOP_marks.remove (45) # remove an element using 

remove() method

         print (OOP_marks)

          OOP_marks.pop (2) # remove an element using pop() 

method

         print (OOP_marks)

         [70, 45, 92, 50, 77, 45]

         [45, 92, 50, 77, 45]

         [92, 50, 77, 45]

         [92, 50, 45]

 Basic List Operations

Like string processing, lists respond to + and * operators as concatenation 

and repetition, except that the result is a new list, as shown in Listing 3-5.

Listing 3-5. List Operations

In [46]:print (len([5, "Omar", 3]))      # find the list 

length.

          print ([3, 4, 1] + ["Omar", 5, 6]) # concatenate lists. 

print (['Eg!'] * 4)  # repeat an element in a list.

          print (3 in [1, 2, 3])     # check if element in a list

         for x in [1, 2, 3]:

              print (x, end=' ') # traverse list elements
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         3

         [3, 4, 1, 'Omar', 5, 6]

         ['Eg!', 'Eg!', 'Eg!', 'Eg!']

         True

         1 2 3

 Indexing, Slicing, and Matrices

Lists are a sequence of indexed elements that can be accessed forward or 

backward. Therefore, you can read their elements using a positive index or 

negative (backward) index, as shown in Listing 3-6.

Listing 3-6. Indexing and Slicing List Elements

In [9]:list1 = ['Egypt', 'chemistry', 2017, 2018]

        list2 = [1, 2, 3, [4, 5]]

        list3 = ["a", 3.7, '330', "Omar"]

        print (list1[2])

        print (list2 [3:])

        print (list3 [-3:-1])

        print (list3[-3])

        2017

        [[4, 5]]

        [3.7, '330']

        3.7

 Built-in List Functions and Methods

Various functions and methods can be used for list processing, as shown in 

Table 3-1.
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 List Functions

Built-in functions facilitate list processing. The following tables show 

functions and methods that can be used to manipulate lists. For example, 

you can simply use cmp() to compare two lists, and if both are identical, 

it returns TRUE; otherwise, it returns FALSE. You can find the list size using 

the len() method. In addition, you can find the minimum and maximum 

values in a list using the min() and max() methods, respectively. See 

Listing 3-7 for an example.

Listing 3-7. A Python Script to Apply List Functions

In [51]: #Built-in Functions and Lists

tickets = [3, 41, 12, 9, 74, 15]

         print (tickets)

         print (len(tickets))

         print (max(tickets))

         print (min(tickets))

         print (sum(tickets))

         print (sum(tickets)/len(tickets))

         [3, 41, 12, 9, 74, 15]

         6

Table 3-1. List Functions

Sr.No. Function Description

1 cmp(list1, list2) Compares elements of both lists

2 len(list1) Gives the total length of the list

3 max(list1) Returns an item from the list with max value

4 min(list1) Returns an item from the list with min value

5 list(seq) Converts a tuple into list
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         74

         3

         154

         25.666666666666668

 List Methods

Built-in methods facilitate list editing. Table 3-2 shows that you can 

simply use append(), insert(), and extend() to add new elements to 

the list. The pop() and remove() methods are used to remove elements 

from a list. Table 3-2 summarizes some methods that you can adapt to 

the created list.

Table 3-2. Built-in List Methods

Sr.No. Methods Description

1 list.append(obj) Appends object obj to the list

2 list.count(obj) Returns count of how many times obj 

occurs in the list

3 list.extend(seq) Appends the contents of seq to the list

4 list.index(obj) Returns the lowest index in the list that 

obj appears in

5 list.insert(index, obj) Inserts object obj into the list at offset 

index

6 list.pop(obj=list[-1]) Removes and returns last object or obj 

from list

7 list.remove(obj) Removes object obj from list

8 list.reverse() Reverses objects of list in place

9 list.sort([func]) Sorts objects of list; use compare func 

if given
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 List Sorting and Traversing

Sorting lists is important, especially for list-searching purposes. You can 

create a list from a sequence; in addition, you can sort and traverse list 

elements for processing using iteration statements, as shown in Listing 3-8.

Listing 3-8. List Sorting and Traversing

In [58]: #List sorting and Traversing

          seq=(41, 12, 9, 74, 3, 15) # use sequence for creating 

a list

         tickets=list(seq)

         print (tickets)

         tickets.sort()

         print (tickets)

         print ("\nSorted list elements ")

         for ticket in tickets:

              print (ticket)

       [41, 12, 9, 74, 3, 15]

       [3, 9, 12, 15, 41, 74]

       Sorted list elements

       3

       9

       12

       15

       41

       74
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 Lists and Strings

You can split a string into a list of characters. In addition, you can split a 

string into a list of words using the split() method. The default delimiter 

for the split() method is a white space. However, you can specify which 

characters to use as the word boundaries. For example, you can use a 

hyphen as a delimiter, as in Listing 3-9.

Listing 3-9. Converting a String into a List of Characters or Words

In [63]: # convert string to a list of characters

         Word = 'Egypt'

         List1 = list(Word)

         print (List1)

         ['E', 'g', 'y', 'p', 't']

In [69]: # use the delimiter

         Greeting= 'Welcome-to-Egypt'

         List2 =Greeting.split("-")

         print (List2)

         Greeting= 'Welcome-to-Egypt'

         delimiter='-'

         List2 =Greeting.split(delimiter)

         print (List2)

         ['Welcome', 'to', 'Egypt']

         ['Welcome', 'to', 'Egypt']

In [70]: # we can break a string into words using the split 

method

         Greeting= 'Welcome to Egypt'

         List2 =Greeting.split()

         print (List2)
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         print (List2[2])

         ['Welcome', 'to', 'Egypt']

         Egypt

The join() method is the inverse of the split method (see Listing 3-10). 

It takes a list of strings and concatenates the elements. You have to specify 

the delimiter that the join() method will add between the list elements to 

form a string.

Listing 3-10. Using the join() Method

In [73]: List1 = ['Welcome', 'to', 'Egypt']

         delimiter = ' '

         delimiter.join(List1)

Out[73]: 'Welcome to Egypt'

In [74]: List1 = ['Welcome', 'to', 'Egypt']

         delimiter = '-'

         delimiter.join(List1)

Out[74]: 'Welcome-to-Egypt'

 Parsing Lines

You can read text data from a file and convert it into a list of words for 

further processing. Figure 3-1 shows that you can read myfile.txt, parse it 

line per line, and convert the data into a list of words.
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In the previous example, you can extract only years or e-mails of 

contacts, as shown in Figure 3-2.

 Aliasing

The assign operator is dangerous if you don’t use it carefully. The 

association of a variable with an object is called a reference. In addition, 

an object with more than one reference and more than one name is called 

Figure 3-2. Extracting specific data from a text file via lists

Figure 3-1. Parsing text lines
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an alias. Listing 3-11 demonstrates the use of the assign operator. Say you 

have a list called a. If a refers to an object and you assign b = a, then both 

variables a and b refer to the same object, and an operation conducted on 

a will automatically adapt to b.

Listing 3-11. Alias Objects

With Alias Without Alias

In [117]:a = [1, 2, 3]

         b = a

          print (a)

          print (b)

In [120]:a = [1, 2, 3]

b = [1, 2, 3]

print (a)

print (b)

         [1, 2, 3]

         [1, 2, 3]

[1, 2, 3]

[1, 2, 3]

In [118]:a.append(77)

         print (a)

          print (b)

In [121]:a.append(77)

print (a)

print (b)

          [1, 2, 3, 77]

          [1, 2, 3, 77]

[1, 2, 3, 77]

[1, 2, 3]

In [119]: b is a In [122]: b is a

Out[119]: True Out[122]: False

 Dictionaries

A dictionary is an unordered set of key-value pair; each key is separated 

from its value by a colon (:). The items (the pair) are separated by commas, 

and the whole thing is enclosed in curly braces ({}). In fact, an empty 

dictionary is written only with curly braces:. Dictionary keys should be 

unique and should be of an immutable data type such as string, integer, etc.  
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Dictionary values can be repeated many times, and the values can be of 

any data type. It’s a mapping between keys and values; you can create a 

dictionary using the dict() method.

 Creating Dictionaries

You can create a dictionary and assign a key-value pair directly. In 

addition, you can create an empty dictionary and then assign values to 

each generated key, as shown in Listing 3-12.

Listing 3-12. Creating Dictionaries

In [36]: Prices = {"Honda":40000, "Suzuki":50000, 

"Mercedes":85000, "Nissan":35000, "Mitsubishi": 43000}

         print (Prices)

          {'Honda': 40000, 'Suzuki': 50000, 'Mercedes': 85000, 

'Nissan': 35000, 'Mitsubishi': 43000}

In [37]: Staff_Salary = {  'Omar Ahmed' : 30000 , 'Ali Ziad' : 

24000,

                         'Ossama Hashim': 25000,  

'Majid Hatem':10000}

         print(Staff_Salary)

          STDMarks={"Salwa Ahmed":50, "Abdullah Mohamed":80, 

"Sultan Ghanim":90}

         print(STDMarks)

          {'Omar Ahmed': 30000, 'Ali Ziad': 24000,  

'Ossama Hashim': 25000, 'Majid Hatem': 10000}

          {'Salwa Ahmed': 50, 'Abdullah Mohamed': 80,  

'Sultan Ghanim': 90}
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In [38]:STDMarks = dict()

         STDMarks['Salwa Ahmed']=50

         STDMarks['Abdullah Mohamed']=80

         STDMarks['Sultan Ghanim']=90

         print (STDMarks)

          {'Salwa Ahmed': 50, 'Abdullah Mohamed': 80, 'Sultan 

Ghanim': 90}

 Updating and Accessing Values in Dictionaries

Once you have created a dictionary, you can update and access its values 

for any further processing. Listing 3-13 shows that you can add a new item 

called STDMarks['Omar Majid'] = 74 where Omar Majid is the key and 74 

is the value mapped to that key. Also, you can update the existing value of 

the key Salwa Ahmed.

Listing 3-13. Updating and Adding a New Item to a Dictionary

In [39]: STDMarks={ "Salwa Ahmed":50, "Abdullah Mohamed":80, 

"Sultan

                    Ghanim":90}

          STDMarks['Salwa Ahmed'] = 85 # update current value of 

the key 'Salwa Ahmed'

          STDMarks['Omar Majid'] = 74 # Add a new item to the 

dictionary

         print (STDMarks)

          {'Salwa Ahmed': 85, 'Abdullah Mohamed': 80, 'Sultan 

Ghanim': 90, 'Omar Majid': 74}

You can directly access any element in the dictionary or iterate all 

dictionary elements, as shown in Listing 3-14.

CHAPTER 3  DATA COLLECTION STRUCTURES



140

Listing 3-14. Accessing Dictionary Elements

In [2]: Staff_Salary = { 'Omar Ahmed' : 30000 , 'Ali Ziad' : 

24000, 'Ossama Hashim': 25000, 'Majid Hatem':10000}

        print('Salary package for Ossama Hashim is ', end=“)

        # access specific dictionary element

        print(Staff_Salary['Ossama Hashim'])

        Salary package for Ossama Hashim is 25000

In [3]: # Define a function to return salary after discount tax 

5% def Netsalary (salary):

             return salary - (salary * 0.05) # also, could be 

return salary *0.95

        #Iterate all elements in a dictionary

        print ("Name" , '\t', "Net Salary" )

        for key, value in Staff_Salary.items():

               print (key , '\t', Netsalary(value))

         Name           Net Salary

         Omar Ahmed    28500.0

         Ali Ziad      22800.0

         Ossama Hashim 23750.0

         Majid Hatem   9500.0

Listing 3-14 shows that you can create a function to calculate the net 

salary after deducting the salary tax value of 5 percent, and you iterate all 

dictionary elements. In each iteration, you print the key name and the 

returned net salary value.
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 Deleting Dictionary Elements

You can either remove individual dictionary elements using the element 

key or clear the entire contents of a dictionary. Also, you can delete the 

entire dictionary in a single operation using a del keyword, as shown in 

Listing 3-15. It should be noted that it’s not allowed to have repeated keys 

in a dictionary.

Listing 3-15. Alter a Dictionary 

In [40]: STDMarks={"Salwa Ahmed":50, "Abdullah Mohamed":80, 

"Sultan Ghanim":90}

         print (STDMarks)

          del STDMarks['Abdullah Mohamed'] # remove entry with 

key 'Abdullah Mohamed'

         print (STDMarks)

          STDMarks.clear() # remove all entries in STDMarks 

dictionary

         print (STDMarks)

         del STDMarks  # delete entire dictionary

          {'Salwa Ahmed': 50, 'Abdullah Mohamed': 80, 'Sultan 

Ghanim': 90}

         {'Salwa Ahmed': 50, 'Sultan Ghanim': 90}

         {}

 Built-in Dictionary Functions

Various built-in functions can be implemented on dictionaries. Table 3- 3 

shows some of these functions. The compare function cmp() in older Python 

versions was used to compare two dictionaries; it returns 0 if both dictionaries 

are equal, 1 if dic1 > dict2, and -1 if dict1 < dict2. But starting with Python 3, 

the cmp() function is not available anymore, and you cannot define it. See also 

Listing 3-16.
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Listing 3-16. Implementing Dictionary Functions

In [43]:Staff_Salary = {  'Omar Ahmed' : 30000 , 'Ali Ziad' : 

24000,

                         'Ossama Hashim': 25000, 'Majid 

Hatem':10000}

         STDMarks={ "Salwa Ahmed":50, "Abdullah Mohamed":80, 

"Sultan

                    Ghanim":90}

In [52]: def cmp(a, b):

               for key, value in a.items():

                   for key1, value1 in b.items():

                        return (key >key1) - (key < key1)

In [54]: print (cmp(STDMarks,Staff_Salary) )

           print (cmp(STDMarks,STDMarks) )

           print (len(STDMarks) )

           print (str(STDMarks) )

           print (type(STDMarks) )

           1

Table 3-3. Built-in Dictionary Functions

No Function Description

1 cmp(dict1, dict2) Compares elements of two dictionaries.

2 len(dict) Gives the total length of the dictionary, i.e., the 

number of items in the dictionary.

3 str(dict) Produces a printable string representation of a 

dictionary.

4 type(variable) Returns the type of the passed variable. If the 

passed variable is a dictionary, then it would return 

a dictionary type.
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           0

           3

            {'Salwa Ahmed': 50, 'Abdullah Mohamed': 80, 'Sultan 

Ghanim': 90}

           <class 'dict'>

 Built-in Dictionary Methods

Python provides various methods for dictionary processing. Table 3-4 

summarizes the methods that can be used to access dictionaries.

Table 3-4. Built-in Dictionary Methods

No Methods Description

1 dict1.clear() Removes all elements of dictionary dict1

2 dict1.copy() Returns a copy of dictionary dict1

3 dict1.fromkeys() Creates a new dictionary with keys from seq and 

values

4 dict1.get(key, 

default=None)

For the key name key, returns the value or default 

if key not in dictionary

5 dict1.has_key(key) Returns true if key is in dictionary dict1, false 

otherwise

6 dict1.items() Returns a list of dict1’s (key, value) tuple pairs

7 dict1.keys() Returns list of the dictionary dict1’s keys

8 dict1.

setdefault(key, 

default=None)

Similar to get(), but will set dict1 

[key]=default if key is not already in dict1

9 dict1.update(dict2) Adds dictionary dict2’s key-values pairs to dict1

10 dict1.values() Returns list of dictionary dict1’s values
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Listing 3-17 shows the use and implementation of dictionary methods.

Listing 3-17. Implementing Dictionary Methods

In [89]: Staff_Salary = {  'Omar Ahmed' : 30000 , 'Ali Ziad' : 

24000,

                         'Ossama Hashim': 25000, 'Majid 

Hatem':10000}

         STDMarks={ "Salwa Ahmed":50, "Abdullah Mohamed":80, 

"Sultan

                    Ghanim":90}

         print (Staff_Salary.get('Ali Ziad') )

         print (STDMarks.items())

         print (Staff_Salary.keys())

         print()

         STDMarks.setdefault('Ali Ziad')

         print (STDMarks)

         print (STDMarks.update(dict1))

         print (STDMarks)

         24000

          dict_items([('Salwa Ahmed', 50), ('Abdullah Mohamed', 

80), ('Sultan Ghanim', 90)])

          dict_keys(['Omar Ahmed', 'Ali Ziad', 'Ossama Hashim', 

'Majid Hatem'])

          {'Salwa Ahmed': 50, 'Abdullah Mohamed': 80, 'Sultan 

Ghanim': 90, 'Ali Ziad': None}

         None

          {'Salwa Ahmed': 50, 'Abdullah Mohamed': 80, 'Sultan 

Ghanim': 90, 'Ali Ziad': None}
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You can sort a dictionary by key and by value, as shown in Listing 3-18.

Listing 3-18. Sorting a Dictionary

In [96]: Staff_Salary = { 'Omar Ahmed' : 30000 , 'Ali Ziad' : 

24000, 'Ossama Hashim': 25000, 'Majid Hatem':10000}

       print ("\nSorted by key")

       for k in sorted(Staff_Salary):

           print (k, Staff_Salary[k])

       Sorted by key

       Ali Ziad 24000

       Majid Hatem 10000

       Omar Ahmed 30000

       Ossama Hashim 25000

In [97]: Staff_Salary = { 'Omar Ahmed' : 30000 , 'Ali Ziad' : 

24000, 'Ossama Hashim': 25000, 'Majid Hatem':10000}

       print ("\nSorted by value")

        for w in sorted(Staff_Salary, key=Staff_Salary.get, 

reverse=True):

               print (w, Staff_Salary[w])

       Sorted by value

       Omar Ahmed      30000

       Ossama Hashim   25000

       Ali Ziad        24000

       Majid Hatem     10000

 Tuples

A tuple is a sequence just like a list of immutable objects. The differences 

between tuples and lists are that the tuples cannot be altered; also, tuples 

use parentheses, whereas lists use square brackets.
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 Creating Tuples

You can create tuples simply by using different comma-separated values. 

You can access an element in the tuple by index, as shown in Listing 3-19.

Listing 3-19. Creating and Displaying Tuples

In [1]:Names = ('Omar', 'Ali', 'Bahaa')

        Marks = ( 75, 65, 95 )

        print (Names[2])

        print (Marks)

        print (max(Marks))

        Bahaa

        (75, 65, 95)

        95

In [2]: for name in Names:

               print (name)

          Omar

          Ali

          Bahaa

Let’s try to alter a tuple to modify any element, as shown in Listing 3-20;  

we get an error because, as indicated earlier, tuples cannot be altered.

Listing 3-20. Altering a Tuple for Editing

In [3]: Marks[1]=66

        -------------------------------------------------------

        TypeError    Traceback (most recent call last)

        <ipython-input-3-b225998b9edb> in <module>()

        ----> 1 Marks[1]=66

         TypeError: 'tuple' object does not support item 

assignment
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Like lists, you can access tuple elements forward and backward using 

the element’s indices. Here’s an example:

 

You can sort a list of tuples. Listing 3-21 shows how to sort tuple 

elements in place as well as how to create another sorted tuple.

Listing 3-21. Sorting a Tuple

In [1]:import operator

      MarksCIS = [(88,65),(70,90,85), (55,88,44)]

      print (MarksCIS)           # original tuples

      print (sorted(MarksCIS))   # direct sorting

      [(88, 65), (70, 90, 85), (55, 88, 44)]

      [(55, 88, 44), (70, 90, 85), (88, 65)]

In [2]: print (MarksCIS)     # original tuples

        #create a new sorted tuple

        MarksCIS2 = sorted(MarksCIS, key=lambda x: (x[0], x[1]))

        print (MarksCIS2)

        [(88, 65), (70, 90, 85), (55, 88, 44)]

        [(55, 88, 44), (70, 90, 85), (88, 65)]

In [3]:print (MarksCIS) # original tuples

       MarksCIS.sort(key=lambda x: (x[0], x[1])) # sort in tuple

        print (MarksCIS)

        [(88, 65), (70, 90, 85), (55, 88, 44)]

        [(55, 88, 44), (70, 90, 85), (88, 65)]

CHAPTER 3  DATA COLLECTION STRUCTURES



148

By default the sort built-in function detected that the items are in 

tuples form, so the sort function sorts tuples based on the first element, 

then based on the second element.

 Concatenating Tuples

As mentioned, tuples are immutable, which means you cannot update 

or change the values of tuple elements. You can take portions of existing 

tuples to create new tuples, as Listing 3-22 demonstrates.

Listing 3-22. Concatenating Tuples

In [5]:MarksCIS=(70,85,55)

        MarksCIN=(90,75,60)

        Combind=MarksCIS + MarksCIN

        print (Combind)

        (70, 85, 55, 90, 75, 60)

 Accessing Values in Tuples

To access an element in a tuple, you can use square brackets and the 

element index for retrieving an element value, as shown in Listing 3-23.

Listing 3-23. Accessing Values in a Tuple

In [4]:MarksCIS = (70, 85, 55)

        MarksCIN = (90, 75, 60)

       print ("The third mark in CIS is ", MarksCIS[2])

       print ("The third mark in CIN is ", MarksCIN[2])

       The third mark in CIS is 55

       The third mark in CIN is 60

You can delete a tuple using de, as shown in Listing 3-24.
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Listing 3-24. Deleting a Tuple

In [5]: MarksCIN = (90, 75, 60)

         print (MarksCIN)

         del MarksCIN

         print (MarksCIN)

         (90, 75, 60)

         ------------------------------------------------------

         NameError                                  Traceback 

(most recent 

call last)

         <ipython-input-5-4c08fec39768> in <module>()

          2 print (MarksCIN) 3 del MarksCIN

    ----> 4 print (MarksCIN)

        NameError: name 'MarksCIN' is not defined

You received an error because you ordered Python to print a tuple 

named MarksCIN, which has been removed. You can access a tuple 

element forward and backward; in addition, you can slice values from 

a tuple using indices. Listing 3-25 shows that you can slice in a forward 

manner where MarksCIS[1:4] retrieves elements from element 1 up 

to element 3, while MarksCIS[:] retrieves all elements in a tuple. In 

backward slicing, MarksCIS[-3] retrieves the third element backward, and 

MarksCIS[-4:-2] retrieves the fourth element backward up to the third 

element but not the second backward element.

Listing 3-25. Slicing Tuple Values

In [6]: MarksCIS = (88, 65, 70,90,85,45,78,95,55)

        print ("\nForward slicing")

        print (MarksCIS[1:4])

        print (MarksCIS[:3])

        print (MarksCIS[6:])

        print (MarksCIS[4:6])
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        print ("\nBackward slicing")

        print (MarksCIS[-4:-2])

        print (MarksCIS[-3])

        print (MarksCIS[-3:])

        print (MarksCIS[ :-3])

        Forward slicing

        (65, 70, 90)

        (88, 65, 70)

        (78, 95, 55)

        (85, 45)

        Backward slicing

        (45, 78)

        78

        (78, 95, 55)

        (88, 65, 70, 90, 85, 45)

 Basic Tuples Operations

Like strings, tuples respond to the + and * operators as concatenation and 

repetition to get a new tuple. See Table 3-5.

Table 3-5. Tuple Operations

Expression Results Description

len((5, 7, 2,6)) 4 Length

(1, 2, 3,10) + (4, 5, 6,7) (1, 2, 3,10, 4, 5, 6,7) Concatenation

('Hi!',) * 4 ('Hi!', 'Hi!', 'Hi!', 

'Hi!')

Repetition

10 in (10, 2, 3) True Membership

for x in (10, 1, 5):  

print x,

10 1 5 Iteration
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 Series

A series is defined as a one-dimensional labeled array capable of 

holding any data type (integers, strings, floating-point numbers, Python 

objects, etc.).

SeriesX = pd.Series(data, index=index),

Here, pd is a Pandas form, and data refers to a Python dictionary, an 

ndarray, or even a scalar value.

 Creating a Series with index

If the data is an ndarray, then the index is a list of axis labels that is directly 

passed; otherwise, an auto index is created by Python starting with 0 up to 

n-1. See Listing 3-26 and Listing 3-27.

Listing 3-26. Creating a Series of Ndarray Data with Labels

In [8]: import numpy as np

        import pandas as pd

         Series1 = pd.Series(np.random.randn(4), index=['a', 

'b', 'c', 'd'])

        print(Series1)

        print(Series1.index)

        a 0.350241

        b -1.214802

        c 0.704124

        d 0.866934

        dtype: float64

        Index(['a', 'b', 'c', 'd'], dtype='object')
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Listing 3-27. Creating a Series of Ndarray Data Without Labels

In [9]:import numpy as np

        import pandas as pd

        Series2 = pd.Series(np.random.randn(4))

        print(Series2)

        print(Series2.index)

        0 1.784219

        1 -0.627832

        2 0.429453

        3 -0.473971

        dtype: float64

        RangeIndex(start=0, stop=4, step=1)

Creating a series from ndarrays is valid to most Numpy functions; 

also, operations such as slicing will slice the index. See Listing 3-28 and 

Listing 3-29.

Listing 3-28. Slicing Data from a Series

In [10]: print (" \n Series slicing ")

          print (Series1[:3])

          print ("\nIndex accessing")

          print (Series1[[3,1,0]])

          print ("\nSingle index")

          x = Series1[0]

          print (x)

           Series slicing

           a 0.350241

           b -1.214802

           c 0.704124

          dtype: float64
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          Index accessing

          d 0.866934

          b -1.214802

          a 0.350241

          dtype: float64

          Single index

          0.35024081401881596

Listing 3-29. Sample Operations in a Series

In [11]:  print ("\nSeries Sample operations")

          print ("\n Series values greater than the mean: %.4f" 

% Series1.mean())

         print (Series1 [Series1> Series1.mean()])

          print ("\n Series values greater than the 

Meadian:%.4f" % Series1.median())

         print (Series1 [Series1> Series1.median()])

         print ("\nExponential value ")

         Series1Exp = np.exp(Series1)

         print (Series1Exp)

         Series Sample operations

         Series values greater than the mean: 0.1766

         a    0.350241

         c    0.704124

         d    0.866934

         dtype: float64

         Series values greater than the Median: 0.5272

         c    0.704124

         d    0.866934

         dtype: float64

CHAPTER 3  DATA COLLECTION STRUCTURES



154

         Exponential value

         a    1.419409

         b    0.296769

         c    2.022075

         d    2.379604

         dtype: float64

 Creating a Series from a Dictionary

You can create a series directly from a dictionary, as shown in Listing 3-30. 

If you don’t explicitly pass the index, Python version +3.6 considers the 

series index by the dictionary insertion order. Otherwise, the series index 

will be the lexically ordered list of the dictionary keys.

Listing 3-30. Creating a Series from a Dictionary

In [12]: dict = {'m' : 2, 'y' : 2018, 'd' : 'Sunday'}

         print ("\nSeries of non declared index")

         SeriesDict1 = pd.Series(dict)

         print(SeriesDict1)

         print ("\nSeries of declared index")

          SeriesDict2 = pd.Series(dict, index=['y', 'm', 'd', 

's']) print(SeriesDict2)

         Series of non declared index

         d    Sunday

         m    2

         y    2018

         dtype: object

         Series of declared index

         y    2018

         m    2
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         d    Sunday

         s    NaN

         dtype: object

You can use the get method to access a series values by index label, as 

shown in Listing 3-31.

Listing 3-31. Altering a Series and Using the Get() Method

In [13]: print ("\nUse the get and set methods to access"

                "a series values by index label\n")

          SeriesDict2 = pd.Series(dict, index=['y', 'm', 'd', 

's']) print (SeriesDict2['y']) # Display the year 

SeriesDict2['y']=1999     # change the year value

          print (SeriesDict2)           # Display all dictionary 

values print (SeriesDict2.get('y')) # get specific 

value by its key

          Use the get and set methods to access a series values 

by index label

         2018

         y   1999

         m   2

         d   Sunday

         s   NaN

         dtype: object

         1999

 Creating a Series from a Scalar Value

If data is a scalar value, an index must be provided. The value will be 

repeated to match the length of index. See Listing 3-32.
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Listing 3-32. Creating a Series Using a Scalar Value

In [14]: print ("\n CREATE SERIES FORM SCALAR VALUE ")

         Scl = pd.Series(8., index=['a', 'b', 'c', 'd'])

         print (Scl)

         CREATE SERIES FORM SCALAR VALUE

         a   8.0

         b   8.0

         c   8.0

         d   8.0

         dtype: float64

 Vectorized Operations and Label Alignment 
with Series

Series operations automatically align the data based on label. Thus, you 

can write computations without giving consideration to whether the series 

involved have the same labels. If labels are not matches, it gives a missing 

value NaN. See Listing 3-33.

Listing 3-33. Vectorizing Operations on a Series

In [16]: SerX = pd.Series([1,2,3,4], index=['a', 'b', 'c', 'd'])

          print ("Addition");

          print( SerX + SerX)

          print ("Addition with non-matched labels");

          print (SerX[1:] + SerX[:-1])

          print ("Multiplication");

          print (SerX * SerX)

          print ("Exponential");

          print (np.exp(SerX))

CHAPTER 3  DATA COLLECTION STRUCTURES



157

          Addition

          a 2

          b 4

          c 6

          d 8

          dtype: int64

          Addition with non-matched labels

          a  NaN

          b  4.0

          c  6.0

          d  NaN

          dtype: float64

          Multiplication

          a  1

          b  4

          c  9

          d  16

          dtype: int64

          Exponential

          a  2.718282

          b  7.389056

          c  20.085537

          d  54.598150

          dtype: float64

 Name Attribute

You can name a series; also, you can alter a series, as shown in Listing 3-34.
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Listing 3-34. Using a Series Name Attribute

In [17]:std = pd.Series([77,89,65,90], name='StudentsMarks')

         print (std.name)

         std = std.rename("Marks")

         print (std.name)

         StudentsMarks

         Marks

 Data Frames

A data frame is a two-dimensional tabular labeled data structure with 

columns of potentially different types. A data frame can be created from 

numerous data collections such as the following:

• A 1D ndarray, list, dict, or series

• 2D Numpy ndarray

• Structured or record ndarray

• A series

• Another data frame

A data frame has arguments, which are an index (row labels) and 

columns (column labels).

 Creating Data Frames from a Dict of Series  
or Dicts

You can simply create a data frame from a dictionary of series; it’s also 

possible to assign an index. If there is an index without a value, it gives a 

NaN value, as shown in Listing 3-35.
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Listing 3-35. Creating a Data Frame from a Dict of Series

In [5]: import pandas as pd

           dict1 = {'one' : pd.Series([1., 2., 3.],  

index=['a', 'b', 'c']),

           'two' : pd.Series([1., 2., 3., 4.],  

index=['a', 'b', 'c', 'd'])}

          df = pd.DataFrame(dict1)

          df

Out[5]: one  two

        a    1.0    1.0

        b    2.0    2.0

        c    3.0    3.0

        d    NaN    4.0

In [6]: # set index for the DataFrame

        pd.DataFrame(dict1, index=['d', 'b', 'a'])

Out[6]: one  two

        d    NaN    4.0

        b    2.0    2.0

        a    1.0    1.0

In [8]: # Control the labels appearance of the DataFrame 

pd.DataFrame(dict1, index=['d', 'b', 'a'], columns=['two', 

'three', 'one'])

Out[8]: two  three  one

        d    4.0    NaN    NaN

        b    2.0    NaN    2.0

        a    1.0    NaN    1.0
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 Creating Data Frames from a Dict of  
Ndarrays/Lists

When you create a data frame from an ndarray, the ndarrays must all be 

the same length. Also, the passed index should be of the same length as 

the arrays. If no index is passed, the result will be range(n), where n is the 

array length. See Listing 3-36.

Listing 3-36. Creating a Data Frame from an Ndarray

In [11]: # without index

            ndarrdict = {'one' : [1., 2., 3., 4.],'two' :  

[4., 3., 2., 1.]}

          pd.DataFrame(ndarrdict)

Out[11]:           one    two

             0     1.0    4.0

             1     2.0    3.0

             2     3.0    2.0

             3     4.0    1.0

In [12]: # Assign index

         pd.DataFrame(ndarrdict, index=['a', 'b', 'c', 'd'])

Out[12]:     one    two

             a      1.0      4.0

             b      2.0      3.0

             c      3.0      2.0

             d      4.0      1.0
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 Creating Data Frames from a Structured or 
Record Array

Listing 3-37 creates a data frame by first specifying the data types of each 

column and then the values of each row. ('A', 'i4') determines the 

column label and its data type as integers, ('B', 'f4') determines the 

label as B and the data type as float, and finally ('C', 'a10') assigns the 

label C and data type as a string with a maximum of ten characters.

Listing 3-37. Creating a Data Frame from a Record Array

In [18]:import pandas as pd

         import numpy as np

          data = np.zeros((2,), dtype=[('A', 'i4'),('B', 'f4'), 

('C', 'a10')])

         data[:] = [(1,2.,'Hello'), (2,3.,"World")]

         pd.DataFrame(data)

Out[18]:     A      B      C

           0 1      2.0    b'Hello'

           1 2      3.0    b'World'

In [16]: pd.DataFrame(data, index=['First', 'Second'])

Out[16]:            A     B      C

         First      1     2.0    b'Hello'

         Second     2     3.0    b'World'

In [17]: pd.DataFrame(data, columns=['C', 'A', 'B'])

Out[17]:      C         A     B

         0    b'Hello'  1     2.0

         1    b'World'  2     3.0

 Creating Data Frames from a List of Dicts

Also, you can create data frame from a list of dictionaries, as shown in 

Listing 3-38.
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Listing 3-38. Creating a Data Frame from a List of Dictionaries

In [19]: data2 = [{'A ': 1, 'B ': 2}, {'A': 5, 'B': 10, 'C': 20}]

         pd.DataFrame(data2)

Out[19]: A  B       C

         0   1  2   NaN

         1   5  10  20.0

In [20]: pd.DataFrame(data2, index=['First', 'Second'])

Out[20]:           A   B      C

          First    1   2    NaN

          Second   5   10   20.0

In [21]: pd.DataFrame(data2, columns=['A', 'B'])

Out[21]:    A   B

         0  1   2

         1  5  10

 Creating Data Frames from a Dict of Tuples

Another method to create a multi-indexed data frame is to pass a 

dictionary of tuples, as indicated in Listing 3-39.

Listing 3-39. Creating a Data Frame from a Dictionary of Tuples

In [22]: pd.DataFrame({('a', 'b'): {('A', 'B'): 1, ('A', 'C'): 2},

                          ('a', 'a'): {('A', 'C'): 3, ('A', 

'B'): 4},

                          ('a', 'c'): {('A', 'B'): 5, ('A', 

'C'): 6},

                          ('b', 'a'): {('A', 'C'): 7, ('A', 

'B'): 8},

                          ('b', 'b'): {('A', 'D'): 9, ('A', 

'B'): 10}})
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 Selecting, Adding, and Deleting Data  
Frame Columns

Once you have a data frame, you can simply add columns, remove 

columns, and select specific columns. Listing 3-40 demonstrates how to 

alter a data frame and its related operations.

Listing 3-40. Adding Columns and Making Operations on a Created 

Data Frame

In [25]: # DATAFRAME COLUMN SELECTION, ADDITION, DELETION

          ndarrdict = {'one' : [1., 2., 3., 4.], 'two' :  

[4., 3., 2., 1.]}

         df = pd.DataFrame(ndarrdict, index=['a', 'b', 'c', 'd'])

         df
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In [26]: df['three'] = df['one'] * df['two'] # Add column

         df['flag'] = df['one'] > 2     # Add column

         df

 

You can insert a scalar value to a data frame; it will naturally be 

propagated to fill the column. Also, if you insert a series that does not have 

the same index as the data frame, it will be conformed to the data frame’s 

index. To delete a column, you can use the del or pop method, as shown in 

Listing 3-41.

Listing 3-41. Adding a Column Using a Scalar and Assigning to a 

Data Frame

In [27]: df['Filler'] = 'HCT'

         df['Slic'] = df['one'][:2]

         df
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In [28]:# Delet columns

         del df['two']

         Three = df.pop('three')

         df

 

In [29]: df.insert(1, 'bar', df['one'])

         df

 

By default, columns get inserted at the end. However, you can use 

the insert() function to insert at a particular location in the columns, as 

shown previously.

 Assigning New Columns in Method Chains

A data frame has an assign() method that allows you to easily create new 

columns that are potentially derived from existing columns. Also, you can 

change values of specific columns by altering the columns and making the 

necessary operations, as in column A in Listing 3-42.
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Listing 3-42. Using the assign() Method to Add a Derived Column

In [54]: import numpy as np

           import pandas as pd

         df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})

         df = df.assign(C=lambda x: x['A'] + x['B'])

         df = df.assign( D=lambda x: x['A'] + x['C'])

         df

 

In [55]: df = df.assign( A=lambda x: x['A'] *2)

         df

 

 Indexing and Selecting Data Frames

Table 3-6 summarizes the data frame indexing and selection methods of 

columns and rows.
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Listing 3-43 applies different approaches for rows and columns 

selections from a data frame.

Listing 3-43. Data Frame Row and Column Selections

In [56]: df

 

In [61]: df['B']

 

Table 3-6. Data Frame Indexing and Selection Methods

Operation Syntax Result

Select column df[col] Series

Select row by label df.loc[label] Series

Select row by integer location df.iloc[loc] Series

Slice rows df[5:10] Data frame

Select rows by Boolean vector df[bool_vec] Data frame
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In [59]: df.iloc[2]

 

In [62]: df[1:]

 

In [65]: df[df['C']>7]

 

See Listing 3-44.

Listing 3-44. Operations on Data Frames

In [69]:df1 = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})

         df2 = pd.DataFrame({"A": [7, 4, 6], "B": [10, 4, 15]})

         print (df1)

         print()

         print(df2)
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In [70]: df1 + df2

 

In [71]: df1-df2

 

In [72]: df2 - df1.iloc[2]
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In [75]: df2

 

In [78]: df2*2+1

 

 Transposing a Data Frame

You can transpose a data frame using the T operator, as shown in Listing 3-45.

Listing 3-45. Transposing a Data Frame

In [78]: df2
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In [78]: df2[:].T

 

 Data Frame Interoperability with Numpy 
Functions

You can implement matrix operations using the dot method on a data 

frame. For example, you can implement matrix multiplication as in 

Listing 3-46.

Listing 3-46. Matrix Multiplications

In [78]: df1

 

In [78]: df1.T.dot(df1)
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 Panels

A panel is a container for three-dimensional data; it’s somewhat less 

frequently used by Python programmers.

A panel creation has three main attributes.

 –  items: axis 0; each item corresponds to a data frame 

contained inside

 –  major_axis: axis 1; it is the index (rows) of each of the 

data frames

 –  minor_axis: axis 2; it is the columns of each of the data 

frames

 Creating a Panel from a 3D Ndarray

You can create a panel from a 3D ndarray with optional axis labels, as 

shown in Listing 3-47.

Listing 3-47. Creating a Panel from a 3D Ndarray

In [3]:import pandas as pd

        import numpy as np

        P1 = pd.Panel(np.random.randn(2, 5, 4), items=['Item1',

              'Item2'],major_axis=pd.date_range('10/05/2018', 

periods=5), minor_axis=['A', 'B', 'C', 'D'])

        P1
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 Creating a Panel from a Dict of Data  
Frame Objects

You can create a panel from a dictionary of a data frame, as shown in 

Listing 3-48.

Listing 3-48. Creating a Panel from a Dictionary of Data Frames

In [4]: data = {'Item1' : pd.DataFrame(np.random.randn(4, 3)),

               'Item2' : pd.DataFrame(np.random.randn(4, 2))}

        P2 = pd.Panel(data)

        P2

 

In [5]: p3 = pd.Panel.from_dict(data, orient='minor')

          p3

 

See Listing 3-49.
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Listing 3-49. Creating a Panel from a Data Frame

In [26]: df = pd.DataFrame({'Item': ['TV', 'Mobile', 'Laptop'],

         'Price': np.random.randn(3)**2*1000})

           df

 

In [29]: data = {'stock1': df, 'stock2': df}

         panel = pd.Panel.from_dict(data, orient='minor')

         panel['Item']

 

In [30]: panel['Price']
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 Selecting, Adding, and Deleting Items

A panel is like a dict of data frames; you can slice elements, select items, 

and so on. Table 3-7 gives three operations for panel items selections.

See Listing 3-50.

Listing 3-50. Slicing and Selecting Items from a Panel

In [33]: import pandas as pd

           import numpy as np

            P1 = pd.Panel(np.random.randn(2, 5, 4), 

items=['Item1',

                  'Item2'], major_axis=pd.date_

range('10/05/2018',

                  periods=5), minor_axis=['A', 'B', 'C', 'D'])

P1['Item1']

 

Table 3-7. Panel Item Selection and Slicing Operations

Operation Syntax Result

Select item wp[item] Data frame

Get slice at major_axis label wp.major_xs(val) Data frame

Get slice at minor_axis label wp.minor_xs(val) Data frame
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In [34]: P1.major_xs(P1.major_axis[2])

 

In [35]: P1.minor_axis

Out[35]: Index(['A', 'B', 'C', 'D'], dtype='object')

In [36]: P1.minor_xs('C')

 

 Summary

This chapter covered data collection structures in Python and their 

implementations. Here’s a recap of what was covered:

 – How to maintain a collection of data in different forms

 – How to create lists and how to manipulate list content

 –  What a dictionary is and the purpose of creating a dic-

tionary as a data container
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 –  How to create tuples and what the difference is between 

tuple data structure and dictionary structure, as well as the 

basic tuple operations

 – How to create a series from other data collection forms

 –  How to create data frames from different data collection 

structures and from another data frame

 –  How to create a panel as a 3D data collection from a series 

or data frame

The next chapter will cover file I/O processing and using regular 

expressions as a tool for data extraction and much more.

 Exercises and Answers

 1. Write a program to create a list of names; then 

define a function to display all the elements in 

the received list. Call the function to execute its 

statements and display all names in the list.

Answer:

In [124]: Students =["Ahmed", "Ali", "Salim", "Abdullah", 

"Salwa"]

          def displaynames (x):

              for name in x:

                  print (name)

         displaynames(Students)   # Call the function display 

names

        Ahmed

        Ali

        Salim
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        Abdullah

        Salwa

 2. Write a program to read text file data and create 

a dictionary of all keywords in the text file. The 

program should count how many times each 

word is repeated inside the text file and then find 

the keyword with a highest repeated number. 

The program should display both the keywords 

dictionary and the most repeated word.

Answer:

In [4]: # read data from file and add it to dictionary for 

processing

 

handle = open("Egypt.txt")

text = handle.read()

words = text.split()

counts = dict()

for word in words:

        counts[word] = counts.get(word,0) + 1

print (counts)

bigcount = None

bigword = None
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for word,count in counts.items():

    if bigcount is None or count > bigcount:

       bigword = word

       bigcount = count

print ("\n bigword and bigcount")

print (bigword, bigcount)

 

 3. Write a program to compare tuples of integers and 

tuples of strings.

Answer:

In [14]: print ((100, 1, 2) > (150, 1, 2))

      print ((0, 1, 120) < (0, 3, 4))

      print (( 'Javed', 'Salwa' ) > ('Omar', 'Sam'))

      print (( 'Khalid', 'Ahmed') < ('Ziad', 'Majid'))

      False

      True

      False

      True

 4. Write a program to create a series to maintain three 

students’ names and GPA values.

Name GPA

Omar 2.5

Ali 3.5

Osama 3
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Answer:

 

 5. Write a program to create a data frame to maintain 

three students’ names associated with their grades 

in three courses and then add a new column named 

Mean to maintain the calculated mean mark per 

course. Display the final data frame.

Name Course 1 Course2 Course3

Omar 90 50 89

Ali 78 75 73

Osama 67 85 80
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Answer:

In [31]: data = {'Omar': [90, 50, 89], 'Ali': [78, 75, 73], 

'Osama': [67, 85, 80]}

           df1 = pd.DataFrame (data, index= ['Course1', 

'Course2', 'Course3'])

          df1

In [32]: df1['Omar']

Out[32]:Course1     90

         Course2    50

         Course3    89

         Name: Omar, dtype: int64

In [33]: df1['Mean'] = (df1['Ali'] + df1['Omar'] + 

df1['Osama'])/3

      df1
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CHAPTER 4

File I/O Processing 
and Regular 
Expressions
In this chapter, you’ll study input-output functions and file processing. 

In addition, you’ll study regular expressions and how to extract data that 

matches specific patterns.

 File I/O Processing

Python provides numerous methods for input, output, and file processing. 

You can get input from the screen and output data to the screen as well as 

read data from files and store data in files.

 Data Input and Output

You can read data from a user using the input() function. Received data 

by default is in text format. Hence, you should use conversion functions to 

convert the data into numeric values if required, as shown in Listing 4-1.
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Listing 4-1. Screen Data Input/Output

In [2]: Name = input ("Enter your name: ")

        Name

Enter your name: Osama Hashim

Out[2]: 'Osama Hashim'

In [3]: Mark = input("Enter your mark: ") Mark = float(Mark)

Enter your mark: 92

In [4]:print ("Welcome to Grading System \nHCT 2018")

        print ("\nCampus\t Name\t\tMark\tGrade")

        if (Mark>=85):

            Grade="B+"

             print ("FMC\t", Name,"\t",Mark,"\t", Grade)

Welcome to Grading System

HCT 2018

Campus       Name         Mark    Grade

FMC       Osama Hashim    92.0    B+

Here you are converting the Mark value into a float using float(Mark). 

You use \t to add tabs and \n to jump lines on the screen.

 Opening and Closing Files

Python’s built-in open() function is used to open a file stored on a 

computer hard disk or in the cloud. Here’s its syntax:

file object = open(file_name [, access_mode][, buffering])

Table 4-1 describes its modes.
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Table 4-1. Open File Modes

No. Modes Description

1 r Opens a file for reading only; the default mode

2 rb Opens a file for reading only in binary format

3 r+ Opens a file for both reading and writing

4 rb+ Opens a file for both reading and writing in binary format

5 w Opens a file for writing only

6 wb Opens a file for writing only in binary format

7 w+ Opens a file for both writing and reading

8 wb+ Opens a file for both writing and reading in binary format

9 a Opens a file for appending

10 ab Opens a file for appending in binary format

11 a+ Opens a file for both appending and reading

12 ab+ Opens a file for both appending and reading in binary format

Table 4-2. Opened File Attributes

No. Attribute Description

1 file.closed returns true if the file is closed; false otherwise

2 file.mode returns access mode with which file was opened

3 file.name returns name of the file

 File Object Attributes

Python provides various methods for detecting the open file’s information, 

as shown in Table 4-2.
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Listing 4-2 displays the attributes of an open file called Egypt.txt.

Listing 4-2. Opened File Attributes

In [41]: # Open a file and find its attributes

         Filehndl = open("Egypt.txt", "r")

         print ("Name of the file: ", Filehndl.name)

         print ("Closed or not : ", Filehndl.closed)

         print ("Opening mode : ", Filehndl.mode)

Name of the file: Egypt.txt

Closed or not : False

Opening mode : r

You can close an opened file using the close() method to clear all 

related content from memory and to close any opened streams to the back-

end file, as shown in Listing 4-3.

Listing 4-3. Closing Files

In [40]: Filehndl = open("Egypt.txt", "r")

         print ("Closed or not : ", Filehndl.closed)

         Filehndl.close()

         print ("Closed or not : ", Filehndl.closed)

Closed or not : False

Closed or not : True

 Reading and Writing to Files

The file.write() method is used to write to a file as shown in below 

figure, and the file.read() method is used to read data from an opened 

file. A file can be opened for writing (W), reading (r), or both (r+), as shown 

in Listing 4-4.
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Listing 4-4. Writing to a File

In [39]:Filehndl = open("Egypt.txt", "w+")

          Filehndl.write( "Python Processing Files\nMay 

2018!!\n")

         # Close opend file

         Filehndl.close()

As shown in the following figure, data has been written into the  

“Egypt.txt” file.

The rename() method is used to rename a file; it takes two arguments: 

the current filename and the new filename. Also, the remove() method can 

be used to delete files by supplying the name of the file to be deleted as an 

argument.

In [34]: import os

         os.rename( "Egypt.txt", "test2.txt" )

         os.remove( "test2.txt" )

 Directories in Python

Python provides various methods for creating and accessing directories. 

Listing 4-5 demonstrates how to create, move, and delete directories. You 

can find the current working directory using Python’s getcwd() method.
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Listing 4-5. Creating and Deleting Directories

In [35]: import os

           os.mkdir("Data 1") # create a directory

           os.mkdir("Data_2")

           os.chdir("Data_3")     # create a Childe directory

           os.getcwd()            #  Get the current working 

directory

           os.rmdir('Data 1') # remove a directory

           os.rmdir('Data_3') # remove a directory

 Regular Expressions

A regular expression is a special sequence of characters that helps find 

other strings or sets of strings matching specific patterns; it is a powerful 

language for matching text patterns.

 Regular Expression Patterns

Different regular expression syntax can be used for extracting data from 

text files, XML, JSON, HTML containers, and so on.

Table 4-3 lists some Python regular expression syntax.
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Table 4-3. Python Regular Expression Syntax

No. Pattern Description

1 ^ Matches beginning of the line.

2 $ Matches end of the line.

3 . Matches any single character except a newline.

4 [...] Matches any single character in brackets.

5 [^...] Matches any single character not in brackets.

6 re* Matches zero or more occurrences of the preceding 

expression.

7 re+ Matches one or more occurrence of the preceding expression.

8 re? Matches zero or one occurrence of the preceding expression.

9 re{ n} Matches exactly n number of occurrences of the preceding 

expression.

10 re{ n,} Matches n or more occurrences of the preceding expression.

11 re{ n, m} Matches at least n and at most m occurrences of the 

preceding expression.

12 a| b Matches either a or b.

13 (re) groups regular expressions and remembers matched text.

14 (?imx) temporarily toggles on i, m, or x options within a regular 

expression.

15 (?-imx) temporarily toggles off i, m, or x options within a regular 

expression.

16 (?: re) groups regular expressions without remembering matched 

text.

17 (?imx: re) temporarily toggles on i, m, or x options within parentheses.

(continued)
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Table 4-3. (continued)

No. Pattern Description

18 (?-imx: 

re)

temporarily toggles off i, m, or x options within parentheses.

19 (?#...) Comment.

20 (?= re) specifies the position using a pattern. doesn’t have a range.

21 (?! re) specifies the position using pattern negation. doesn’t have a 

range.

22 (?> re) Matches independent pattern without backtracking.

23 \w Matches word characters.

24 \W Matches nonword characters.

25 \s Matches whitespace. equivalent to [\t\n\r\f].

26 \S Matches nonwhitespace.

27 \d Matches digits. equivalent to [0-9].

28 \D Matches nondigits.

29 \A Matches beginning of the string.

30 \Z Matches end of the string. if a newline exists, it matches just 

before the newline.

31 \z Matches end of the string.

32 \G Matches point where the last match finished.

33 \b Matches word boundaries when outside brackets.

34 \B Matches nonword boundaries.

35 \n, \t, etc. Matches newlines, carriage returns, tabs, etc.

36 \1...\9 Matches nth grouped subexpression.

37 \10 Matches nth grouped subexpression if it matched already.
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For instance, if you have a text file of e-mail log data and you want to 

extract only the text lines where the @uct.ac.za pattern appears, then you 

can use iteration to capture only the lines with the given pattern, as shown 

in Listing 4-6.

Listing 4-6. Reading and Processing a Text File

In [46]: print ("\nUsing in to select lines // only print lines 

which has specific string ")

          fhand = open('Emails.txt')

          for line in fhand:

              line = line.rstrip()

              if not '@uct.ac.za' in line :

                     continue

              print (line)

You can extract only the lines starting with From:. Once it has been 

extracted, then you can split each line into a list and slice only the e-mail 

element, as indicated in Listing 4-7 and Listing 4-8.

Listing 4-7. Extracting Lines Starting with a Specific Pattern

In [45]: print("\nSearching Through a File\n")

         fhand = open('Emails.txt')

         for line in fhand:

              line = line.rstrip()

              if line.startswith('From:') :

                 print (line)

          Searching Through a File

          From: stephen.marquard@uct.ac.za

          From: louis@media.berkeley.edu

          From: zqian@umich.edu

          From: rjlowe@iupui.edu
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          From: zqian@umich.edu

          From: rjlowe@iupui.edu

          From: cwen@iupui.edu

          From: cwen@iupui.edu

          From: gsilver@umich.edu

          From: gsilver@umich.edu

          From: zqian@umich.edu

          From: gsilver@umich.edu

          From: wagnermr@iupui.edu

          From: zqian@umich.edu

          From: antranig@caret.cam.ac.uk

          From: gopal.ramasammycook@gmail.com

          From: david.horwitz@uct.ac.za

          From: david.horwitz@uct.ac.za

          From: david.horwitz@uct.ac.za

          From: david.horwitz@uct.ac.za

          From: stephen.marquard@uct.ac.za

          From: louis@media.berkeley.edu

          From: louis@media.berkeley.edu

          From: ray@media.berkeley.edu

          From: cwen@iupui.edu

          From: cwen@iupui.edu

          From: cwen@iupui.edu

Listing 4-8. Extracting e-mails without regular expressions

In [47]: print("\nSearching Through a File\n") fhand =

         open('Emails.txt')

          for line in fhand:

             line = line.rstrip()

             if line.startswith('From:') :

                 line = line.split()

                  print (line[1])
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         Searching Through a File

          stephen.marquard@uct.ac.za louis@media.berkeley.edu 

zqian@umich.edu

         rjlowe@iupui.edu

         zqian@umich.edu

         rjlowe@iupui.edu

         cwen@iupui.edu

         cwen@iupui.edu

         gsilver@umich.edu

         gsilver@umich.edu

         zqian@umich.edu

         gsilver@umich.edu

         wagnermr@iupui.edu

         zqian@umich.edu

         antranig@caret.cam.ac.uk

         gopal.ramasammycook@gmail.com

         david.horwitz@uct.ac.za

         david.horwitz@uct.ac.za

         david.horwitz@uct.ac.za

         david.horwitz@uct.ac.za

         stephen.marquard@uct.ac.za

         louis@media.berkeley.edu

         louis@media.berkeley.edu

         ray@media.berkeley.edu

         cwen@iupui.edu

         cwen@iupui.edu

         cwen@iupui.edu

Although regular expressions are useful for extracting data from word 

bags, they should be carefully used. The regular expression in Listing 4-9  

finds all the text starting with a capital X followed by any character 

repeated zero or more times and ending with a colon (:).
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Listing 4-9. Regular Expression Example

In [48]: import re

          print ("\nRegular Expressions\n'^X.*:' \n") hand = 

open('Data.txt')

         for line in hand:

              line = line.rstrip()

              y = re.findall('^X.*:',line)

              print (y)

This is a text file maintaining text data which we used to apply regular 

expressions as shown below.

In the following code, the expression '^X.*:' retrieves all lines starting 

with a capital X followed by any character including white spaces zero 

or more times and ending with a colon delimiter (:) . However, it doesn’t 

consider the whitespaces. Listing 4-10 retrieves only the values that have 

no whitespaces included in the matched patterns.

'X.*:'

['X-Sieve:']

['X-DSPAM-Result:']

['X-DSPAM-Confidence:']

['X- Content-Type-Message-Body:']

['X-Plane is behind schedule:']
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Listing 4-10. Extracting Nonwhitespace Patterns

In [49]: print ("\nRegular Expressions\nWild-Card Characters 

'^X-\S+:'\n")

         hand = open('Data.txt')

         for line in hand:

              line = line.rstrip()

               y = re.findall('^X-\S+:',line) # match any 

nonwhite space characters

              print (y)

              Regular Expressions

              Wild-Card Characters 'X-\S+:'

              ['X-Sieve:']

              ['X-DSPAM-Result:']

              ['X-DSPAM-Confidence:']

              []

              []

Regular expressions enable you to extract numerical values within a 

string and find specific patterns of characters within a string of characters, 

as shown in Listing 4-11.

Listing 4-11. Extracting Numerical Values and Specific Characters

In [50]: print ("\n Matching and Extracting Data \n")

         x = 'My 2 favorite numbers are 19 and 42'

         y = re.findall('[0-9]+',x)

         print (y)

         Matching and Extracting Data

         ['2', '19', '42']
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In [51]: y = re.findall('[AEsOUn]+',x) # find any of these 

characters in string

         print (y)

         ['n', 's', 'n']

Although regular expressions are useful for extracting data, they should 

be carefully implemented. The following examples show the greedy and 

nongreedy extraction. In the first example in Listing 4-12, Python finds 

a string starting with F and containing any number of characters up to 

a colon and then stops when it reaches the end of the line. That is why 

it continues to retrieve characters even when it finds the first colon. In 

the second example, re.findall('^F.+?:', x) asks Python to retrieve 

characters starting with an F and ending with the first occurrence of a 

delimiter, which is a colon regardless of whether it reached the end of the 

line or not.

Listing 4-12. Greedy and Nongreedy Matching

In [52]: print ("\nGreedy Matching \n")

         x = 'From: Using the : character'

         y = re.findall('^F.+:', x)

         print (y)

         Greedy Matching

         ['From: Using the :']

In [53]: print ("\nNon-Greedy Matching \n")

         x = 'From: Using the : character'

         y = re.findall('^F.+?:', x)

         print (y)

         Non-Greedy Matching

         ['From:']

Table 4-4 demonstrates various implementations of regular 

expressions.
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 Special Character Classes

Some special characters are used within regular expressions to extract 

data. Table 4-5 summarizes some of these special characters.

Table 4-4. Examples of Regular Expressions

No. Example Description

1 [Pp]ython Matches "Python" or "python"

2 rub[ye] Matches "ruby" or "rube"

3 [aeiou] Matches any one lowercase vowel

4 [0-9] Matches any digit; same as [0123456789]

5 [a-z] Matches any lowercase asCii letter

6 [A-Z] Matches any uppercase asCii letter

7 [a-zA-Z0-9] Matches any of the above

8 [^aeiou] Matches anything other than a lowercase vowel

9 [^0-9] Matches anything other than a digit

Table 4-5. Regular Expression Special Characters

No. Example Description

1 . Matches any character except newline

2 \d Matches a digit: [0-9]

3 \d Matches a nondigit: [^0-9]

4 \s Matches a whitespace character: [ \t\r\n\f]

5 \s Matches nonwhitespace: [^ \t\r\n\f]

6 \w Matches a single word character: [A-Za-z0-9_]

7 \W Matches a nonword character: [^A-Za-z0-9_]
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 Repetition Classes

It is possible to have a string with different spelling such as “ok” and “okay.” 

To handle such cases, you can use repetition expressions, as shown in 

Table 4-6.

Table 4-6. Regular Expression Repetition Characters

No. Example Description

1 ruby? Matches "rub" or "ruby"; the y is optional

2 ruby* Matches "rub" plus zeros or more ys

3 ruby+ Matches "rub" plus one or more ys

4 \d{3} Matches exactly three digits

5 \d{3,} Matches three or more digits

6 \d{3,5} Matches three, four, or five digits

 Alternatives

Alternatives refer to expressions where you can use multiple expression 

statements to extract data, as shown in Table 4-7.

Table 4-7. Alternative Regular Expression Characters

No Example Description

1 python|RLang Matches "python" or " RLang "

2 R(L|Lang)) Matches " RL" or " RLang"

3 Python(!+|\?) "Python" followed by one or more ! or one ?
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 Anchors

Anchors enable you to determine the position in which you can find the 

match pattern in a string. Table 4-8 demonstrates numerous examples of 

anchors.

Table 4-8. Anchor Characters

No. Example Description

1 ^Python Matches "Python" at the start of a string or internal line

2 Python$ Matches "Python" at the end of a string or line

3 \APython Matches "Python" at the start of a string

4 Python\Z Matches "Python" at the end of a string

5 \bPython\b Matches "Python" at a word boundary

6 \brub\B \B is nonword boundary: matches "rub" in rube and ruby 

but not on its own

7 Python(?=!) Matches "Python," if followed by an exclamation point

8 Python(?!!) Matches "Python," if not followed by an exclamation 

point

Not only are regular expressions used to extract data from strings, but 

various built-in methods can be used for the same purposes. Listing 4-13 

demonstrates the use of methods versus regular expressions to extract the 

same characters.

Listing 4-13. The Use of Methods vs. Regular Expressions

In [54]: import re

         print ("\nFine-Tuning String Extraction \n")

          mystr="From ossama.embarak@hct.ac.ae Sat Jun 5 

08:14:16 2018" Extract = re.findall('\S+@\S+',mystr)
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         print (Extract)

          E_xtracted = re.findall('^From.*? (\S+@\S+)',mystr) # 

non greedy white space

         print (E_xtracted)

         print (E_xtracted[0])

         Fine-Tuning String Extraction

         ['ossama.embarak@hct.ac.ae']

         ['ossama.embarak@hct.ac.ae']

ossama.embarak@hct.ac.ae

In [57]: mystr="From ossama.embarak@hct.ac.ae Sat Jun 5 

08:14:16 2018"

         atpos = mystr.find('@')

          sppos = mystr.find(' ',atpos) # find white space 

starting from atpos

         host = mystr[atpos+1 : sppos]

         print (host)

         usernamepos = mystr.find(' ')

         username = mystr[usernamepos+1 : atpos]

         print (username)

         hct.ac.ae

         ossama.embarak

re.findall('@([^ ]*)',mystr) retrieves a substring in the mystr 

string, which starts after @and continues until finding the whitespace. 

Similarly, re.findall('^From .*@([^ ]*)', mystr) retrieves a 

substring in the mystr string, which starts after From and finds zero or 

more characters and then the @ character and then anything other than 

whitespace characters. See Listing 4-14.
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Listing 4-14. Using the Regular Expression findall() Method

In [58]: print ("\n The Regex Version\n")

         import re

          mystr="From ossama.embarak@hct.ac.ae Sat Jun 5 

08:14:16 2018"

         Extract = re.findall('@([^ ]*)',mystr)

         print (Extract)

         Extract = re.findall('^From .*@([^ ]*)',mystr)

         print (Extract)

         The Regex Version

         ['hct.ac.ae']

         ['hct.ac.ae']

In [59]: print ("\nScape character \n")

          mystr = 'We just received $10.00 for cookies and 

$20.23 for juice'

         Extract = re.findall('\$[0-9.]+',mystr)

         print (Extract)

         Scape character

         ['$10.00', '$20.23']

 Summary

This chapter covered input/output data read or pulled from stored files or 

directly read from users. Let’s recap what was covered in this chapter.

 – The chapter covered how to open files for reading, writing, or 

both. Furthermore, it covered how to access the attributes of 

open files and close all opened sessions.

 – The chapter covered how to collect data directly for users via the 

screen.
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 – It covered regular expressions and their patterns and special 

character usage.

 – The chapter covered how to apply regular expressions to extract 

data and how to use alternatives, anchors, and repetition expres-

sions for data extraction.

The next chapter will study techniques of gathering and cleaning data 

for further processing, and much more.

 Exercises and Answer

 1. Write a Python script to extract a course number, 

code, and name from the following text using 

regular expressions:

CoursesData = """101 COM Computers

205 MAT Mathematics

189 ENG English"""

Answer:

In [60]: import re

         CoursesData = """101 COM Computers

                                 205 MAT  Mathematics

                                 189 ENG  English"""

In [61]: # Extract all course numbers

         Course_numbers = re.findall('[0-9]+', CoursesData)

         print (Course_numbers)

         # Extract all course codes

         Course_codes = re.findall('[A-Z]{3}', CoursesData)

         print (Course_codes)
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         # Extract all course names

          Course_names = re.findall('[A-Za-z]{4,}', CoursesData) 

print (Course_names)

         ['101', '205', '189']

         ['COM', 'MAT', 'ENG']

         ['Computers', 'Mathematics', 'English']

 2. Write a Python script to extract each course’s details 

in a tuple form from the following text using regular 

expressions. In addition, use regular expressions to 

retrieve string values in the CoursesData and then 

retrieve numerical values in CoursesData.

Answer:

CoursesData = """101 COM Computers

205 MAT Mathematics

189 ENG English"""

In [63]: # define the course text pattern groups and extract

          course_pattern = '([0-9]+)\s*([A-Z]{3})\s*([A-Za-z]

{4,})'

         re.findall(course_pattern, CoursesData)

Out[63]: [('101', 'COM', 'Computers'),

          ('205', 'MAT', 'Mathematics'),

          ('189', 'ENG', 'English')]

In [64]: print(re.findall('[a-zA-Z]+', CoursesData)) # [] 

Matches any character inside

['COM', 'Computers', 'MAT', 'Mathematics', 'ENG', 'English']

In [65]: print(re.findall('[0-9]+', CoursesData)) # [] Matches 

any numeric inside

['101', '205', '189']
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 3. Write a Python script to extract digits of size 4 and 

digits of size 2 to 4 using regular expressions.

Answer:

CoursesData = """101 COM Computers

205 MAT Mathematics

189 ENG English"""

In [66]: import re

         CoursesData = """10 COM Computers

                         205 MAT Mathematics 1899 ENG English"""

          print(re.findall('\d{4}', CoursesData)) # {n} Matches 

repeat n times.

         print(re.findall('\d{2,4}', CoursesData))

         ['1899']

         ['10', '205', '1899']
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CHAPTER 5

Data Gathering 
and Cleaning
In the 21st century, data is vital for decision-making and developing 

long- term strategic plans. Python provides numerous libraries and built-

in features that make it easy to support data analysis and processing. 

Making business decisions, forecasting weather, studying protein 

structures in biology, and designing a marketing campaign are all 

examples that require collecting data and then cleaning, processing, and 

visualizing it.

There are five main steps for data science processing.

 1. Data acquisition is where you read data 

from various sources of unstructured data, 

semistructured data, or full-structured data that 

might be stored in a spreadsheet, comma-separated 

file, web page, database, etc.

 2. Data cleaning is where you remove noisy data and 

make operations needed to keep only the relevant 

data.

 3. Exploratory analysis is where you look at your 

cleaned data and make statistical processing fits for 

specific analysis purposes.
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 4. An analysis model needs to be created. Advanced 

tools such as machine learning algorithms can be 

used in this step.

 5. Data visualization is where the results are plotted 

using various systems provided by Python to help in 

the decision-making process.

Python provides several libraries for data gathering, cleaning, 

integration, processing, and visualizing.

• Pandas is an open source Python library used to load, 

organize, manipulate, model, and analyze data by 

offering powerful data structures.

• Numpy is a Python package that stands for “numerical 

Python. It is a library consisting of multidimensional 

array objects and a collection of routines for manipulating 

arrays. It can be used to perform mathematical, logical, 

and linear algebra operations on arrays.

• SciPy is another built-in Python library for numerical 

integration and optimization.

• Matplotlib is a Python library used to create 2D graphs 

and plots. It supports a wide variety of graphs and plots 

such as histograms, bar charts, power spectra, error charts, 

and so on, with additional formatting such as control line 

styles, font properties, formatting axes, and more.

 Cleaning Data

Data is collected and entered manually or automatically using various 

methods such as weather sensors, financial stock market data servers, 

users’ online commercial preferences, etc. Collected data is not  
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error- free and usually has various missing data points and 

erroneously entered data. For instance, online users might not want 

to enter their information because of privacy concerns. Therefore, 

treating missing and noisy data (NA or NaN) is important for any data 

analysis processing.

 Checking for Missing Values

You can use built-in Python methods to check for missing values. Let’s 

create a data frame using the Numpy and Pandas libraries. Include the 

index values a to h, and give the columns labels of stock1, stock2, and 

stock3, as shown in Listing 5-1.

Listing 5-1. Creating a Data Frame Including NaN

In [47]: import pandas as pd

         import numpy as np

          dataset = pd.DataFrame(np.random.randn(5, 3), 

index=['a', 'c', 'e', 'f', 'h'],columns=['stock1', 

'stock2', 'stock3'])

          dataset.rename(columns={"one":'stock1',"two":'stock2', 

"three":'stock3'}, inplace=True)

          dataset = dataset.reindex(['a', 'b', 'c', 'd', 'e', 

'f', 'g', 'h'])

         print (dataset)
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It should be clear that you can use Numpy to create an array of random 

values, as shown in Listing 5-2.

Listing 5-2. Creating a Matrix of Random Values

In [46]: import numpy as np

         np.random.randn(5, 3)

 

In Listing 5-2, you are ignoring rows b, d, and g. That’s why you got 

NaN, which means non-numeric values. Pandas provides the isnull() 

and notnull() functions to detect the missing values in a data set. A 

Boolean value is returned when NaN has been detected; otherwise, False is 

returned, as shown in Listing 5-3.

Listing 5-3. Checking Null Cases

In [48]: print (dataset['stock1'].isnull())

 

Chapter 5  Data GatherinG anD CleaninG



209

 Handling the Missing Values

There are various techniques that can be used to handle missing values.

• You can replace NaN with a scalar value.

Listing 5-4 replaces all NaN cases with 0 values.

Listing 5-4. Replacing NaN with a Scalar Value

In [49]: print (dataset)

         dataset.fillna(0)
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• You can fill NaN cases forward and backward.

Another technique to handle missing values is to fill 

them forward using pad/fill or fill them backward 

using bfill/backfill methods. In Listing 5-5, the 

values of row a are replicating the missing values in 

row b.

Listing 5-5. Filling In Missing Values Forward

In [50]: # Fill missing values forward

         print (dataset)

         dataset.fillna(method='pad')
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• You can drop the missing values.

Another technique is to exclude all the rows with 

NaN values. The Pandas dropna() function can be 

used to drop entire rows from the data set. As you 

can see in Listing 5-6, rows b, d, and g are removed 

entirely from the data set.

Listing 5-6. Dropping All NaN Rows

In [51]: print (dataset)

         dataset.dropna()

 

• You can replace the missing (or generic) values.

The replace() method can be used to replace a 

specific value in a data set with another given value. 

In addition, it can be used to replace NaN cases, as 

shown in Listing 5-7.
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Listing 5-7. Using the replace() Function

In [52]: print (dataset)

         dataset.replace(np.nan, 0 )

 

 Reading and Cleaning CSV Data

In this section, you will read data from a comma-separated values 

(CSV) file. The CSV sales file format shown in Figure 5-1 will be used to 

demonstrate the data cleaning process.
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You can use the Pandas library to read a file and display the first five 

records. An autogenerated index has been generated by Python starting 

with 0, as shown in Listing 5-8.

Listing 5-8. Reading a CSV File and Displaying the First Five 

Records

In [53]: import pandas as pd

         sales = pd.read_csv("Sales.csv")

         print ("\n\n<<<<<<< First 5 records <<<<<<<\n\n" )

         print (sales.head())

Figure 5-1. Sales data in CSV format
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You can display the last five records using the tail() method.

In [54]:  print (sales.tail())

pd.read_csv() is used to read the entire CSV file; sometimes you need 

to read only a few records to reduce memory usage, though. In that case, 

you can use the nrows attribute to control the number of rows you want to 

read.

In [55]:   import pandas as pd

                salesNrows = pd.read_csv("Sales.csv", nrows=4)

                salesNrows

Similarly, you can read specific columns using a column index or label. 

Listing 5-9 reads columns 0, 1, and 6 using the usecols attribute and then 

uses the column labels instead of the column indices.

Listing 5-9. Renaming Column Labels

In [58]: salesNrows = pd.read_csv("Sales.csv", nrows=4, 

usecols=[0, 1, 6])

         salesNrows
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In [60]: salesNrows = pd.read_csv("Sales.csv", nrows=4, 

usecols=['SALES_ID' , 'SALES_BY_REGION', 'FEBRUARY', 'MARCH'])

   salesNrows

 

In Listing 5-10, the .rename() method is used to change data set 

column labels (e.g., SALES_ID changed to ID). In addition, you set 

inplace=True to commit these changes to the original data set, not to a 

copy of it.

Listing 5-10. Renaming Column Labels

In [56]: salesNrows.rename(columns={"SALES_ID":'ID',"SALES_BY_

REGION":'REGION'}, inplace=True)

       salesNrows
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You can find the unique values in your data set variables; you just 

refer to each column as a variable or pattern that can be used for further 

processing. See Listing 5-11.

Listing 5-11. Finding Unique Values in Columns

In [57]: print (len(salesNrows['JANUARY'].unique()))

         print (len(salesNrows['REGION'].unique()))

         print (salesNrows['JANUARY'].unique())

 

To get precise data, you can replace all values that are anomalies with 

NaN for further processing. For example, as shown in Listing 5-12, you can 

use na_values =["n.a.", "not avilable", -1] to generate NaN cases 

while you are reading the CSV file.

Listing 5-12. Automatically Replacing Matched Cases with NaN

In [61]: import pandas as pd

          sales = pd.read_csv("Sales.csv", nrows=7, na_values 

=["n.a.", "not avilable"])

         mydata = sales.head(7)

         mydata
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In [62]: import pandas as pd

          sales = pd.read_csv("Sales.csv", nrows=7, na_values 

=["n.a.", "not avilable", -1])

         mydata = sales.head(7)

         mydata

 

Since you have different patterns in a data set, you should be able to 

use different values for data cleaning and replacement. The following 

example is reading from the sales.csv file and storing the data into the 

sales data frame. All values listed in the na_values attribute are replaced 

with the NaN value. So, for the January column, all ["n.a.", "not 

available", -1] values are converted into NaN.

In [25]: sales = pd.read_csv("Sales.csv", na_values = {

                   "SALES_BY_REGION": ["n.a.", "not avilabl”],

                   "JANUARY": ["n.a.", "not avilable", -1],

                   "FEBRUARY": ["n.a.", "not avilable", -1]})

         sales.head(20)

Another professional method to clean data, while you are loading it, 

is to define functions for data cleaning. In Listing 5-13, you define and call 

two functions: CleanData_Sales() to clean numerical values and reset 

all NaN values to 0 and CleanData_REGION() to clean string values and 

reset all NaN values to Abu Dhabi. Then you call these functions in the 

converters attribute.
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Listing 5-13. Defining and Calling Functions for Data Cleaning

In [26]: def CleanData_Sales(cell):

              if (cell=="n.a." or cell=="-1" or cell=="not 

avilable"):

                 return 0

             return cell

         def CleanData_REGION(cell):

              if (cell=="n.a." or cell=="-1" or cell=="not 

avilable"):

                 return 'AbuDhabi'

             return cell

In [28]: sales = pd.read_csv("Sales.csv", nrows=7, converters={

                          "SALES_BY_REGION": CleanData_REGION,

                          "JANUARY": CleanData_Sales,

                          "FEBRUARY": CleanData_Sales,

                          "APRIL": CleanData_Sales,

                          })

         sales.head(20)

 

 Merging and Integrating Data

Python provides the merge() method to merge different data sets together 

using a specific common pattern. Listing 5-14 reads two different data sets 

about export values in a different range of years but for the same countries.
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Listing 5-14. Two Files of Export Sales

In [35]: import pandas as pd

         a = pd.read_csv("1. Export1_Columns.csv")

         b = pd.read_csv("1. Export2_Columns.csv")

 

Suppose that you want to drop specific years from this study such as 

2009, 2012, 2013, and 2014. Listing 5-15 and Listing 5-16 demonstrate 

different methods that are used to drop these columns.

Listing 5-15. Loading Two Different Data Sets with One Common 

Attribute

In [35]: import pandas as pd

         a = pd.read_csv("1. Export1_Columns.csv")

         b = pd.read_csv("1. Export2_Columns.csv")

In [31]: a.head()
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In [30]: b.head()

 

Listing 5-16. Dropping Columns 2009, 2012, 2013, and 2014

In [32]: b.drop('2014', axis=1, inplace=True)

       columns = ['2013', '2012']

         b.drop(columns, inplace=True, axis=1)

         b.head()
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Python’s .merge() method can used to merge data sets; you can 

specify the merging variables, or you can let Python find the matching 

variables and implement the merging, as shown in Listing 5-17. 

Listing 5-17. Merging Two Data Sets

In [102]: mergedDataSet = a.merge(b, on="Country Name")

          mergedDataSet.head()

Merge two datasets using column labeled County Code_x and County 

Code_y as shown below.

 

In [103]:  dataX = a.merge(b)

           dataX.head()

 

You can merge two data sets using Index via Rows Union operation, as 

indicated in Listing 5-18, where the .concat() method is used to merge 

Data1 and Data2 over axis 0. This is a row-wise operation.
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Listing 5-18. Row Union of Two Data Sets

In [71]: Data1 = a.head()

         Data1=Data1.reset_index()

         Data1

 

In [72]: Data2 = a.tail()

         Data2=Data2.reset_index()

         Data2

 

In [78]: # stack the DataFrames on top of each othe

          VerticalStack = pd.concat((Data1, Data2), axis=0) 

VerticalStack
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 Reading Data from the JSON Format

The Pandas library can read JSON files using the read_json function 

directly from the cloud or from a hard disk. Listing 5-19 demonstrates 

how to create JSON data and load it in JSON format and then iterate or 

manipulate the data. The JSON format is similar to a dictionary structure 

where you have a key-value pair, but in JSON, you can have subattributes 

with inner values, similar to email in the first example, and its subattribute 

hide with the value NO.

Listing 5-19. Creating and Manipulating JSON Data

In [73]: import json data = '''{

         "name" : "Ossama",

          "phone" : { "type" : "intl", "number" : "+971 50 244 

5467"},

         "email" : {"hide" : "No" }

         }'''

Chapter 5  Data GatherinG anD CleaninG



224

         info = json.loads(data)

         print ('Name:',info["name"])

         print ('Hide:',info["email"]["hide"])

         Name: Ossama

         Hide: No

In [74]: input = '''[

         { "id" : "001", "x" : "5", "name" : "Ossama"} ,

         { "id" : "009","x" : "10","name" : "Omar" }

         ]'''

          info = json.loads(input) print ('User count:', 

len(info)) for item in info:

             print ('\nName', item['name'])

             print ('Id', item['id'])

             print ('Attribute', item['x'])

         User count: 2

         Name Ossama

         Id 001

         Attribute 5

         Name Omar

         Id 009

         Attribute 10

You can directly read JSON data from an online resource, as shown in 

Listing 5-20 and Listing 5-21.

Listing 5-20. JSON Sample Data

url=' http://python-data.dr-chuck.net/comments_244984.json'

print ('Retrieving', url)

uh = urllib.urlopen(url)

data = uh.read()
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Listing 5-21. Loading a JSON File

In [101]: import json

            with open('comments.json') as json_data:

              JSONdta = json.load(json_data)

              print(JSONdta)

 

You can access JSON data and make further operations on the 

extracted data. For instance, you can calculate the total number of 

all users, find the average value of all counts, and more, as shown in 

Listing 5-22.
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Listing 5-22. Accessing JSON Data

In [102]:sumv=0

          counter=0

          for i in range(len(JSONdta["comments"])):

              counter+=1

              Name = JSONdta["comments"][i]["name"]

              Count = JSONdta["comments"][i]["count"]

              sumv+=int(Count)

          print (Name," ", Count)

          print ("\nCount: ", counter)

          print ("Sum: ", sumv)

The following is a sample of extracted data from the JSON file and the 

calculated total number of all users:

 

 Reading Data from the HTML Format

You can read online HTML files, but you should install and use the 

Beautiful Soup package to do so. Listing 5-23 shows how to make a request 

to a URL to be loaded into the Python environment. Then you use the 
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HTML parser parameter to read the entire HTML file. You can also extract 

values stored with HTML tags.

Listing 5-23. Reading and Parsing an HTML File

In [104]:import urllib from bs4

         import BeautifulSoup

          response = urllib.request.urlopen('http://python-data.

dr-chuck.net/known_by_Rona.html'

         html_doc = response.read()

         soup = BeautifulSoup(html_doc, 'html.parser')

         print(html_doc[:700])

         print("\n")

         print (soup.title)

         print(soup.title.string)

         print(soup.a.string)

 

In [103]: import urllib.request

           with urllib.request.urlopen("http://python-data.dr- 

chuck.net/known_by_Rona.html") as url:

                  strhtml = url.read()

           #I'm guessing this would output the html source code? 

print(strhtml[:700])
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You can also load HTML and use the Beautiful Soup package to 

parse HTML tags and display the first ten anchor tags, as shown in 

Listing 5-24.

Listing 5-24. Parsing HTML Tags

In [107]: import urllib from bs4

import BeautifulSoup

           response = urllib.request.urlopen('http://python- 

data.dr chuck.net/known_by_Rona.html' html_doc = 

response.read()

          print (html_doc[:300])

          soup = BeautifulSoup(html_doc, 'html.parser')

          print ("\n") counter=0

          for link in soup.findAll("a"):

              print(link.get("href"))

              if counter<10: counter+=1

                   continue

              else:

                   break

 

Let’s create an html variable that maintains some web page content 

and read it using Beautiful Soup, as shown in Listing 5-25.
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Listing 5-25. Reading HTML Using Beautiful Soup

In [108]: htmldata="""<html>

            <head>

            <title>

              The Dormouse's story

            </title>

            </head>

            <body>

              <p class="title">

                <b>

                  The Dormouse's story

                </b>

              </p>

              <p class="story">

                 Once upon a time there were three little 

sisters; and their names were

                 <a class="sister" href="http://example.com/

elsie" id="link1"> Elsie

                </a>

                ,

                 <a class="sister" href="http://example.com/

lacie" id="link2"> Lacie

                </a> and

                 <a class="sister" href="http://example.com/

tillie" id="link2"> Tillie

                </a>

                ; and they lived at the bottom of a well.

              </p>
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              <p class="story"> ...

              </p>

            </body>

          </html>

        """

        from bs4 import BeautifulSoup

        soup = BeautifulSoup(htmldata, 'html.parser')

        print(soup.prettify())

 

You can also use Beautiful Soup to extract data from HTML. You can 

extract data, tags, or all related data such as all hyperlinks in the parsed 

HTML content, as shown in Listing 5-26.
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Listing 5-26. Using Beautiful Soup to Extract Data from HTML

In [109]: soup.title

Out[109]: <title>

              The Dormouse's story

          </title>

In [110]: soup.title.name

Out[110]: 'title'

In [111]: soup.title.string

Out[111]: "\n      The Dormouse's story\n "

In [112]: soup.title.parent.name

Out[112]: 'head'

In [113]: soup.p

Out[113]: <p class="title">

            <b>

              The Dormouse's story

            </b>

          </p>

In [114]: soup.p['class']

Out[114]: ['title']

In [115]: soup.a

Out[115]: <a class="sister" href="http://example.com/elsie" 

id="link1"> Elsie

          </a>
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In [116]: soup.find_all('a')

Out[116]: [<a class="sister" href="http://example.com/elsie" 

id="link1"> Elsie

           </a>, <a class="sister" href="http://example.com/

lacie" id="link2"> Lacie

           </a>, <a class="sister" href="http://example.com/

tillie" id="link2"> Tillie

          </a>]

In [117]: soup.find(id="link2")

Out[117]: <a class="sister" href="http://example.com/lacie" 

id="link2"> Lacie

          </a>

It is possible to extract all the URLs found within a page’s <a> tags, as 

shown in Listing 5-27.

Listing 5-27. Extracting All URLs in Web Page Content

In [118]: for link in soup.find_all('a'):

              print(link.get('href'))

Another common task is extracting all the text from a page and 

ignoring all the tags, as shown in Listing 5-28.
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Listing 5-28. Extracting Only the Contents

In [119]: print(soup.get_text())

 

 Reading Data from the XML Format

Python provides the xml.etree.ElementTree (ET) module to implement 

a simple and efficient parsing of XML data. ET has two classes for this 

purpose: ElementTree, which represents the whole XML document as a 

tree, and Element, which represents a single node in this tree. Interactions 

with the whole document (reading and writing to/from files) are usually 

done on the ElementTree level. The interactions with a single XML element 

and its subelements are done on the Element level. In Listing 5-29, you are 

creating an XML container and reading it using ET for parsing purposes. 

Then you extract data from the container using the find() and get() 

methods, parsing through the generated tree.
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Listing 5-29. Reading XML and Extracting Its Data

In [128]: xmldata = """

              <?xml version="1.0"?>

              <data>

                  <student

                      name="Omar">

                      <rank>2</rank>

                      <year>2017</year>

                      <GPA>3.5</GPA>

                       <concentration name="Networking" 

Semester="7"/> </student>

                  <student name="Ali">

                      <rank>3</rank>

                      <year>2016</year>

                      <GPA>2.8</GPA>

                       <concentration name="Security" 

Semester="6"/>

                  </student>

                  <student name="Osama">

                      <rank>1</rank>

                      <year>2018</year>

                      <GPA>3.7</GPA>

                       <concentration name="App Development" 

Semester="8"/> </student>

              </data>

          """.strip()

In [129]:from xml.etree import ElementTree as ET stuff = 

ET.fromstring(xmldata) lst = stuff.findall('student')

         print ('Students count:', len(lst)) for item in lst:
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             print ("\nName:", item.get("name"))

              print ('concentration:', item.

find("concentration").get("name"))

             print ('Rank:', item.find('rank').text)

             print ('GPA:', item.find("GPA").text)

 

 Summary

This chapter covered data gathering and cleaning so that you can 

have reliable data for analysis. This list recaps what you studied in this 

chapter:

 –  How to apply cleaning techniques to handle missing 

values

 –  How to read CSV-formatted data offline and directly from 

the cloud
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 – How to merge and integrate data from different sources

 –  How to read and extract data from JSON, HTML, and 

XML formats

The next chapter will study how to explore and analyze data and much 

more.

 Exercises and Answers

 1. Write a Python script to read the data in an Excel 

file named movies.xlsx and save this data in a data 

frame called mov. Perform the following steps:

 a.  Read the contents of the second sheet that is 

named 2000s in the Excel file (movies.xlsx) 

and store this content in a data frame called 

Second_sheet.

 b.  Write the code needed to show the first seven 

rows from the data frame Second_sheet using 

an appropriate method.

 c.  Write the code needed to show the last five 

rows using an appropriate method.
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 d.  Use a suitable command to show only one 

column that is named Budget.

 e.  Use a suitable command to show the total rows 

in the first sheet that is called 2000s.

 f.  Use a suitable command to show the maximum 

value stored in the Budget column.

 g.  Use a suitable command to show the minimum 

value stored in the Budget column.

 h.  Write a single command to show the details 

(count, min, max, mean, std, 25%, 50%, 75%) 

about the column User Votes.

 i.  Use a suitable conditional statement that 

stores the rows in which the country name is 

USA and the Duration value is less than 50 in a 

data frame named USA50. Show the values in 

data frame USA50.
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 j.  Using a suitable command, create a calculated 

column named Avg Reviews in Second_sheet 

by adding Reviews by Users and Reviews by 

Critics and divide it by 2. Display the first five 

rows of the Second_sheet after creating the 

previous calculated column.

 k.  Using a suitable command, sort the Country 

values in ascending order (smallest to largest) 

and Avg_reviews in descending order (largest 

to smallest).

 l.  Write a Python script to read the following 

HTML and extract and display only the 

content, ignoring the tag structure:
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<html>

  <head>

   <title>

    Python Book Version 2018

   </title>

  </head>

  <body>

   <p class="title">

    <b>

     Author Name: Ossama Embarak

    </b>

   </p>

   <p class="story">

    Python techniques for gathering and cleaning data

     <a class="sister" href="https://leanpub.com/

AgilePythonProgrammingAppliedForEveryone" id="link1">

     Data Cleaning

    </a>

    , Data Processing and Visualization

     <a class="sister" href="http://www.lulu.com/shop/ossama-

embarak/agile-python-programming-applied-for-everyone/

paperback/product-23694020.html" id="link2">

     Data Visualization

    </a>

   </p>

   <p class="story">

   @July 2018

   </p>

  </body>

 </html>
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Answer: 

from bs4 import BeautifulSoup

soup = BeautifulSoup(htmldata, 'html.parser')

print(soup.prettify())

print(soup.get_text()) 
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CHAPTER 6

Data Exploring 
and Analysis
Nowadays, massive data is collected daily and distributed over various 

channels. This requires efficient and flexible data analysis tools. Python’s 

open source Pandas library fills that gap and deals with three different data 

structures: series, data frames, and panels. A series is a one-dimensional 

data structure such as a dictionary, array, list, tuple, and so on. A data 

frame is a two-dimensional data structure with heterogeneous data types, 

i.e., tabular data. A panel refers to a three-dimensional data structure 

such as a three-dimensional array. It should be clear that the higher- 

dimensional data structure is a container of its lower-dimensional data 

structure. In other words, a panel is a container of a data frame, and a data 

frame is a container of a series.

 Series Data Structures

As mentioned earlier, a series is a sequence of one-dimensional data such 

as a dictionary, list, array, tuple, and so on.
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 Creating a Series

Pandas provides a Series() method that is used to create a series 

structure. A serious structure of size n should have an index of length 

n. By default Pandas creates indices starting at 0 and ending with n-1. 

A Pandas series can be created using the constructor pandas.Series 

(data, index, dtype, copy) where data could be an array, constant, 

list, etc. The series index should be unique and hashable with length n, 

while dtype is a data type that could be explicitly declared or inferred 

from the received data. Listing 6-1 creates a series with a default index 

and with a set index. 

Listing 6-1. Creating a Series

In [5]: import pandas as pd

        import numpy as np

        data = np.array(['O','S','S','A'])

        S1 = pd.Series(data) # without adding index

         S2 = pd.Series(data,index=[100,101,102,103]) # with 

adding index print (S1) print ("\n") print (S2)

        0    O

        1    S

        2    S

        3    A

        dtype: object

        100  O

        101  S

        102  S

        103  A

        dtype: object
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In [40]:import pandas as pd

        import numpy as np

        my_series2 = np.random.randn(5, 10)

        print ("\nmy_series2\n", my_series2)

This is the output of creating a series of random values of 5 rows and 

10 columns.

 

As mentioned earlier, you can create a series from a dictionary; 

Listing 6-2 demonstrates how to create an index for a data series.

Listing 6-2. Creating an Indexed Series

In [6]: import pandas as pd

        import numpy as np

        data = {'X' : 0., 'Y' : 1., 'Z' : 2.}

        SERIES1 = pd.Series(data)

        print (SERIES1)

        X 0.0

        Y 1.0

        Z 2.0

        dtype: float64

In [7]: import pandas as pd

        import numpy as np

        data = {'X' : 0., 'Y' : 1., 'Z' : 2.}

        SERIES1 = pd.Series(data,index=['Y','Z','W','X'])

        print (SERIES1)

        Y 1.0
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        Z 2.0

        W NaN

        X 0.0

        dtype: float64

If you can create series data from a scalar value as shown in Listing 6-3, 

then an index is mandatory, and the scalar value will be repeated to match 

the length of the given index.

Listing 6-3. Creating a Series Using a Scalar

In [9]: # Use sclara to create a series

        import pandas as pd

        import numpy as np

        Series1 = pd.Series(7, index=[0, 1, 2, 3, 4])

        print (Series1)

        0    7

        1    7

        2    7

        3    7

        4    7

        dtype: int64

 Accessing Data from a Series with a Position

Like lists, you can access a series data via its index value. The examples in 

Listing 6-4 demonstrate different methods of accessing a series of data. 

The first example demonstrates retrieving a specific element with index 0.  

The second example retrieves indices 0, 1, and 2. The third example 

retrieves the last three elements since the starting index is -3 and moves 

backward to -2, -1. The fourth and fifth examples retrieve data using the 

series index labels.
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Listing 6-4. Accessing a Data Series

In [18]: import pandas as pd

         Series1 = pd.Series([1,2,3,4,5],index =

                             ['a','b','c','d','e'])

         print ("Example 1:Retrieve the first element")

         print (Series1[0] )

         print ("\nExample 2:Retrieve the first three element")

         print (Series1[:3])

         print ("\nExample 3:Retrieve the last three element")

         print(Series1[-3:])

         print ("\nExample 4:Retrieve a single element")

         print (Series1['a'])

         print ("\nExample 5:Retrieve multiple elements")

         print (Series1[['a','c','d']])
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 Exploring and Analyzing a Series

Numerous statistical methods can be applied directly on a data series. 

Listing 6-5 demonstrates the calculation of mean, max, min, and standard 

deviation of a data series. Also, the .describe() method can be used to 

give a data description, including quantiles.

Listing 6-5. Analyzing Series Data

In [10]: import pandas as pd

         import numpy as np

         my_series1 = pd.Series([5, 6, 7, 8, 9, 10])

         print ("my_series1\n", my_series1)

         print ("\n Series Analysis\n ")

          print ("Series mean value : ", my_series1.mean()) # 

find mean value in a series

          print ("Series max value : ",my_series1.max()) #  

find max value in a series

          print ("Series min value : ",my_series1.min()) #  

find min value in a series

          print ("Series standard deviation value : ", 

my_series1.std()) # find standard deviation

         my_series1

         0    5

         1    6

         2    7

         3    8

         4    9

         5    10

         dtype: int64
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         Series Analysis

         Series mean value : 7.5

         Series max value : 10

         Series min value : 5

         Series standard deviation value : 1.8708286933869707

In [11]: my_series1.describe()

Out[11]: count     6.000000

         mean      7.500000

         std       1.870829

         min       5.000000

         25%       6.250000

         50%       7.500000

         75%       8.750000

         max      10.000000

         dtype: float64

If you copied by reference one series to another, then any changes 

to the series will adapt to the other one. After copying my_series1 to my_

series_11, once you change the indices of my_series_11, it reflects back 

to my_series1, as shown in Listing 6-6.

Listing 6-6. Copying a Series to Another with a Reference

In [17]: my_series_11 = my_series1

         print (my_series1)

         my_series_11.index = ['A', 'B', 'C', 'D', 'E', 'F']

         print (my_series_11)

         print (my_series1)

         0    5

         1    6

         2    7

         3    8
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         4    9

         5    10

         dtype: int64

         A    5

         B    6

         C    7

         D    8

         E    9

         F    10

         dtype: int64

         A    5

         B    6

         C    7

         D    8

         E    9

         F    10

         dtype: int64

You can use the .copy() method to copy the data set without having a 

reference to the original series. See Listing 6-7.

Listing 6-7. Copying Series Values to Another

In [21]: my_series_11 = my_series1.copy()

         print (my_series1)

         my_series_11.index = ['A', 'B', 'C', 'D', 'E', 'F']

         print (my_series_11)

         print (my_series1)

         0    5

         1    6

         2    7

         3    8
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         4    9

         5    10

         dtype: int64

         A    5

         B    6

         C    7

         D    8

         E    9

         F    10

         dtype: int64

         0    5

         1    6

         2    7

         3    8

         4    9

         5    10

         dtype: int64

 Operations on a Series

Numerous operations can be implemented on series data. You can check 

whether an index value is available in a series or not. Also, you can check 

all series elements against a specific condition, such as if the series value is 

less than 8 or not. In addition, you can perform math operations on series 

data directly or via a defined function, as shown in Listing 6-8.

Listing 6-8. Operations on Series

In [23]: 'F' in my_series_11

Out[23]: True

In [27]: temp = my_series_11 < 8

         temp
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Out[27]: A    True

         B    True

         C    True

         D    False

         E    False

         F    False

         dtype: bool

         In [35]: len(my_series_11)

Out[35]: 6

In [28]: temp = my_series_11[my_series_11 < 8 ] * 2

         temp

Out[28]: A    10

         B    12

         C    14

         dtype: int64

Define a function to add two series and call the function, like this:

In [37]: def AddSeries(x,y):

             for i in range (len(x)):

                 print (x[i] + y[i])

In [39]: print ("Add two series\n")

         AddSeries (my_series_11, my_series1)

         Add two series

         10

         12

         14

         16

         18

         20
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You can visualize data series using the different plotting systems that 

are covered in Chapter 7. However, Figure 6-1 demonstrates how to get 

an at-a-glance idea of your series data and graphically explore it via visual 

plotting diagrams. See Listing 6-9.

Listing 6-9. Visualizing Data Series

In [49]: import matplotlib.pyplot as plt

         plt.plot(my_series2)

         plt.ylabel('index')

         plt.show()

In [54]: from numpy import *

         import math

         import matplotlib.pyplot as plt

         t = linspace(0, 2*math.pi, 400)

Figure 6-1. Line visualization
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         a = sin(t)

         b = cos(t)

         c = a + b

In [50]: plt.plot(t, a, 'r') # plotting t, a separately

         plt.plot(t, b, 'b') # plotting t, b separately

         plt.plot(t, c, 'g') # plotting t, c separately

         plt.show()

We can add multiple plots to the same canvas as shown in Figure 6-2.

 Data Frame Data Structures

As mentioned earlier, a data frame is a two-dimensional data structure 

with heterogeneous data types, i.e., tabular data.

Figure 6-2. Multiplots on the same canvas
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 Creating a Data Frame

Pandas can create a data frame using the constructor pandas.

DataFrame(data, index, columns, dtype, copy). A data frame can be 

created from lists, series, dictionaries, Numpy arrays, or other data frames. 

A Pandas data frame not only helps to store tabular data but also performs 

arithmetic operations on rows and columns of the data frame. Listing 6-10 

creates a data frame from a single list and a list of lists.

Listing 6-10. Creating a Data Frame from a List

In [19]: import pandas as pd

         data = [10,20,30,40,50]

         DF1 = pd.DataFrame(data)

         print (DF1)

         0    10

         1    20

         2    30

         3    40

         4    50

In [22]: import pandas as pd

         data = [['Ossama',25],['Ali',43],['Ziad',32]]

         DF1 = pd.DataFrame(data,columns=['Name','Age'])

         print (DF1)

              Name       Age

         0    Ossama     25

         1    Ali        43

         2    Ziad       32

In [21]: import pandas as pd

         data = [['Ossama',25],['Ali',43],['Ziad',32]]

          DF1 = pd.DataFrame(data,columns=['Name','Age'], 

dtype=float) print (DF1)
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              Name       Age

         0    Ossama     25.0

         1    Ali        43.0

         2    Ziad       32.0

You can create a data frame from dictionaries or arrays, as shown in 

Listing 6-11. Also, you can set the data frame indices. However, if you don’t 

set the indices, then the data frame starts with 0 and goes up to n-1, where 

n is the length of the list. Column names are taken by default from the 

dictionary keys. However, it’s possible to set labels for columns as well. The 

first data frame’s df1 columns are labeled with the dictionary key names; 

that’s why you don’t see NaN cases except for the missing value of the project 

in dictionary 1. While in the second data frame, named df2, you change the 

column name from Test1 to Test_1, and you get NaNs for all the records. 

This is because of the absence of Test_1 in the dictionary key of data.

Listing 6-11. Creating a DataFrame from a Dictionary

In [13]: import pandas as pd

         data = [ {'Test1': 10, 'Test2': 20},{'Test1': 30, 

'Test2': 20, 'Project': 20}]

          # With three column indices, values same as dictionary 

keys

          df1 = pd.DataFrame(data, index=['First', 'Second'], 

columns=['Test2', 'Project' , 'Test1'])

          #With two column indices with one index with another 

name

          df2 = pd.DataFrame(data, index=['First', 'Second'], 

columns=['Project', 'Test_1','Test2 ')]

         print (df1)

         print ("\n")

         print (df2)
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                   Test2       Project        Test1

         First     20          NaN            10

         Second    20          20.0           30

                   Project     Test_1         Test2

         First     NaN         NaN            20

         Second    20.0        NaN            20

Pandas allows you to create a data frame from a dictionary of series 

where you get the union of all series indices passed. As shown in Listing 

6-12 with the student Salwa, no Test1 value is given. That’s why NaN is set 

automatically.

Listing 6-12. Creating a Data Frame from a Series

In [16]: import pandas as pd

         data = { 'Test1' : pd.Series([70, 55, 89], 

index=['Ahmed', 'Omar', 'Ali']),

                  'Test2' : pd.Series([56, 82, 77, 65], 

index=['Ahmed', 'Omar', 'Ali', 'Salwa'])}

         df1 = pd.DataFrame(data)

         print (df1)

                    Test1     Test2

         Ahmed      70.0      56

         Ali        89.0      77

         Omar       55.0      82

         Salwa      NaN       65
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 Updating and Accessing a Data Frame’s  
Column Selection

You can select a specific column using the column labels. For example, 

df1['Test2'] is used to select only the column labeled Test2 in the data 

frame, while df1[:] is used to display all the columns and all the rows, as 

shown in Listing 6-13.

Listing 6-13. Data Frame Column Selection

In [51]: import pandas as pd

         data = { 'Test1' : pd.Series([70, 55, 89], 

index=['Ahmed', 'Omar', 'Ali']),

                  'Test2' : pd.Series([56, 82, 77, 65], 

index=['Ahmed', 'Omar', 'Ali', 'Salwa'])}

         df1 = pd.DataFrame(data)

         print (df1['Test2']) # Column selection

         print("\n")

         print (df1[:]) # Column selection

         Ahmed     56

         Ali       77

         Omar      82

         Salwa     65

         Name: Test2, dtype: int64

                   Test1       Test2

         Ahmed     70.0        56

         Ali       89.0        77

         Omar      55.0        82

         Salwa     NaN         65
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You can select columns by using the column labels or the column 

index. df1.iloc[:, [1,0]] is used to display all rows for columns 1 

and 0 starting with column 1, which refers to the column named Test2. 

In addition, df1[0:4:1] is used to display all the rows starting from row 

0 up to row 3 incremented by 1, which gives all rows from 0 up to 3. See 

Listing 6-14.

Listing 6-14. Data Frame Column and Row Selection

In [46]: df1.iloc[:, [1,0 ]]

Out[46]:             Test2   Test1

         Ahmed       56      70.0

         Ali         77      89.0

         Omar        82      55.0

         Salwa       65      NaN

In [39]: df1[0:4:1]

Out[39]:             Test1   Test2

         Ahmed       70.0    56

         Ali         89.0    77

         Omar        55.0    82

         Salwa       NaN     65

 Column Addition

You can simply add a new column and add its values directly using a 

series. In addition, you can create a new column by processing the other 

columns, as shown in Listing 6-15.
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Listing 6-15. Adding a New Column to a Data Frame

In [66]: # add a new Column

         import pandas as pd

         data = { 'Test1' : pd.Series([70, 55, 89], 

index=['Ahmed', 'Omar', 'Ali']),

                  'Test2' : pd.Series([56, 82, 77, 65], 

index=['Ahmed', 'Omar', 'Ali', 'Salwa'])}

              df1 = pd.DataFrame(data)

              print (df1)

               df1['Project'] = pd.Series([90,83,67, 87], 

index=['Ali','Omar','Salwa', 'Ahmed'])

              print ("\n")

          df1['Average'] = round((df1['Test1']+df1['Test2']+ 

df1['Project'])/3, 2)

         print (df1)

                  Test1   Test2

         Ahmed    70.0    56

         Ali      89.0    77

         Omar     55.0    82

         Salwa    NaN     65

                  Test1   Test2   Project   Average

         Ahmed    70.0    56      87        71.00

         Ali      89.0    77      90        85.33

         Omar     55.0    82      83        73.33

         Salwa    NaN     65      67        NaN

 Column Deletion

You can delete any column using the del method. For example,  

del df2['Test2'] deletes the Test2 column from the data set. In 

addition, you can use the pop method to delete a column. For example, 
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df2.pop('Project') is used to delete the column Project. However, you 

should be careful when you use the del or pop method since a reference 

might exist. In this case, it deletes not only from the executed data frame 

but also from the referenced data frame. Listing 6-16 creates the data frame 

df1 and copies df1 to df2.

Listing 6-16. Creating and Copying a Data Frame

In [70]: import pandas as pd

         data = { 'Test1' : pd.Series([70, 55, 89], 

index=['Ahmed', 'Omar', 'Ali']),

                  'Test2' : pd.Series([56, 82, 77, 65], 

index=['Ahmed', 'Omar', 'Ali', 'Salwa'])}

         print (df1)

         df2 = df1

         print ("\n")

         print (df2)

                  Test1    Test2   Project   Average

         Ahmed    70.0     56      87        71.00

         Ali      89.0     77      90        85.33

         Omar     55.0     82      83        73.33

         Salwa    NaN      65      67        NaN

                  Test1    Test2   Project   Average

Ahmed             70.0     56      87        71.00

Ali               89.0     77      90        85.33

Omar              55.0     82      83        73.33

Salwa             NaN      65      6         7  NaN

In the previous Python script, you saw how to create df2 and assign 

it df1. In Listing 6-17, you are deleting the Test2 and Project variables 

using the del and pop methods sequentially. As shown, both variables are 

deleted from both data frames df1 and df2 because of the reference existing 

between these two data frames as a result of using the assign (=) operator.
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Listing 6-17. Deleting Columns from a Data Frame

In [71]: # Delete a column in data frame using del function

         print ("Deleting the first column using DEL function:")

         del df2['Test2']

         print (df2)

         # Delete a column in data frame using pop function

         print ("\nDeleting another column using POP function:")

         df2.pop('Project')

         print (df2)

         Deleting the first column using DEL function:

                     Test1   Project    Average

         Ahmed       70.0    87         71.00

         Ali         89.0    90         85.33

         Omar        55.0    83         73.33

         Salwa       NaN     67         NaN

         Deleting another column using POP function:

                     Test1    Average

         Ahmed       70.0     71.00

         Ali         89.0     85.33

         Omar        55.0     73.33

         Salwa       NaN      NaN

In [72]: print (df1)

                     Test1    Average

         Ahmed       70.0     71.00

         Ali         89.0     85.33

         Omar        55.0     73.33

         Salwa       NaN      NaN
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In [73]: print (df2)

                     Test1    Average

         Ahmed       70.0     71.00

         Ali         89.0     85.33

         Omar        55.0     73.33

         Salwa       NaN      NaN

To solve this problem, you can use the df. copy() method instead of 

the assign operator (=). Listing 6-18 shows that you deleted the variables 

Test2 and Project using the del() and pop() methods sequentially, but 

only df2 has been affected, while df1 remains unchanged.

Listing 6-18. Using the Copy Method to Delete Columns from a 

Data Frame

In [83]: # add a new Column

         import pandas as pd

         data = { 'Test1' : pd.Series([70, 55, 89], 

index=['Ahmed', 'Omar', 'Ali']),

                  'Test2' : pd.Series([56, 82, 77, 65], 

index=['Ahmed', 'Omar', 'Ali', 'Salwa'])}

         df1 = pd.DataFrame(data)

          df1['Project'] = pd.Series([90,83,67, 87], 

index=['Ali','Omar','Salwa', 'Ahmed'])

         print ("\n")

          df1['Average'] = round((df1['Test1']+df1['Test2']+df1 

['Project'])/3, 2)

         print (df1)

         print ("\n")

         df2= df1.copy() # copy df1 into df2 using copy() method

         print (df2)

         #delete columns using del and pop methods

         del df2['Test2']
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         df2.pop('Project')

         print ("\n")

         print (df1)

         print ("\n")

         print (df2)

 

 Row Selection

In Listing 6-19, you are selecting the second row for student Omar. Also, you 

use the slicing methods to retrieve rows 2 and 3.
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Listing 6-19. Retrieving Specific Rows

In [106]: # add a new Column

          import pandas as pd

          data = { 'Test1' : pd.Series([70, 55, 89], 

index=['Ahmed', 'Omar', 'Ali']),

                   'Test2' : pd.Series([56, 82, 77, 65], 

index=['Ahmed', 'Omar', 'Ali', 'Salwa'])}

          df1 = pd.DataFrame(data)

           df1['Project'] = pd.Series([90,83,67, 87],index= 

['Ali','Omar','Salwa', 'Ahmed'])

         print ("\n")

          df1['Average'] = round((df1['Test1']+df1['Test2']+df1 

['Project'])/3, 2)

         print (df1)

         print ("\nselect iloc function to retrieve row number 2")

         print (df1.iloc[2])

         print ("\nslice rows")

         print (df1[2:4] )
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 Row Addition

Listing 6-20 demonstrates how to add rows to an existing data frame.

Listing 6-20. Adding New Rows to the Data Frame

In [134 ]: import pandas as pd

           data = { 'Test1' : pd.Series([70, 55, 89], 

index=['Ahmed', 'Omar', 'Ali']),

                    'Test2' : pd.Series([56, 82, 77, 65], 

index=['Ahmed', 'Omar', 'Ali', 'Salwa']),

                 'Project' : pd.Series([87, 83, 90, 67], 

index=['Ahmed', 'Omar', 'Ali', 'Salwa']),

                 'Average' : pd.Series([71, 73.33, 85.33, 66], 

index=['Ahmed', 'Omar', 'Ali', 'Salw

           data = pd.DataFrame(data)

           print (data)

           print("\n")

            df2 = pd.DataFrame([[80, 70, 90, 80]], columns 

= ['Test1','Test2','Project','Average'], 

index=['Khalid'])

           datadata.append(df2)

           print (data)
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 Row Deletion

Pandas provides the df.drop() method to delete rows using the label 

index, as shown in Listing 6-21.

Listing 6-21. Deleting Rows from a Data Frame

In [138]: print (data)

      print ('\n')

      data = data.drop('Omar')

      print (data)

 

 Exploring and Analyzing a Data Frame

Pandas provides various methods for analyzing data in a data frame. 

The .describe() method is used to generate descriptive statistics that 

summarize the central tendency, dispersion, and shape of a data set’s 

distribution, excluding NaN values.

DataFrame.describe(percentiles=None,include=None, exclude=None)

[source]

DataFrame.describe() analyzes both numeric and object series, as 

well as data frame column sets of mixed data types. The output will vary 

depending on what is provided. Listing 6-22 analyzes the Age, Salary, 
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Height, and Weight attributes in a data frame. It also shows the mean, max, 

min, standard deviation, and quantiles of all attributes. However, Salwa’s 

Age is missing; you get the full description of Age attributes excluding 

Salwa’s data.

Listing 6-22. Creating a Data Frame with Five Attributes

In [61]: print (df1)

data = {'Age' : pd.Series([30, 25, 44, ],  

index=['Ahmed', 'Omar', 'Ali']),

'Salary' : pd.Series([25000, 17000, 30000, 12000], 

index=['Ahmed', 'Omar', 'Ali',

'Height' : pd.Series([160, 154, 175, 165],  

index=['Ahmed', 'Omar', 'Ali', 'Salwa'

'Weight' : pd.Series([85, 70, 92, 65], index=['Ahmed', 'Omar', 

'Ali', 'Salwa']),

'Gender' : pd.Series(['Male', 'Male', 'Male', 'Female'], 

index=['Ahmed', 'Omar',

data = pd.DataFrame(data)

print (data)

print("\n")

df2 = pd.DataFrame([[42, 31000, 170, 80, 'Female']], columns 

=['Age','Salary','Height'

                       , index=['Mona'])

data = data.append(df2)

print (data)
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Applying the data.describe() method, you get the full description 

of all attributes except the Gender attribute because of its string data 

type. You can enforce implementation of all attributes by using the 

include='all' method attribute. Also, you can apply the analysis to a 

specific pattern, for example, to the Salary pattern only, which finds 

the mean, min, max, std, and quantiles of all employees’ salaries. See 

Listing 6-23.

Listing 6-23. Analyzing a Data Frame

In [63]: data.describe()
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In [64]: data.describe(include='all')

 

In [66]: data.Salary.describe()

Listing 6-24 includes only the numeric columns in a data frame’s 

description.
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Listing 6-24. Analyzing Only Numerical Patterns

In [67]: data.describe(include=[np.number])

 

Listing 6-25 includes only string columns in a data frame’s description.

Listing 6-25. Analyzing String Patterns Only (Gender)

In [68]: data.describe(include=[np.object])

 

In [70]: data.describe(exclude=[np.number])
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You can measure overweight employee by calculating the optimal weight 

and comparing this with their recorded weight, as shown in Listing 6-26.

Listing 6-26. Checking the Weight Optimality

In [71]: data

 

In [75]: OptimalWeight = data['Height']- 100

         OptimalWeight

 

In [93]:unOptimalCases = data['Weight'] <= OptimalWeight 

unOptimalCases
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 Panel Data Structures

As mentioned earlier, a panel is a three-dimensional data structure like a 

three-dimensional array.

 Creating a Panel

Pandas creates a panel using the constructor pandas.Panel(data, items, 

major_axis, minor_axis, dtype, copy). The panel can be created from 

a dictionary of data frames and narrays. The data can take various forms, 

such as ndarray, series, map, lists, dictionaries, constants, and also another 

data frames.

The following Python script creates an empty panel:

#creating an empty panel

import pandas as pd

p = pd.Panel ()

Listing 6-27 creates a panel with three dimensions.

Listing 6-27. Creating a Panel with Three Dimensions

In [143]: # creating an empty panel

          import pandas as pd

          import numpy as np

          data = np.random.rand(2,4,5)

          Paneldf = pd.Panel(data)

          print (Paneldf)
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 Accessing Data from a Panel with a Position

Listing 6-28 creates a panel and fills it with random data, where the 

first item in the panel is a 4x3 array and the second item is a 4x2 array 

of random values. For the Item2 column, two values are NaN since its 

dimension is 4x2. You can also access data from a panel using item labels, 

as shown in Listing 6-28.

Listing 6-28. Selecting and Displaying Panel Items

In [147]: # creating an empty panel

import pandas as pd

import numpy as np

data = {'Item1' : pd.DataFrame(np.random.randn(4, 3)),

        'Item2' : pd.DataFrame(np.random.randn(4, 2))}

Paneldf = pd.Panel(data)

print (Paneldf['Item1'])

print ("\n")

print (Paneldf['Item2'])

 

Python displays the panel items in a data frame with two dimensions, 

as shown previously. Data can be accessed using the method panel.

major_axis(index) and also using the method panel.minor_

axis(index). See Listing 6-29.
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Listing 6-29. Selecting and Displaying a Panel with Major and 

Minor Dimensions

In [149]: print (Paneldf.major_xs(1))

 

In [150]: print (Paneldf.minor_xs(1))

 

 Exploring and Analyzing a Panel

Once you have a panel, you can make statistical analysis on the 

maintained data. In Listing 6-30, you can see two groups of employees, 

each of which has five attributes maintained in a panel called P. You 

implement the .describe() method for Group1, as well as for the Salary 

attribute in this group.

Listing 6-30. Panel Analysis

In [104]: import pandas as pd

data1 = {'Age' : pd.Series([30, 25, 44, ], index=['Ahmed', 

'Omar', 'Ali']),

'Salary' : pd.Series([25000, 17000, 30000, 12000], 

index=['Ahmed', 'Omar', 'Ali', 'Salwa']),

'Height' : pd.Series([160, 154, 175, 165], index=['Ahmed', 

'Omar', 'Ali', 'Salwa']),
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'Weight' : pd.Series([85, 70, 92, 65], index=['Ahmed', 'Omar', 

'Ali', 'Salwa']),

'Gender' : pd.Series(['Male', 'Male', 'Male', 'Female'], 

index=['Ahmed', 'Omar', 'Ali', 'Salwa'])}

data2 = {'Age' : pd.Series([24, 19, 33,25  ], index=['Ziad', 

'Majid', 'Ayman', 'Ahlam']),

'Salary' : pd.Series([17000, 7000, 22000, 21000], 

index=['Ziad', 'Majid', 'Ayman', 'Ahlam']),

'Height' : pd.Series([170, 175, 162, 177], index=['Ziad', 

'Majid', 'Ayman', 'Ahlam']),

'Weight' : pd.Series([77, 84, 74, 90], index=['Ziad', 'Majid', 

'Ayman', 'Ahlam']),

'Gender' : pd.Series(['Male', 'Male', 'Male', 'Female'], 

index=['Ziad', 'Majid', 'Ayman', 'Ahlam'])}

data = {'Group1': data1, 'Group2': data2}

p = pd.Panel(data)

In [106]: p['Group1'].describe()

 

In [107]: p['Group1']['Salary'].describe()
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 Data Analysis

As indicated earlier, Pandas provides numerous methods for data analysis. 

The objective in this section is to get familiar with the data and summarize 

its main characteristics. Also, you can define your own methods for specific 

statistical analyses.

 Statistical Analysis

Most of the following statistical methods were covered earlier with practical 

examples of the three main data collections: series, data frames, and panels.

• df.describe(): Summary statistics for numerical 

columns

• df.mean(): Returns the mean of all columns

• df.corr(): Returns the correlation between columns 

in a data frame

• df.count(): Returns the number of non-null values in 

each data frame column

• df.max(): Returns the highest value in each column

• df.min(): Returns the lowest value in each column

• df.median(): Returns the median of each column

• df.std(): Returns the standard deviation of each 

column

Listing 6-31 creates a data frame with six columns and ten rows.

Listing 6-31. Creating a Data Frame

In [11]: import pandas as pd

import numpy as np
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Number = [1,2,3,4,5,6,7,8,9,10]

Names = ['Ali Ahmed','Mohamed Ziad','Majid Salim','Salwa 

Ahmed', 'Ahlam Mohamed', 'Omar Ali', 'Amna Mohammed','Khalid 

Yousif', 'Safa Humaid', 'Amjad Tayel']

City = ['Fujairah','Dubai','Sharjah','AbuDhabi','Fujairah','Dub

ai', 'Sharja ', 'AbuDhabi','Sharjah','Fujairah']

columns = ['Number', 'Name', 'City' ]

dataset= pd.DataFrame({'Number': Number , 'Name': Names, 

'City': City}, columns = columns )

Gender= pd.DataFrame({'Gender':['Male','Male','Male','Female', 

'Female', 'Male', 'Female', 'Male','Female', 'Male']})

Height = pd.DataFrame(np.random.randint(120,175, size=(12, 1))) 

Weight = pd.DataFrame(np.random.randint(50,110, size=(12, 1)))

dataset['Gender']= Gender

dataset['Height']= Height

dataset['Weight']= Weight

dataset.set_index('Number')
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The Python script and examples in Listing 6-32 show the summary 

of height and weight variables, the mean values of height and weight, 

the correlation between the numerical variables, and the count of 

all records in the data set. The correlation coefficient is a measure 

that determines the degree to which two variables’ movements are 

associated. The most common correlation coefficient, generated by the 

Pearson correlation, may be used to measure the linear relationship 

between two variables. However, in a nonlinear relationship, this 

correlation coefficient may not always be a suitable measure of 

dependence. The range of values for the correlation coefficient is -1.0 

to 1.0. In other words, the values cannot exceed 1.0 or be less than -1.0, 

whereby a correlation of -1.0 indicates a perfect negative correlation, 

and a correlation of 1.0 indicates a perfect positive correlation. The 

correlation coefficient is denoted as r. If its value greater than zero, it’s 

a positive relationship; while if the value is less than zero, it’s a negative 

relationship. A value of zero indicates that there is no relationship 

between the two variables.

As shown, there is a weak negative correlation (-0.301503) between the 

height and width of all members in the data set. Also, the initial stats show 

that the height has the highest deviation; in addition, the 75th quantile of 

the height is equal to 159.

Listing 6-32. Summary and Statistics of Variables

In [186]: # Summary statistics for numerical columns

print ( dataset.describe())
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In [187]: print (dataset.mean()) # Returns the mean of all 

columns

 

In [188]: # Returns the correlation between columns in a 

DataFrame

print (dataset.corr())

 

In [189]: # Returns the number of non-null values in each 

DataFrame       column

print (dataset.count())
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In [190]: # Returns the highest value in each column

print (dataset.max())

 

In [191]: # Returns the lowest value in each column

print (dataset.min())

 

In [192]: # Returns the median of each column

print (dataset.median())

 

In [193]: # Returns the standard deviation of each column

print (dataset.std())
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 Data Grouping

You can split data into groups to perform more specific analysis over 

the data set. Once you perform data grouping, you can compute 

summary statistics (aggregation), perform specific group operations 

(transformation), and discard data with some conditions (filtration). In 

Listing 6-33, you group data using City and find the count of genders per 

city. In addition, you group the data set by city and display the results, 

where for example rows 1 and 5 are people from Dubai. You can use 

multiple grouping attributes. You can group the data set using City and 

Gender. The retrieved data shows that, for instance, Fujairah has females 

(row 4) and males (rows 0 and 9). 

Listing 6-33. Data Grouping

In [3]: dataset.groupby('City')['Gender'].count()

The following output shows that we have 2 students from Abu dhabi, 2 

from Dubai, 3 from Fujairah and 3 from Sharjah groupped by gender.

 

In [4]: print (dataset.groupby('City').groups)

 

In [5]: print (dataset.groupby(['City','Gender']).groups)
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 Iterating Through Groups

You can iterate through a specific group, as shown in Listing 6-34. When 

you iterate through the gender, it should be clear that by default the 

groupby object has the same name as the group name.

Listing 6-34. Iterating Through Grouped Data

In [7]: grouped = dataset.groupby('Gender')

        for name,group in grouped:

            print (name)

            print (group)

            print ("\n")

 

You can also select a specific group using the get_group() method, as 

shown in Listing 6-35 where you group data by gender and then select only 

females.
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Listing 6-35. Selecting a Single Group

In [9]: grouped = dataset.groupby('Gender')

        print (grouped.get_group('Female'))

 

 Aggregations

Aggregation functions return a single aggregated value for each 

group. Once the groupby object is created, you can implement various 

functions on the grouped data. In Listing 6-36, you calculate the mean 

and size of height and weight for both males and females. In addition, 

you calculate the summation and standard deviations for both patterns 

of males and females.

Listing 6-36. Data Aggregation

In [18]: # Aggregation

         grouped = dataset.groupby('Gender')

         print (grouped['Height'].agg(np.mean))

         print ("\n")

         print (grouped['Weight'].agg(np.mean))

         print ("\n")

         print (grouped.agg(np.size))

         print ("\n")

          print (grouped['Height'].agg([np.sum, np.mean, 

np.std]))
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 Transformations

Transformation on a group or a column returns an object that is 

indexed the same size as the one being grouped. Thus, the transform 

should return a result that is the same size as that of a group chunk.  

See Listing 6-37.

Listing 6-37. Creating the Index

In [26]: dataset = dataset.set_index(['Number'])

         print (dataset)
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In Listing 6-38, you group data by Gender, then implement the function 

lambda x: (x - x.mean()) / x.std()*10, and display results for both 

height and weight. The lambda operator or lambda function is a way to 

create a small anonymous function, i.e., a function without a name. This 

function is throwaway function; in other words, it is just needed where it 

has been created.

Listing 6-38. Transformation

In [28]: grouped = dataset.groupby('Gender')

         score = lambda x: (x - x.mean()) / x.std()*10

         print (grouped.transform(score))

 

 Filtration

Python provides direct filtering for data. In Listing 6-39, you applied 

filtering by city, and the return cities appear more than three times in the 

data set.

Listing 6-39. Filtration

In [30]: print (dataset.groupby('City').filter(lambda x: len(x) 

>= 3))
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 Summary

This chapter covered how to explore and analyze data in different 

collection structures. Here is a list of what you just studied in this 

chapter:

 –  How to implement Python techniques to explore and 

analyze a series of data, create a series, access data from 

series with the position, and apply statistical methods on a 

series.

 –  How to explore and analyze data in a data frame, create a 

data frame, and update and access data. This included 

column and row selection, addition, and deletion, as well 

as applying statistical methods on a data frame.

 –  How to apply statistical methods on a panel to explore and 

analyze its data.

 –  How to apply statistical analysis on the derived data from 

implementing Python data grouping, iterating through 

groups, aggregations, transformations, and filtration 

techniques.

The next chapter will cover how to visualize data using numerous 

plotting packages and much more.
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 Exercises and Answers

 A. Create a data frame called df from the following 

tabular data dictionary that has these index labels: 

['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 

'i', 'j'].

 

Answer:

You should import both the Pandas and Numpy libraries.

import numpy as np

import pandas as pd

You must create a dictionary and list of labels and 

then call the data frame method and assign the 

labels list as an index, as shown in Listing 6-40.

Listing 6-40. Creating a Tabular Data Frame

In [5]: import numpy as np

        import pandas as pd

        import matplotlib as mpl
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data = { 'Animal': ['cat', 'cat', 'snake', 'dog', 'dog',

                 'cat', 'snake', 'cat', 'dog', 'dog'],

'Age': [2.5, 3, 0.5, np.nan, 5, 2, 4.5, np.nan, 7, 3],

'Visits': [1, 3, 2, 3, 2, 3, 1, 1, 2, 1],

'Priority': ['yes', 'yes', 'no', 'yes', 'no', 'no', 'no', 

'yes', 'no', 'no']}

labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']

#Create a DataFrame df from this dictionary data which has the 

index labels.

df = pd.DataFrame( data, index = labels, columns=['Animal', 

'Age', 'Priority', 'Visits'])

print (df)

 

 B. Display a summary of the data frame’s basic 

information.

You can use df.info() and df.describe() to get 

a full description of your data set, as shown in 

Listing 6-41.
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Listing 6-41. Data Frame Summary

In [6]: df.info()

 

In [7]: df.describe()

 

 C. Return the first three rows of the data frame df.

Listing 6-42 shows the use of df.iloc[:3] and df.

head(3) to retrieve the first n rows of the data frame.
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Listing 6-42. Selecting a Specific n Rows

In [12]: df.head(3)

 

In [13]: df.iloc[:3]

 

 D. Select just the animal and age columns from the 

data frame df.

The Python data frame loc() method is used 

to retrieve the specific pattern df.loc[ : , 

['Animal', 'Age']]. In addition, an array form 

retrieval can be used too with df[['Animal', 

'Age']] . See Listing 6-43.

Listing 6-43. Slicing Data Frame

In [16]: df.loc[:,['Animal', 'Age']]

         # or

         df [['Animal', 'Age']]

Chapter 6  Data exploring anD analysis



292

 

 E. Count the visit priority per animal.

In [8]: df.groupby('Priority')['Animal'].count()

 F. Find the mean of the animals’ ages.

In [10]: df.groupby('Animal')['Age'].mean()

 G. Display a summary of the data set. See Listing 6-44.

Listing 6-44. Data Set Summary

In [13]: df.groupby('Animal')['Age'].describe()
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CHAPTER 7

Data Visualization

Python provides numerous methods for data visualization. Various Python 

libraries can be used for data visualization, such as Pandas, Seaborn, 

Bokeh, Pygal, and Ploty. Python Pandas is the simplest method for basic 

plotting. Python Seaborn is great for creating visually appealing statistical 

charts that include color. Python Bokeh works great for more complicated 

visualizations, especially for web-based interactive presentations. Python 

Pygal works well for generating vector and interactive files. However, it 

does not have the flexibility that other methods do. Python Plotly is the 

most useful and easiest option for creating highly interactive web-based 

visualizations.

Bar charts are an essential visualization tool used to compare values 

in a variety of categories. A bar chart can be vertically or horizontally 

oriented by adjusting the x- and y-axes, depending on what kind of 

information or categories the chart needs to present. This chapter 

demonstrates the use and implementation of various visualization tools; 

the chapter will use the salaries.csv file shown in Figure 7-1 as the data 

set for plotting purposes.
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 Direct Plotting

Pandas is a Python library with data frame features that supplies built-

in options for plotting visualizations in a two-dimensional tabular style. 

In Listing 7-1, you read the Salaries data set and create some vectors of 

variables, which are rank, discipline, phd, service, sex, and salary.

Listing 7-1. Reading the Data Set

In [3]: import pandas as pd

        dataset = pd.read_csv("./Data/Salaries.csv")

        rank = dataset['rank']

Figure 7-1. Salaries data set
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        discipline = dataset['discipline']

        phd = dataset['phd']

        service = dataset['service']

        sex = dataset['sex']

        salary = dataset['salary']

        dataset.head()

 

 Line Plot

You can use line plotting as shown in Listing 7-2. It’s important to ensure 

the data units, such as the phd, service, and salary variables, are used for 

plotting. However, only the salaries are visible, while the phd and service 

information is not clearly displayed on the plot. This is because the 

numerical units in the salaries are in the hundreds of thousands, while the 

phd and services information is in very small units. 
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Listing 7-2. Visualizing Patterns with High Differences in Numerical 

Units

In [5]: dataset[["rank", "discipline","phd","service", "sex", 

"salary"]].plot()

 

Let’s visualize more comparable units such as the phd and services 

information, as shown in Listing 7-3. You can observe the correlation 

between phd and services over the years, except from age 55 up to 80, 

where services decline, which means that some people left the service at 

the age of 55 and older.

Listing 7-3. Visualizing Patterns with Close Numerical Units

 In [6]: dataset[["phd","service"]].plot()
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In Listing 7-4, you are grouping data by service and summarizing 

the salaries per service category. Then you sort the derived data set in 

descending order according to the salaries. Finally, you plot the sorted 

data set using a bar chart.

Listing 7-4. Visualizing Salaries per Service Category

In [4]: dataset1 = dataset.groupby(['service']).sum()

         dataset1.sort_values("salary", ascending = False, 

inplace=True)

        dataset1.head()
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In [8]: dataset1["salary"].plot.bar()

 

You can see that most people serve approximately 19 years, which is 

why the highest accumulated salary is from this category.

 Bar Plot

Listing 7-5 shows how to plot the first ten records of phd and services, 

and you can add a title as well. To add a title to the chart, you need to use 

.bar(title="Your title").

Listing 7-5. Bar Plotting

In [9]: dataset[[ 'phd', 'service' ]].head(10).plot.bar()
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In [11]: dataset[['phd', 'service']].head(10).plot.bar 

(title="Ph.D. Vs Service\n 2018")
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In [12]: dataset[['phd', 'service']].head(10).plot.bar 

(title="Ph.D. Vs Service\n 2018" , color=['g','red'])

 Pie Chart

Pie charts are useful for comparing parts of a whole. They do not show 

changes over time. Bar graphs are used to compare different groups or to 

track changes over time. However, when trying to measure change over 

time, bar graphs are best when the changes are larger. In addition, a pie 

chart is useful for comparing small variables, but when it comes to a large 

number of variables, it falls short. Listing 7-6 compares the salary package 

of ten professionals from the Salaries data set.
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Listing 7-6. Pie Chart

In [13]: dataset["salary"].head(10).plot.pie(autopct='%.2f')

 

 Box Plot

Box plotting is used to compare variables using some statistical values. 

The comparable variables should be of the same data units; Listing 7-7 

shows that when you compare phd and salary, it produces improper 

figures and does not provide real comparison information since the 

salary numerical units are much higher than the phd numerical values. 

Plotting phd and services shows that the median and quantiles of phd 

are higher than the median and quantiles of the service information; 

in addition, the range of phd is wider than the range of service 

information.
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Listing 7-7. Box Plotting

In [14]: dataset[["phd","salary"]].head(100).plot.box()

 

In [15]: dataset[["phd","service"]].plot.box()
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 Histogram Plot

A histogram can be used to represent a specific variable or set of 

variables. Listing 7-8 plots 20 records of the salaries variables; it 

shows that salary packages of about 135,000 are the most frequent in 

this data set.

Listing 7-8. Histogram Plotting

In [16]: dataset["salary"].head(20).plot.hist()

 

 Scatter Plot

A scatter plot shows the relationship between two factors of an experiment 

(e.g. phd and service). A trend line is used to determine positive, negative, 

or no correlation. See Listing 7-9.
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Listing 7-9. Scatter Plotting

In [17]: dataset.plot(kind='scatter', x='phd', y='service', 

title='Popuation vs area and density\n 2018', s=0.9)

 

 Seaborn Plotting System

The Python Seaborn library provides various plotting representations for 

visualizing data. A strip plot is a scatter plot where one of the variables 

is categorical. Strip plots can be combined with other plots to provide 

additional information. For example, a box plot with an overlaid strip plot 

is similar to a violin plot because some additional information about how 

the underlying data is distributed becomes visible. Seaborn’s swarm plot 

is virtually identical to a strip plot except that it prevents data points from 

overlapping.
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 Strip Plot

Listing 7-10 uses strip plotting to display data per salary category.

Listing 7-10. Simple Strip Plot

In [3]: # Simple stripplot sns.stripplot( x = 

dataset['salary'])

 

In [4]: # Stripplot over categories

sns.stripplot( x = dataset['sex'], y= dataset['salary'], 

data=dataset);
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The previous example visualizes the salary variable per gender.

You can visualize the data vertically or horizontally using Listing 7-11, 

which presents two disciplines, A and B. Discipline B has a bigger range 

and higher packages compared to discipline A.

Listing 7-11. Strip Plot with Vertical and Horizontal Visualizing

In [5]: # Stripplot over categories

sns.stripplot( x = dataset['discipline'], y = 

dataset['salary'], data=dataset, jitter=1)
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In [6]: # Stripplot over categories Horizontal

sns.stripplot( x= dataset['salary'], y = dataset['discipline'], 

data=dataset, jitter=True);
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You can visualize data in a strip plot per category; Listing 7-12 uses 

the assistance prof, associate prof, and full professor categories. The hue 

attribute is used to determine the legend attribute.

Listing 7-12. Strip Plot per Category

In [7]: # Stripplot over categories

sns.stripplot( x = dataset['rank'], y= dataset['salary'], 

data=dataset, jitter=True);

 

In [8]: # Add hue to the graph

        # Stripplot over categories

           sns.stripplot( x ='sex', y= 'salary', hue='rank', 

data=dataset, jitter=True )
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 Box Plot

You can combine a box plot and strip plot to give more information on the 

generated plot (see Listing 7-13). As shown, the Male category has a higher 

median salary, maximum salary, and range compared to the Female 

category.

Listing 7-13. Combined Box Plot and Strip Plot Visualization

In [10]: # Draw data on top of boxplot

          sns.boxplot(x = 'salary', y ='sex', data=dataset, 

whis=np.inf )

          sns.stripplot(x = 'salary', y ='sex', data=dataset, 

jitter=True, color='0.02')
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In [13]: # box plot salaries

         sns.boxplot(x = dataset['salary'])
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In [14]: # box plot salaries

         sns.boxplot(x = dataset['salary'], notch=True)

 

In [15]: # box plot salaries

         sns.boxplot(x = dataset['salary'], whis=2)
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In [16]: # box plot per rank

         sns.boxplot(x = 'rank', y = 'salary', data=dataset)

 

In [17]: # box plot per rank

sns.boxplot(x = 'rank', y = 'salary', hue='sex', data=dataset, 

palette='Set3')
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In [18]: # box plot per rank

         sns.boxplot(x = 'rank', y = 'salary', data=dataset)

          sns.swarmplot(x = 'rank', y = 'salary', data=dataset, 

color='0.25')

Combined Box Plot and Strip Plot Visualization as shown in below figure.

 Swarm Plot

A swarm plot is used to visualize different categories; it gives a clear 

picture of a variable distribution against other variables. For instance, 

the salary distribution per gender and per profession indicates that the 

male professors have the highest salary range. Most of the males are 

full professors, then associate, and then assistant professors. There are 

more male professors than female professors, but there are more female 

associate professors than male associate professors. See Listing 7-14.

Listing 7-14. Swarm ploting of salary against gender

In [11]: # swarmplot

sns.swarmplot( x ='sex', y= 'salary', hue='rank', data=dataset, 

palette="Set2", dodge=True)
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In [12]: # swarmplot

sns.swarmplot( x ='sex', y= 'salary', hue='rank', data=dataset, 

palette="Set2", dodge=False)
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 Joint Plot

A joint plot combines more than one plot to visualize the selected patterns 

(see Listing 7-15).

Listing 7-15. Joint Plot Visualization

In [22]: sns.jointplot(x = 'salary', y = 'service', 

data=dataset)
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In [24]: sns.jointplot('salary', 'service', data=dataset, 

kind='reg')
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In [25]: sns.jointplot('salary', 'service', data=dataset, 

kind='hex')
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In [26]: sns.jointplot('salary', 'service', data=dataset, 

kind='kde')
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In [27]: from scipy.stats import spearmanr sns.

jointplot('salary', 'service', data=dataset, stat_func= 

spearmanr )
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In [31]: sns.jointplot('salary', 'service',

         data=dataset).plot_joint(sns.kdeplot, n_levels=6)
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In [32]: sns.jointplot('salary', 'service',

          data=dataset).plot_joint(  sns.kdeplot,n_levels=6).

plot_marginals(sns.rugplot)

 

 Matplotlib Plot

Matplotlib is a Python 2D plotting library that produces high-quality 

figures in a variety of hard-copy formats and interactive environments 

across platforms. In Matplotlib, you can add features one by one, such as 

adding a title, labels, legends, and more. 

 Line Plot

In inline plotting, you should determine the x- and y-axes, and then you 

can add more features such as a title, a legend, and more (see Listing 7-16).
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Listing 7-16. Matplotlib Line Plotting

In [2]: import matplotlib.pyplot as plt

        x =[3,6,8,11,13,14,17,19,21,24,33,37]

        y = [7.5,12,13.2,15,17,22,24,37,34,38.5,42,47]

        x2 =[3,6,8,11,13,14,17,19,21,24,33]

        y2 = [50,45,33,24,21.5,19,14,13,10,6,3]

        plt.plot(x,y, label='First Line')

        plt.plot(x2, y2, label='Second Line')

        plt.xlabel('Plot Number')

        plt.ylabel('Important var')

        plt.title('Interesting Graph\n2018 ')

        plt.yticks([0,5,10,15,20,25,30,35,40,45,50],

                 ['0B','5B','10B','15B','20B','25B','30B','35B',

'40B','45B','50

        B'])

        plt.legend()

        plt.show()
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In [13]: plt.plot(phd, label='Ph.D.')

         plt.plot(service, label='service')

         plt.xlabel('Ph.D./service')

         plt.ylabel('Frequency')

         plt.title('Ph.D./service\nDistribution')

         plt.legend()

         plt.show()

 

In [15]: plt.plot(phd, service, 'bo', label="Ph.D. Vs 

services", lw=10)

         plt.grid()

         plt.legend()

         plt.xlabel('Ph.D')

         plt.ylabel('service')

         plt.title('Ph.D./salary\nDistribution')

         plt.yscale('log')
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 Bar Chart

Listing 7-17 shows how to create a bar chart to present students registered 

for courses; there are two students who are registered for four courses.

Listing 7-17. Matplotlib Bar Chart Plotting

In [3]: Students = [2,4,6,8,10]

        Courses = [4,5,3,2,1]

        plt.bar(Students,Courses, label="Students/Courses")

        plt.xlabel('Students ')

        plt.ylabel('Courses')

        plt.title('Students Courses Data\n 2018')

        plt.legend()

        plt.show()
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In [4]: Students = [2,4,6,8,10]

        Courses = [4,5,3,2,3]

        stds = [3,5,7,9,11]

        Projects = [1,2,4,3,2]

        plt.bar(Students, Courses, label="Courses", color='r')

        plt.bar(stds, Projects, label="Projects", color='c')

        plt.xlabel('Students')

        plt.ylabel('Courses/Projects')

        plt.title('Students Courses and Projects Data\n 2018')

        plt.legend()

        plt.show()
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 Histogram Plot

Listing 7-18 shows how to create a histogram showing age frequencies; 

most people in the data set are between 30 and 40. In addition, you can 

create a histogram of the years of service and the number of PhDs.

Listing 7-18. Matplotlib Histogram Plotting

In [5]: Ages =  [22.5, 10, 55, 8, 62, 45, 21, 34, 42, 45, 99, 

75, 82,

                 77, 55, 43, 66, 66, 78, 89, 101, 34, 65, 56, 

25, 34,

                52, 25, 63, 37, 32]

        binsx = [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110]

        plt.hist(Ages, bins=binsx, histtype='bar', rwidth=0.7)
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        plt.xlabel('Ages')

        plt.ylabel('Frequency')

        plt.title('Ages frequency for sample pouplation\n 2018')

        plt.show()

 

In [18]:  plt.hist(service, bins=30, alpha=0.4, rwidth=0.8, 

color='green', label='service')

          plt.hist(phd, bins=30, alpha=0.4, rwidth=0.8, 

color='red', label='phd')

         plt.xlabel('Services/phd')

         plt.ylabel('Distribution')

         plt.title('Services/phd\n 2018')

         plt.legend(loc='upper right')

         plt.show()
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Visualize service years since Ph.D. had attained.

 

In [19]:  plt.hist(service, bins=10, alpha=0.4, rwidth=0.8, 

color='green', label='service')

          plt.hist(phd, bins=10, alpha=0.4, rwidth=0.8, 

color='red', label='phd')

         plt.xlabel('Services/phd')

         plt.ylabel('Distribution')

         plt.title('Services/phd\n 2018')

         plt.legend(loc='upper right')

         plt.show()
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In [21]: plt.hist(salary, bins=100)

         plt.show()
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 Scatter Plot

Listing 7-19 shows how to create a scatter plot to present students 

registered for courses, where four students are registered for five courses.

Listing 7-19. Matplotlib Scatter Plot

In [7]: Students = [2,4,6,8,6,10, 6] Courses = [4,5,3,2,4, 3, 4]

         plt.scatter(Students,Courses, label='Students/Courses', 

color='green', marker='*', s=75 )

        plt.xlabel('Students')

        plt.ylabel('Courses')

        plt.title('Students courses\n Spring 2018')

        plt.legend()

        plt.show()

CHAPTER 7  DATA VISUALIZATION



331

In [16]:  plt.scatter(rank,salary, label='salary/rank', 

color='g', marker='+', s=50 )

         plt.xlabel('rank') plt.ylabel('salary')

         plt.title('salary/rank\n Spring 2018')

         plt.legend() plt.show()

 

In [20]:  plt.scatter(phd,salary, label='Salary/phd', color='g', 

marker='+', s=80 )

         plt.xlabel('phd') plt.ylabel('salary')

         plt.title('phd/ salary\n Spring 2018')

         plt.legend() plt.show()
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 Stack Plot

Stack plots present the frequency of every activity, such as the frequency 

of sleeping, eating, working, and playing per day (see Listing 7-20). In 

this data set, on day 2, a person spent eight hours sleeping, three hours in 

eating, eight hours working, and five hours playing.

Listing 7-20. Persons Weekly Spent Time per activities using 

Matplotlib Stack Plot

In [9]: days = [1,2,3,4,5]

        sleeping = [7,8,6,11,7]

        eating = [2,3,4,3,2]

        working = [7,8,7,2,2]

        playing = [8,5,7,8,13]

        plt.plot([],[], color='m', label='Sleeping')

        plt.plot([],[], color='c', label='Eating')

        plt.plot([],[], color='r', label='Working')
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        plt.plot([],[], color='k', label='Playing')

         plt.stackplot(days, sleeping, eating, working , 

playing, colors=['m','c', 'r', 'k'])

        plt.xlabel('days')

        plt.ylabel('Activities')

         plt.title('Persons Weekly Spent Time per activities\n 

Spring 2018')

        plt.legend()

        plt.show()
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 Pie Chart

In Listing 7-21, you are using the explode attribute to slice out a specific 

activity. After that, you can add the gender and title to the pie chart.

Listing 7-21. Persons Weekly Spent Time per activities using 

Matplotlib Pie Chart

In [10]: days = [1,2,3,4,5]

         sleeping = [7,8,6,11,7]

         eating = [2,3,4,3,2]

         working = [7,8,7,2,2]

         playing = [8,5,7,8,13]

         slices = [39,14,26,41]

          activities = ['sleeping', 'eating', 'working', 

'playing']

         cols = ['c','m','r', 'b','g']

         plt.pie(slices,

             labels= activities,

             colors= cols,

             startangle=100,

                 shadow=True,

         explode = (0.0,0.0,0.09,0),

         autopct = '%1.1f%%')

          plt.title('Persons Weekly Spent Time per activities\n 

Spring 2018')

         plt.legend()

         plt.show()
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 Summary

This chapter covered how to plot data from different collection structures. 

You learned the following:

 –  How to directly plot data from a series, data frame, or panel 

using Python plotting tools such as line plots, bar plots, pie 

charts, box plots, histogram plots, and scatter plots

 –  How to implement the Seaborn plotting system using 

strip plotting, box plotting, swarm plotting, and joint 

plotting

 –  How to implement Matplotlib plotting using line plots, 

bar charts, histogram plots, scatter plots, stack plots, and 

pie charts

The next chapter will cover the techniques you’ve studied in this book via 

two different case studies; it will make recommendations, and much more.
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 Exercises and Answers

 1. Create 500 random temperature readings for six 

cities over a season and then plot the generated data 

using Matplotlib.

Answer:

See Listing 7-22.

Listing 7-22. Plotting the Temperature Data of Six Cities

In [4]: import matplotlib.pyplot as plt

        plt.style.use('classic')

        %matplotlib inline

        import numpy as np

        import pandas as pd

In [30]: # Create temperature data

        rng = np.random.RandomState(0)

        season1 = np.cumsum(rng.randn(500, 6), 0)

In [32]: # Plot the data with Matplotlib defaults

        plt.plot(season1)

        plt.legend('ABCDEF', ncol=2, loc='upper left');
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 2. Load the well-known Iris data set, which lists 

measurements of petals and sepals of three iris 

species. Then plot the correlations between each 

pair using the .pairplot() method.

Answer:

See Listing 7-23.

Listing 7-23. Pair Correlations

In [33]: import seaborn as sns

         iris = sns.load_dataset("iris")

         iris.head()

         sns.pairplot(iris, hue='species', size=2.5);
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 3. Load the well-known Tips data set, which shows the 

number of tips received by restaurant staff based on 

various indicator data; then plot the percentage of 

tips per bill according to staff gender.
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Answer:

See Listing 7-24.

Listing 7-24. First five records in the Tips dataset

In [36]: import seaborn as sns

         tips = sns.load_dataset('tips')

         tips.head()

 

In [37]: tips['Tips Percentage'] = 100 * tips['tip'] /

tips['total_bill']

          grid = sns.FacetGrid(tips, row="sex", col="time", 

margin_titles=True)

          grid.map(plt.hist, "Tips Percentage", bins=np.

linspace(0, 40, 15));
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 4. Load the well-known Tips data set, which shows the 

number of tips received by restaurant staff based on 

various indicator data; then implement the factor 

plots to visualize the total bill per day according to 

staff gender.
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Answer:

See Listing 7-25.

Listing 7-25. Implementing Factor Plotting

In [39]: import seaborn as sns

         tips = sns.load_dataset('tips')

         with sns.axes_style(style='ticks'):

          g = sns.factorplot("day", "total_bill",  

"sex", data=tips, kind="box")

         g.set_axis_labels("Bill Day", "Total Bill Amount")
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 5. Reimplement the previous exercise using the 

Seaborn joint plot distributions.

Answer:

See Listing 7-26.

Listing 7-26. Implementing Joint Plot Distributions

In [43]: import seaborn as sns

         tips = sns.load_dataset('tips')

         with sns.axes_style('white'):

          sns.jointplot( "total_bill", "tip",  

data=tips, kind='hex')
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CHAPTER 8

Case Studies

This chapter covers two case studies. I will provide some brief 

information about each case and then show how to gather the data 

needed for analysis, how to analyze the data, and how to visualize the 

data related to specific patterns.

 Case Study 1: Cause of Deaths in the United 
States (1999–2015)

This study analyses the leading causes of death in the United States of 

America between 1999 and 2015.

 Data Gathering

It’s important to gather a study’s data set from a reliable source; 

it’s also important to use an updated and accurate data set to get 

unbiased findings. The data set in this case study comes from open 

data from the U.S. government, which can be accessed through 

https://data.gov. 

You can download it from here:

https://catalog.data.gov/dataset/age-adjusted-death-rates-

for- the-top-10-leading-causes-of-death-united-states-2013

https://data.gov
https://catalog.data.gov/dataset/age-adjusted-death-rates-for-the-top-10-leading-causes-of-death-united-states-2013
https://catalog.data.gov/dataset/age-adjusted-death-rates-for-the-top-10-leading-causes-of-death-united-states-2013
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This case study will try to answer the following questions:

• What is the total number of records in the dataset?

• What were the causes of death in this data set?

• What was the total number of deaths in the United 

States from 1999 to 2015?

• What is the number of deaths per each year from 1999 

to 2015?

• Which ten states had the highest number of deaths 

overall?

• What were the top causes of deaths in the United States 

during this period?

 Data Analysis

Let’s first read and clean the data set.

• What is the total number of recorded death cases?

See Listing 8-1.

Listing 8-1. Cleaned Records of Death Causes in the United States

In [2]: import pandas as pd

        data = pd.read_csv("NCHS.csv")

        data.head(3)
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In [3]: data.shape # 15028 rows and 6 columns

Out[3]: (15028, 6)

Remove all rows with na cases.

In [4]: data = data.dropna()

        data.shape

Out[4]: (14917, 6)

Approximately 14,917 death cases were recorded in different U.S. states.

Now let’s clean the data to find the number of death causes in the 

data set.

• What were the causes of death in this dataset?

See Listing 8-2.

Listing 8-2. Unique Death Causes in the United States

In [7]: causes = data["Cause Name"].unique()

        causes

 

Remove All Causes from the Cause Name column.
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In [8]: data = data[data["Cause Name"] !="All Causes"]

        causes = data["Cause Name"].unique()

        causes

 

In [9]: len(causes)

Out[9]: 16

As shown, there are 16 death causes according to the loaded data set.

Clean the data to find the unique states included in the study.

See Listing 8-3.

Listing 8-3. Unique States in the Study

In [11]: state = data["State"].unique()

         state
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In [12]: data1 = data[data["State"] !="United States"]

         state = data1["State"].unique()

         state

 

In [13]: len(state)

Out[13]: 51

There are 51 states included in the study.

• What was the total number of deaths in the United 

States from 1999 to 2015?

In [15]: data["Deaths"].sum()

Out[15]: 69279057.0

The total number of deaths during the given period 

is 69,279,057.

• What is the number of deaths for each year from 1999 

to 2015?

See Listing 8-4.
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Listing 8-4. Study’s Death Trends per Year

In [16]: dyear= data.groupby(["Year"]).sum()

         dyear
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In [18]: dyear["Deaths"].plot(title="Death per year \n 

 1999- 2015")

 

The number of deaths declined between 2002 and 2009. Then there 

was a continuous growth in the number of deaths from 2010 to 2013. 

Finally, there was a sharp increase in the number of deaths in 2013  

and 2014. 

 Data Visualization

Plotting data gives a clear idea about patterns behind the data and helps to 

make the right decisions in business.

• Which ten states had the highest number of deaths 

overall?

See Listing 8-5.
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Listing 8-5. Top Ten States with the Highest Number of Deaths in 

the United States

In [19]: data1 = data[data["State"] !="United States"]

         dataset2 = data1.groupby("State").sum()

          dataset2.sort_values("Deaths", ascending=False , 

inplace = True)

         dataset2.head(10)
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In [20]: dataset2["Deaths"].head(10).plot.bar(title= "Top ten 

states with highest death number \n 1999-2015 ")

 

California had the highest number of deaths in the United States, with 

Florida coming in second.

• What were the top causes of deaths in the United States 

during this period?

See Listing 8-6.
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Listing 8-6. Top Ten Causes of Death in the United States

In [21]: dataset1 = data[data["Cause Name"] !="All Causes"]

         dataset2 = dataset1.groupby("Cause Name").sum()

          dataset2.sort_values("Deaths", ascending=False , 

inplace = True)

         dataset2.head(10)
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In [22]: dataset2["Deaths"].head(10).plot.bar(title="Top ten 

causes of death in USA \n 1999-2015 ")

 

Diseases of the heart represent the biggest cause of death followed 

by cancer.

 Findings

Table 8-1 summarizes the study findings.
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 Case Study 2: Analyzing Gun Deaths 
in the United States (2012–2014)

This study analyzes gun deaths in the United States of America between 

2012 and 2014.

This case study will try to answer the following questions:

• What is the number of annual suicide gun deaths in the 

United States from 2012 to 2014, by gender?

Table 8-1. Case Study 1: Findings

Investigation Question Findings

    1.  What is the total number of 

records in the dataset?

There were approximately 14,917 deaths 

recorded in the United States.

    2.  What were the causes  

of death in this data set?

There are 16 causes of death according to 

the study data set.

    3.  What was the total number  

of deaths in the United States 

from 1999 to 2015?

The total number of deaths during the 

given period is 69,279,057.

    4.  What is the number of  

deaths per year from  

1999 to 2015?

From 2002 to 2009 the number of deaths 

declined, then there an increase from 2010 

to 2013. In 2013 and 2014, there was a 

sharp increase in the number of deaths.

    5.  Which ten states had the highest 

number of deaths overall?

California had the most deaths in the 

United States, with Florida in second place.

    6.  What were the top causes of 

deaths in the United States  

during this period?

Diseases of the heart represent the highest 

causes of death followed by cancer.
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• What is the number of gun deaths by race in the United 

States per 100,000 people from 2012 to 2014?

• What is the annual number of gun deaths in the United 

States on average from 2012 to 2014, by cause?

• What is the percentage per 100,000 people of annual 

gun deaths in the United States from 2012 to 2014, by 

cause?

• What is the percentage of annual suicide gun deaths in 

the United States from 2012 to 2014, by year?

 Data Gathering

The data set for this study comes from GitHub and can be accessed 

here:

https://github.com/fivethirtyeight/guns-data.git

Load and clean the dataset and prepare it for processing.

See Listing 8-7.

Listing 8-7. Reading Gun Deaths in the United States (2012–2014) 

Data Set

In [25]: import pandas as pd

         import numpy as np

         import matplotlib.pyplot as plt

         import seaborn as sns

         sns.set(style='white', color_codes=True)

         %matplotlib inline
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In [26]:  dataset = pd.read_csv('Death data.csv', index_col=0) 

print(dataset.shape)

         dataset.index.name = 'Index'

         dataset.columns = map(str.capitalize, dataset.columns)

         dataset.head(5)

         (100798, 10)

 

Organize the data set by year and then by month.

In [27]: dataset_Gun = dataset

           dataset_Gun.sort_values(['Year', 'Month'], 

inplace=True)

 Data Analysis

Now let’s look at the data and make some analysis.

• How many males and females are included in this 

study?
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         In [28]: dataset_Gun.Sex.value_counts(normalize=False)

         Out[28]: M    86349

         F    14449

         Name: Sex, dtype: int64

• How many educated females are included in this 

study?

As shown here, there are 14,243 educated females 

involved in this study.

Group the data set by gender.

          In [8]: dataset_byGender = dataset_Gun.groupby('Sex').

count()

         dataset_byGender

 

 Data Visualization

In this case study, we will try to find the answers to the numerous 

questions posed earlier. Let’s get started.

• What is the number of suicide gun deaths in the United 

States from 2012 to 2014, by gender?

See Listing 8-8.
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Listing 8-8. Gun Death by Gender

In [29]: dataset_suicide_Gender =dataset_Gun[

         dataset_Gun["Intent"] =="Suicide"]

          dataset_suicide_Gender.Sex.value_counts 

(normalize=False).plot.bar(title='Annual U.S.\\suicide 

gun deaths \n 2012-2014, by gender')

 

It’s clear that there are huge differences between males and females. 

The number of male suicides by gun is above 50,000, while the female 

death rate is below 10,000, which shows how males are more likely to 

commit suicide using a gun. 

In [31]: dataset_byGender.plot.bar(title='Annual U.S. suicide 

gun deaths \n 2012-2014, by gender')
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• What is the number of gun deaths by race in the United 

States per 100,000 people from 2012 to 2014?

See Listing 8-9.

Listing 8-9. Analyzing and Visualizing Gun Death Percentage by 

Race

In [32]: dataset_byRace = dataset (dataset_byRace.Race.value_ 

counts(ascending=False)*100/100000)
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The highest death rate was for white people, then black, and then 

Hispanic. There are a few other races listed, but the rates are small 

comparatively.

In [33]:(dataset_byRace.Race.value_counts(ascending=False) 

*100/100000).plot.bar(title='Percent death toll from guns in 

the United States \nfrom 2012 to 2014, by race')

 

• What is the number of gun deaths in the United States 

on average from 2012 to 2014, by cause?

See Listing 8-10.
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Listing 8-10. Visualizing Gun Death by Cause

In [14]: dataset_byRace.Intent.value_counts(sort =True, 

ascending=False)

 

In [17]: dataset_byRace.Intent.value_counts(sort=True).plot.

bar(title='Annual number of gun deaths in the United States on 

average \n from 2012 to 2014, by cause')
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The figure shows a high number of suicide and homicide deaths 

compared to a low number of deaths due to accidents.

• What is the percentage per 100,000 people of annual 

gun deaths in the United States from 2012 to 2014, by 

cause?

See Listing 8-11.

Listing 8-11. Visualizing Gun Death per 100,000 by Cause

In [40]: dataset_byRace.Intent.value_counts(ascending=False) 

*100/100000

Out[40]: Suicide              63.175

         Homicide             35.176

         Accidental            1.639

         Undetermined          0.807

         Name: Intent, dtype: float64

In [41]: (dataset_byRace.Intent.value_counts(ascending=False) 

*100/100000).plot.bar(title='Rate gun deaths in the U.S. per 

100,000 population \n2012-2014, by race')
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This shows that there are 60 suicide cases for every 100,000 people. In 

addition, there are 30 homicide cases for every 100,000.

• What is the percentage of suicide gun deaths in the 

United States from 2012 to 2014, by year?

See Listing 8-12.

Listing 8-12. Visualizing Gun Death by Year

In [42]: dataset_suicide=dataset[ dataset["Intent"] 

=="Suicide"]

datasetSuicide= dataset_suicide.Year.value_

counts(ascending=False) *100/100000

datasetSuicide.sort_values(ascending=True)
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Out[42]:

2012    20.666

2013    21.175

2014    21.334

Name: Year, dtype: float64

In [43]:datasetSuicide.sort_values(ascending=True).plot.

bar(title='Percentage of annual suicide gun deaths in the 

United States \nfrom 2012 to 2014, by year')

 

The figure shows almost the same number of suicides each year over 

three years, which means that this is a regular pattern.

 Findings

Table 8-2 shows the findings.
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Table 8-2. Case Study 2: Findings

Investigation Question Findings

    1.  What is the number of U.S.  

suicide gun deaths from 2012  

to 2014, by gender?

Male suicide gun deaths is over 

50,000, while females suicide gun 

deaths is below 10,000, which shows 

how males are more likely to commit 

suicide with a gun.

    2.  What is the number of gun deaths 

in the United States per a 100,000 

population from 2012 to 2014?

The highest number of deaths is for while 

people, then black, and then Hispanic.

    3.  What are the annual number of 

gun deaths in the United States on 

average from 2012 to 2014,  

by cause?

There is a high number of suicide and 

homicide deaths compared to a low 

number of deaths due to accidents.

    4.  What is the 100,000 percentage  

of annual guns death tolls in the 

United States from 2012 to 2014,  

by cause?

The 100,000 percentages shows that 

there are 60 suicide cases for every 

100,000 people, which somehow is 

not a high rate. In addition, there are 

30 homicide cases for every 100,000 

people.

    5.  What is the percentage of  

annual suicide gun deaths in  

the United States from 2012  

to 2014, by year?

The analysis shows almost the same 

number of suicides each year over a 

period of three years, which means that 

this is a regular pattern in society.
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 Summary

This chapter covered how to apply Python techniques on two different 

case studies. Here’s what you learned:

• How to determine the problem under investigation

• How to determine the main questions to answer

• How to find a reliable data source

• How to explore the collected data to remove anomalies

• How to analyze and visualize cleaned data

• How to discuss findings
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transformation, 285–286

variables, statistics, 279–281

Data cleaning, 205

CSV file

CleanData_REGION() 

function, 217

CleanData_Sales()  

function, 217

NaN cases, 216

na_values attribute, 217

nrows attribute, 214

pd.read_csv(), 214

.rename() method, 215

sales data, 212–213

tail() method, 214

unique values, 216

usecols attribute, 214

missing data, 207

missing values

bfill/backfill  

methods, 210

boolean value, 208

data frame, NaN, 207

dropna() function, 211

filling forward, 210

NaN rows dropping, 211

NaN, scalar value, 209

null cases checking, 208

Python methods, 207

replace()  

method, 211

noisy data (NA or NaN), 207

Data collection, 125

Data frame, 277

analyzing

creating, attributes, 268

.describe() method, 267, 

269–270

measure, optimal, 272

NaN values, 267

numerical patterns, 271

string patterns, 271

assign() method, 165–166

column addition, 260

column deletion

copy() method, 261, 263–264

del method, 260, 262–263

pop method, 260

column selection, 258–259

creation

dictionary, 256

list, 255

Pandas, 255

series, 257

defined, 243

dictionary of Ndarray, 160

dictionary of series, 158–159

dictionary of tuples, 162

indexing and selection, 167–170

list of dicts, 161–162

Numpy functions, 171

operations, 163–165, 168–170

record array, creation, 161

row

addition, 266

deletion, 267

selection, 264–265

Data analysis (cont.)

INDEX



369

transposing, 170

Data integration

columns dropping, 220

.concat() method, 221

export files, 219

loading data sets, 219

merge() method, 218, 221

row union, 222

Data visualization, 206

BI, 86

decision making, 89

dynamic graphs, 105–106

easier approaches, 90

Geoplotlib, 108

goals, 86–87

histogram graph, 103–104

install/update Python  

packages, 93–94

joint distribution graph, 102–103

kernel density  

estimation, 100–102

libraries, 94–95

matplotlib, plotting  

formats, 96–98

needs, 87–88

numpy attributes, 97

pandas, 108

plotly.offline, 106–107

plotting formats, 109–116

Python packages

Geoplotlib, 108

Matplotlib, 95–98

Pandas, 108

Plotly, 105–108

Seaborn, 99–102

quick response, 89

real-time data, 90

R language vs. Python, 91–92

seaborn, plotting formats, 

100–105

simplicity, 90

sns.jointplot, 102–103

sns.kdeplot, 100

sns.pairplot, 104–105

team involvement, 90

technologies, 88–89

types, 92

unify interpretation, 90–92

df.drop() method, 267

Dictionary, 139, 141

accessing, 139–140

creation, 138–139

deletion, 141

functions, 141–143

methods, 143–145

sorting, 145

updation, 139–140

Direct plotting

bar plot, 298

box plot, 301–302

histogram plot, 303

line plot

bar chart, 297

data units, 295

visualizing, 296–298

Pandas, 294

pie charts, 300

scatter plot, 303–304
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E, F

ElementTree (ET) module, 233

Explanation, data visualization, 92

Exploration, data visualization, 92

Exploratory analysis, 205

G

GitHub, 355

H

HTML file

Beautiful Soup, 228–229

data extraction, 231–232

html variable, 228

parsing tags, 228

reading and parsing, 227

URLs extraction, 232

I

Integrated development 

environments (IDEs), 6

I/O processing

accessing directories, 187–188

close() method, 186

file attributes, 185–186

file.read() method, 186

File.write() method, 186–187

getcwd() method, 187

input() function, 183

modes description, 185

open() function, 184

remove() method, 187

rename() method, 187

screen data, 183–184

isnull() function, 208

Iteration statements, Python

break statement, 37, 39

continue statement, 37, 39

control statement, 37

pass statement, 37, 39

range() method, 38

J, K

JSON file

accessing data, 226

data manipulation, 223

online resource, 224–225

read_json function, 223

L

Lambda function, 286

Lambdas and Numpy library

anonymous functions, 60

creating arrays, 63

filter() function, 62

map() function, 61

operations, 63

reduce() function, 62–63

Lists

accessing, 126–127

addition, 127–128

aliasing, 136–137
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append() method, 128

creation, 126

deletion, 128–129

functions, 131–132

indexing, 130

join() method, 135

methods, 132

operations, 129

parsing lines, 135–136

remove() method, 128

slicing, 130

sorting, 133

and strings, 134–135

traversing, 133

updation, 127–128

M

Matplotlib plotting, 206

bar chart, 324

histogram plot, 326

line plot, 321

pie chart, 334

scatter plot, 330

stack plot, 332

N, O

notnull() functions, 208

NumPy, 206–208, 255

P, Q

Pandas, 206, 208, 211, 223, 244, 255, 

257, 267, 273, 277

pandas.Panel constructor, 273

pandas.Series, 244

Panel

accessing, position, 274–275

analysis, 275–276

creation, 273

defined, 243, 273

dictionary of data frame, 

173–174

3D Ndarray, 172

selection and slicing, 175–176

panel.major_axis(index)  

method, 274

panel.minor_axis(index)  

method, 274

pip command, 93

plotting formats

area plot graph, 114–115

bar plot graph, 110–111

box plot graph, 113–114

direct plot graph, 109

histograms plot graph, 112–113

scatter plot graph, 115–116

pop method, 260

Python

argument, 27

basic syntax, 14–15

break, continue, and pass 

statements, 40

calendar module, 30

comments, 25

conversion, 26

correlation analysis, 71–72

data cleaning techniques, 64

data frame
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central tendency, 73

two-dimensional series, 68

virtual structure, 68

date and time, 28

definition, 2

describe() method, 72

editors, 6–7

features, 3–4

formatted strings, 25

getting help, 14

iteration statements  

(see Iteration statements, 

Python)

learning resources, 4–6

line indentation, 15–16

manipulation techniques, 64

multiline statements, 16–17

multiple statements, 18

operators

arithmetic, 22

assign, 23–24

bitwise, 22

logical, 24

pandas, 293–294

data frame, 55, 57–59

features, 55

library, 55–56

panels, 59

series, 56–57

quotation marks, 17

regression analysis, 70

replacement field ({}), 27–28

reserved keywords, 15

Seaborn Python library, 69–70

selection statements

if-else statement, 34

if statement, 32

nested if statement, 34–35

series

iloc() and loc() attributes, 65

lock() attribute, 66

ilock() attribute, 66

Numpy operation, 66–67

structure and query, 65

Spyder IDE, 13

statistical data analysis, 69

tabular data and data  

formats, 54–55

time module methods, 30

try and except statements, 41–42

variables

assign operator, 20

data types, 19

equal (=) operator, 19

multiple assigns, 20

names and keywords, 21

statements and  

expressions, 21

versions, 3

PythonAnywhere, 7

R

Reading and writing files, 186

Regular expression

alternatives, 198

anchors, 199

Python (cont.)
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e-mails extraction, 192–193

extracting lines, 191–192

extracting  

Nonwhitespace, 194–195

finall() method, 201

greedy/nongreedy extraction, 196

implementations, 196–197

vs. method, 199–200

numerical values, 195–196

processing text file, 191

repetition characters, 198

special characters, 195–197

syntax, 188–190

S

SciPy, 206

Seaborn plotting

box plot, 309

joint plot, 315

strip plot

category visualization, 308

display data, 305

vertical and horizontal 

visualizing, 306

swarm plot, 313–314

Series, data structure

analyzing

calculation, 248–249

copying, 249–251

.describe() method, 248

creation

data series, 245–246

default index, 244–245

scalar, 246

series() method, 244

data accessing, 246–247

defined, 243

dictionary, creation, 154–155

name attribute, 157–158

Ndarray

creation, 151–154

operations, 153

slicing, 152

operations

line visualization, 253

math operations, 251–252

multiplots, 254

plotting systems, 253

scalar value, creation, 155–156

vectorizing  

operations, 156–157

Slicing methods, 264

String

backward indexing, 42

conversions and formatting 

symbols, 45–46

definition, 42

find operator, 53

format symbols, 43

forward indexing, 42

iterating and slicing, 48–49

iteration statements, 46–48

methods/functions, 49–52

operators, 43, 52

parsing and extracting, 53–54

slicing and concatenation, 45

traversal, 46
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T, U, V

Tuples, 148

accessing, 148–150

concatenation, 148, 150

creation, 146–147

deletion, 149

operations, 150

slicing, 149

sorting, 147

W

WinPython, 7

X, Y, Z

XML file

data extraction, 235

Element class, 233

ElementTree class, 233

find()method, 233

get() method, 233
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