
Data Analysis and
Visualization
Using Python

Analyze Data to Create
Visualizations for BI Systems
—
Dr. Ossama Embarak

Data Analysis and
Visualization Using

Python

Analyze Data to Create
Visualizations for BI Systems

Dr. Ossama Embarak

Data Analysis and Visualization Using Python

ISBN-13 (pbk): 978-1-4842-4108-0 ISBN-13 (electronic): 978-1-4842-4109-7

https://doi.org/10.1007/978-1-4842-4109-7

Library of Congress Control Number: 2018964118

Copyright © 2018 by Dr. Ossama Embarak

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or

part of the material is concerned, specifically the rights of translation, reprinting, reuse of

illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,

and transmission or information storage and retrieval, electronic adaptation, computer software,

or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark

symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,

and images only in an editorial fashion and to the benefit of the trademark owner, with no

intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if

they are not identified as such, is not to be taken as an expression of opinion as to whether or not

they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of

publication, neither the authors nor the editors nor the publisher can accept any legal

responsibility for any errors or omissions that may be made. The publisher makes no warranty,

express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr

Acquisitions Editor: Nikhil Karkal

Development Editor: Matthew Moodie

Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,

e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a

California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc

(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/

rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook

versions and licenses are also available for most titles. For more information, reference our Print

and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is

available to readers on GitHub via the book's product page, located at www.apress.com/978-1-

4842-4108-0. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Dr. Ossama Embarak

Higher Colleges of Technology, Abu Dhabi, United Arab Emirates

https://doi.org/10.1007/978-1-4842-4109-7

This book is dedicated to my family—my mother,
my father, and all my brothers—for their endless support.

v

About the Author ...xiii

About the Technical Reviewers ..xv

Introduction ..xvii

Table of Contents

Chapter 1: Introduction to Data Science with Python1

The Stages of Data Science ..1

Why Python? ...2

Basic Features of Python ...3

Python Learning Resources ...4

Python Environment and Editors ...6

Portable Python Editors (No Installation Required) ..6

Azure Notebooks ...8

Offline and Desktop Python Editors ...13

The Basics of Python Programming ..13

Basic Syntax ..14

Declaring Variables and Assigning Values ...19

Basic Operators in Python ...22

Python Comments ...25

Formatting Strings ...25

Conversion Types ...26

The Replacement Field, {} ..27

The Date and Time Module ..28

vi

Time Module Methods ...29

Python Calendar Module ...30

Fundamental Python Programming Techniques ..32

Selection Statements ..32

Iteration Statements ..35

The Use of Break, Continues, and Pass Statements39

try and except ..41

String Processing ..42

Tabular Data and Data Formats ...54

Python Pandas Data Science Library ...55

Python Lambdas and the Numpy Library ..60

Data Cleaning and Manipulation Techniques ..64

Abstraction of the Series and Data Frame ..64

Running Basic Inferential Analyses ...69

Summary...74

Exercises and Answers ...74

Chapter 2: The Importance of Data Visualization in Business

Intelligence ...85

Shifting from Input to Output ..86

Why Is Data Visualization Important? ..86

Why Do Modern Businesses Need Data Visualization?87

The Future of Data Visualization ...88

How Data Visualization Is Used for Business Decision-Making89

Faster Responses ..89

Simplicity ...90

Easier Pattern Visualization ...90

Team Involvement ...90

TABLE OF CONTENTSTABLE OF CONTENTS

vii

Unify Interpretation ..90

Introducing Data Visualization Techniques ..92

Loading Libraries ...93

Popular Libraries for Data Visualization in Python ...94

Introducing Plots in Python ..109

Summary...116

Exercises and Answers ...117

Chapter 3: Data Collection Structures ..125

Lists ..125

Creating Lists ...126

Accessing Values in Lists ..126

Adding and Updating Lists ...127

Deleting List Elements ...128

Basic List Operations ...129

Indexing, Slicing, and Matrices ..130

Built-in List Functions and Methods ..130

List Sorting and Traversing ..133

Lists and Strings ..134

Parsing Lines ...135

Aliasing ..136

Dictionaries ...137

Creating Dictionaries ...138

Updating and Accessing Values in Dictionaries ...139

Deleting Dictionary Elements ..141

Built-in Dictionary Functions ...141

Built-in Dictionary Methods ...143

TABLE OF CONTENTSTABLE OF CONTENTS

viii

Tuples ..145

Creating Tuples ..146

Concatenating Tuples ..148

Accessing Values in Tuples ..148

Basic Tuples Operations ..150

Series ..151

Creating a Series with index..151

Creating a Series from a Dictionary ..154

Creating a Series from a Scalar Value ...155

Vectorized Operations and Label Alignment with Series156

Name Attribute ..157

Data Frames ..158

Creating Data Frames from a Dict of Series or Dicts158

Creating Data Frames from a Dict of Ndarrays/Lists160

Creating Data Frames from a Structured or Record Array161

Creating Data Frames from a List of Dicts ...161

Creating Data Frames from a Dict of Tuples ..162

Selecting, Adding, and Deleting Data Frame Columns163

Assigning New Columns in Method Chains ...165

Indexing and Selecting Data Frames ...166

Transposing a Data Frame ...170

Data Frame Interoperability with Numpy Functions171

Panels ...172

Creating a Panel from a 3D Ndarray ..172

Creating a Panel from a Dict of Data Frame Objects173

Selecting, Adding, and Deleting Items ...175

Summary...176

Exercises and Answers ...177

TABLE OF CONTENTSTABLE OF CONTENTS

ix

Chapter 4: File I/O Processing and Regular Expressions183

File I/O Processing ..183

Data Input and Output ...183

Opening and Closing Files ...184

File Object Attributes ...185

Reading and Writing to Files ..186

Directories in Python ...187

Regular Expressions ...188

Regular Expression Patterns ...188

Special Character Classes ...197

Repetition Classes ...198

Alternatives ...198

Anchors ...199

Summary...201

Exercises and Answer ...202

Chapter 5: Data Gathering and Cleaning...205

Cleaning Data ..206

Checking for Missing Values..207

Handling the Missing Values ...209

Reading and Cleaning CSV Data ...212

Merging and Integrating Data ...218

Reading Data from the JSON Format ..223

Reading Data from the HTML Format..226

Reading Data from the XML Format ..233

Summary...235

Exercises and Answers ...236

TABLE OF CONTENTSTABLE OF CONTENTS

x

Chapter 6: Data Exploring and Analysis ...243

Series Data Structures ..243

Creating a Series ...244

Accessing Data from a Series with a Position ...246

Exploring and Analyzing a Series ..248

Operations on a Series ..251

Data Frame Data Structures ...254

Creating a Data Frame ...255

Updating and Accessing a Data Frame’s Column Selection258

Column Addition ..259

Column Deletion ..260

Row Selection ..264

Row Addition ...266

Row Deletion ...267

Exploring and Analyzing a Data Frame ..267

Panel Data Structures ..273

Creating a Panel ..273

Accessing Data from a Panel with a Position ..274

Exploring and Analyzing a Panel ..275

Data Analysis ..277

Statistical Analysis ..277

Data Grouping ..282

Iterating Through Groups ...283

Aggregations ...284

Transformations ...285

Filtration ..286

Summary...287

Exercises and Answers ...288

TABLE OF CONTENTSTABLE OF CONTENTS

xi

Chapter 7: Data Visualization ...293

Direct Plotting ...294

Line Plot ...295

Bar Plot ..298

Pie Chart ..300

Box Plot ...301

Histogram Plot ...303

Scatter Plot ..303

Seaborn Plotting System ...304

Strip Plot ..305

Box Plot ...309

Swarm Plot ..313

Joint Plot ...315

Matplotlib Plot ...321

Line Plot ...321

Bar Chart ...324

Histogram Plot ...326

Scatter Plot ..330

Stack Plot ..332

Pie Chart ..334

Summary...335

Exercises and Answers ...336

TABLE OF CONTENTSTABLE OF CONTENTS

xii

Chapter 8: Case Studies ..343

Case Study 1: Cause of Deaths in the United States (1999–2015)343

Data Gathering ...343

Data Analysis ...344

Data Visualization ..349

Findings ...353

Case Study 2: Analyzing Gun Deaths in the United States (2012–2014)354

Data Gathering ...355

Data Analysis ...356

Data Visualization ..357

Findings ...364

Summary...366

 Index ...367

TABLE OF CONTENTSTABLE OF CONTENTS

xiii

About the Author

Dr. Ossama Embarak holds a PhD in

computer and information science from

Heriot-Watt University in Scotland, UK.

He has more than two decades of research

and teaching experience with a number of

programming languages including C++, Java,

C#, R, Python, etc. He is currently the lead

CIS program coordinator for Higher Colleges

of Technology, UAE’s largest applied higher educational institution, with

more than 23,000 students attending campuses throughout the region.

Recently, he received an interdisciplinary research grant of 199,000 to

implement a machine learning system for mining students’ knowledge and

skills.

He has participated in many scholarly activities as a reviewer and

editor for journals in the fields of computer and information science

including artificial intelligence, data mining, machine learning, mobile

and web technologies. He supervised a large number of graduation

projects, as well as he has published numerous papers about data mining,

users online privacy, semantic web structure and knowledge discovery.

Also he participated as a co-chair for numerous regional and international

conferences.

xv

About the Technical Reviewers

Shankar Rao Pandala is a data scientist at

Cognizant. He has a bachelor’s degree in

computer science and a master’s degree in

financial markets. His work experience spans

finance, healthcare, manufacturing, and

consulting. His area of interest is artificial

intelligence for trading.

Prashant Sahu has a bachelor’s of technology

from NIT Rourkela (2003) and is currently

pursuing a doctorate from the Indian Institute

of Technology, Bombay, in the area of

instrumentation, data analytics, modeling,

and simulation applied to semiconductor

materials and devices. He is currently the head

of training services at Tech Smart Systems in

Pune, India. He is also mentoring the startup

Bharati Robotic Systems (India) as an SVP of innovation. He has more than

15 years of experience in research, automation, simulation and modeling,

data analytics, image processing, control systems, optimization algorithms,

genetic algorithms, cryptography, and more, and he has handled many

xvi

projects in these areas from academia and industry. He has conducted

several faculty development training programs across India and has

conducted corporate training for software companies across India. He

is also an external examiner for B.E./M.E. projects and a member of the

Syllabus Revision Committee at the University of Pune.

ABOUT THE TECHNICAL REVIEWERSABOUT THE TECHNICAL REVIEWERS

xvii

Introduction

This book looks at Python from a data science point of view and teaches

the reader proven techniques of data visualization that are used to make

critical business decisions. Starting with an introduction to data science

using Python, the book then covers the Python environment and gets

you acquainted with editors like Jupyter Notebooks and the Spyder

IDE. After going through a primer on Python programming, you will

grasp the fundamental Python programming techniques used in data

science. Moving on to data visualization, you will learn how it caters to

modern business needs and is key to decision-making. You will also take

a look at some popular data visualization libraries in Python. Shifting

focus to collecting data, you will learn about the various aspects of data

collections from a data science perspective and also take a look at Python’s

data collection structures. You will then learn about file I/O processing

and regular expressions in Python, followed by techniques to gather and

clean data. Moving on to exploring and analyzing data, you will look at

the various data structures in Python. Then, you will take a deep dive into

data visualization techniques, going through a number of plotting systems

in Python. In conclusion, you will go through two detailed case studies,

where you’ll get a chance to revisit the concepts you’ve grasped so far.

This book is for people who want to learn Python for the data science

field in order to become data scientists. No specific programming

prerequisites are required besides having basic programming knowledge.

xviii

Specifically, the following list highlights what is covered in the book:

• Chapter 1 introduces the main concepts of data science

and its life cycle. It also demonstrates the importance

of Python programming and its main libraries for data

science processing. You will learn how different Python

data structures are used in data science applications.

You will learn how to implement an abstract series

and a data frame as a main Python data structure. You

will learn how to apply basic Python programming

techniques for data cleaning and manipulation. You

will learn how to run the basic inferential statistical

analyses. In addition, exercises with model answers are

given for practicing real-life scenarios.

• Chapter 2 demonstrates how to implement data

visualization in modern business. You will learn how

to recognize the role of data visualization in decision-

making and how to load and use important Python

libraries for data visualization. In addition, exercises

with model answers are given for practicing real-life

scenarios.

• Chapter 3 illustrates data collection structures in

Python and their implementations. You will learn how

to identify different forms of collection in Python. You

will learn how to create lists and how to manipulate list

content. You will learn about the purpose of creating a

dictionary as a data container and its manipulations.

You will learn how to maintain data in a tuple form

and what the differences are between tuple structures

and dictionary structures, as well as the basic tuples

operations. You will learn how to create a series from

INTRODUCTIONINTRODUCTION

xix

other data collection forms. You will learn how to create

a data frame from different data collection structures

and from another data frame. You will learn how to

create a panel as a 3D data collection from a series or

data frame. In addition, exercises with model answers

are given for practicing real-life scenarios.

• Chapter 4 shows how to read and send data to users,

read and pull data stored in historical files, and open

files for reading, writing, or for both. You will learn

how to access file attributes and manipulate sessions.

You will learn how to read data from users and apply

casting. You will learn how to apply regular expressions

to extract data, use regular expression alternatives,

and use anchors and repetition expressions for data

extractions as well. In addition, exercises with model

answers are given for practicing real-life scenarios.

• Chapter 5 covers data gathering and cleaning to have

reliable data for analysis. You will learn how to apply

data cleaning techniques to handle missing values.

You will learn how to read CSV data format offline or

pull it directly from online clouds. You will learn how

to merge and integrate data from different sources.

You will learn how to read and extract data from the

JSON, HTML, and XML formats. In addition, exercises

with model answers are given for practicing real-life

scenarios.

• Chapter 6 shows how to use Python scripts to explore

and analyze data in different collection structures.

You will learn how to implement Python techniques

to explore and analyze a series of data, create a series,

INTRODUCTIONINTRODUCTION

xx

access data from a series with a position, and apply

statistical methods on a series. You will learn how to

explore and analyze data in a data frame, create a data

frame, and update and access data in a data frame

structure. You will learn how to manipulate data in

a data frame such as including columns, selecting

rows, adding, or deleting data, and applying statistical

operations on a data frame. You will learn how to

apply statistical methods on a panel data structure to

explore and analyze stored data. You will learn how

to statistically analyze grouped data, iterate through

groups, and apply aggregations, transformations, and

filtration techniques. In addition, exercises with model

answers are given for practicing real-life scenarios.

• Chapter 7 shows how to visualize data from different

collection structures. You will learn how to plot data

from a series, a data frame, or a panel using Python

plotting tools such as line plots, bar plots, pie charts,

box plots, histograms, and scatter plots. You will learn

how to implement the Seaborn plotting system using

strip plots, box plots, swarm plots, and joint plots. You

will learn how to implement Matplotlib plotting using

line plots, bar charts, histograms, scatter plots, stack

plots, and pie charts. In addition, exercises with model

answers are given for practicing real-life scenarios.

• Chapter 8 investigates two real-life case studies, starting

with data gathering and moving through cleaning, data

exploring, data analysis, and visualizing. Finally, you’ll

learn how to discuss the study findings and provide

recommendations for decision-makers.

INTRODUCTIONINTRODUCTION

1© Dr. Ossama Embarak 2018
O. Embarak, Data Analysis and Visualization Using Python,
https://doi.org/10.1007/978-1-4842-4109-7_1

CHAPTER 1

Introduction to Data
Science with Python
The amount of digital data that exists is growing at a rapid rate, doubling

every two years, and changing the way we live. It is estimated that by 2020,

about 1.7MB of new data will be created every second for every human

being on the planet. This means we need to have the technical tools,

algorithms, and models to clean, process, and understand the available

data in its different forms for decision-making purposes. Data science is

the field that comprises everything related to cleaning, preparing, and

analyzing unstructured, semistructured, and structured data. This field

of science uses a combination of statistics, mathematics, programming,

problem-solving, and data capture to extract insights and information

from data.

 The Stages of Data Science

Figure 1-1 shows different stages in the field of data science. Data scientists

use programming tools such as Python, R, SAS, Java, Perl, and C/C++

to extract knowledge from prepared data. To extract this information,

they employ various fit-to-purpose models based on machine leaning

algorithms, statistics, and mathematical methods.

2

Data science algorithms are used in products such as internet

search engines to deliver the best results for search queries in less time,

in recommendation systems that use a user’s experience to generate

recommendations, in digital advertisements, in education systems, in

healthcare systems, and so on. Data scientists should have in-depth

knowledge of programming tools such as Python, R, SAS, Hadoop

platforms, and SQL databases; good knowledge of semistructured formats

such as JSON, XML, HTML. In addition to the knowledge of how to work

with unstructured data.

 Why Python?

Python is a dynamic and general-purpose programming language that is

used in various fields. Python is used for everything from throwaway scripts

to large, scalable web servers that provide uninterrupted service 24/7.

It is used for GUI and database programming, client- and server-side

Figure 1-1. Data science project stages

Chapter 1 IntroduCtIon to data SCIenCe wIth python

3

web programming, and application testing. It is used by scientists writing

applications for the world’s fastest supercomputers and by children first

learning to program. It was initially developed in the early 1990s by Guido

van Rossum and is now controlled by the not-for-profit Python Software

Foundation, sponsored by Microsoft, Google, and others.

The first-ever version of Python was introduced in 1991. Python is now

at version 3.x, which was released in February 2011 after a long period

of testing. Many of its major features have also been backported to the

backward-compatible Python 2.6, 2.7, and 3.6.

 Basic Features of Python

Python provides numerous features; the following are some of these

important features:

• Easy to learn and use: Python uses an elegant syntax,

making the programs easy to read. It is developer-

friendly and is a high-level programming language.

• Expressive: The Python language is expressive, which

means it is more understandable and readable than

other languages.

• Interpreted: Python is an interpreted language. In other

words, the interpreter executes the code line by line. This

makes debugging easy and thus suitable for beginners.

• Cross-platform: Python can run equally well on

different platforms such as Windows, Linux, Unix,

Macintosh, and so on. So, Python is a portable

language.

• Free and open source: The Python language is freely

available at www.python.org. The source code is also

available.

Chapter 1 IntroduCtIon to data SCIenCe wIth python

http://www.python.org

4

• Object-oriented: Python is an object-oriented language

with concepts of classes and objects.

• Extensible: It is easily extended by adding new modules

implemented in a compiled language such as C or C++,

which can be used to compile the code.

• Large standard library: It comes with a large standard

library that supports many common programming

tasks such as connecting to web servers, searching text

with regular expressions, and reading and modifying

files.

• GUI programming support: Graphical user interfaces

can be developed using Python.

• Integrated: It can be easily integrated with languages

such as C, C++, Java, and more.

 Python Learning Resources

Numerous amazing Python resources are available to train Python

learners at different learning levels. There are so many resources out

there, though it can be difficult to know how to find all of them. The

following are the best general Python resources with descriptions of what

they provide to learners:

 – Python Practice Book is a book of Python exercises to

help you learn the basic language syntax. (See https://

anandology.com/python-practice-book/index.html.)

 – Agile Python Programming: Applied for Everyone provides a

practical demonstration of Python programming as an

agile tool for data cleaning, integration, analysis, and

visualization fits for academics, professionals, and

Chapter 1 IntroduCtIon to data SCIenCe wIth python

https://anandology.com/python-practice-book/index.html
https://anandology.com/python-practice-book/index.html

5

researchers. (See http://www.lulu.com/shop/ossama-

embarak/agile-python-programming-applied-for-

everyone/paperback/product-23694020.html.)

 – “A Python Crash Course” gives an awesome overview of

the history of Python, what drives the programming

community, and example code. You will likely need to

read this in combination with other resources to really let

the syntax sink in, but it’s a great resource to read several

times over as you continue to learn. (See https://www.

grahamwheeler.com/posts/python-crash-course.html.)

 – “A Byte of Python” is a beginner’s tutorial for the Python

language. (See https://python.swaroopch.com/.)

 – The O’Reilly book Think Python: How to Think Like a

Computer Scientist is available in HTML form for free

on the Web. (See https://greenteapress.com/wp/

think-python/.)

 – Python for You and Me is an approachable book with

sections for Python syntax and the major language

constructs. The book also contains a short guide at the

end teaching programmers to write their first Flask web

application. (See https://pymbook.readthedocs.io/

en/latest/.)

 – Code Academy has a Python track for people completely

new to programming. (See www.codecademy.com/

catalog/language/python.)

 – Introduction to Programming with Python goes over

the basic syntax and control structures in Python. The

free book has numerous code examples to go along

with each topic. (See www.opentechschool.org/.)

Chapter 1 IntroduCtIon to data SCIenCe wIth python

https://www.lulu.com/shop/ossama-embarak/agile-python-programming-applied-for-everyone/paperback/product-23694020.html
https://www.lulu.com/shop/ossama-embarak/agile-python-programming-applied-for-everyone/paperback/product-23694020.html
https://www.lulu.com/shop/ossama-embarak/agile-python-programming-applied-for-everyone/paperback/product-23694020.html
https://www.grahamwheeler.com/posts/python-crash-course.html
https://www.grahamwheeler.com/posts/python-crash-course.html
https://python.swaroopch.com/
https://greenteapress.com/wp/think-python/
https://greenteapress.com/wp/think-python/
https://pymbook.readthedocs.io/en/latest/
https://pymbook.readthedocs.io/en/latest/
https://www.codecademy.com/catalog/language/python
https://www.codecademy.com/catalog/language/python
https://www.opentechschool.org/

6

 – Google has a great compilation of material you should

read and learn from if you want to be a professional

programmer. These resources are useful not only for

Python beginners but for any developer who wants to

have a strong professional career in software. (See

techdevguide.withgoogle.com.)

 – Looking for ideas about what projects to use to learn to

code? Check out the five programming projects for

Python beginners at knightlab.northwestern.edu.

 – There’s a Udacity course by one of the creators of

Reddit that shows how to use Python to build a blog.

It’s a great introduction to web development concepts.

(See mena.udacity.com.)

 Python Environment and Editors

Numerous integrated development environments (IDEs) can be used for

creating Python scripts.

 Portable Python Editors (No Installation
Required)

These editors require no installation:

Azure Jupyter Notebooks: The open source Jupyter

Notebooks was developed by Microsoft as an

analytic playground for analytics and machine

learning.

Chapter 1 IntroduCtIon to data SCIenCe wIth python

https://techdevguide.withgoogle.com
https://knightlab.northwestern.edu
https://mena.udacity.com

7

Python(x,y): Python(x,y) is a free scientific and

engineering development application for numerical

computations, data analysis, and data visualization

based on the Python programming language, Qt

graphical user interfaces, and Spyder interactive

scientific development environment.

WinPython: This is a free Python distribution for the

Windows platform; it includes prebuilt packages for

ScientificPython.

Anaconda: This is a completely free enterprise-

ready Python distribution for large-scale data

processing, predictive analytics, and scientific

computing.

PythonAnywhere: PythonAnywhere makes it easy to

create and run Python programs in the cloud. You

can write your programs in a web-based editor or

just run a console session from any modern web

browser.

Anaconda Navigator: This is a desktop

graphical user interface (GUI) included in the

Anaconda distribution that allows you to launch

applications and easily manage Anaconda

packages (as shown in Figure 1-2), environments,

and channels without using command-line

commands. Navigator can search for packages

on the Anaconda cloud or in a local Anaconda

repository. It is available for Windows, macOS,

and Linux.

Chapter 1 IntroduCtIon to data SCIenCe wIth python

8

The following sections demonstrate how to set up and use Azure

Jupyter Notebooks.

 Azure Notebooks

The Azure Machine Learning workbench supports interactive data science

experimentation through its integration with Jupyter Notebooks.

Azure Notebooks is available for free at https://notebooks.azure.

com/. After registering and logging into Azure Notebooks, you will get a

menu that looks like this:

Figure 1-2. Anaconda Navigator

Chapter 1 IntroduCtIon to data SCIenCe wIth python

https://notebooks.azure.com/
https://notebooks.azure.com/

9

Once you have created your account, you can create a library for

any Python project you would like to start. All libraries you create can be

displayed and accessed by clicking the Libraries link.

Let’s create a new Python script.

 1. Create a library.

Click New Library, enter your library details, and click

Create, as shown here:

A new library is created, as shown in Figure 1-3.

Chapter 1 IntroduCtIon to data SCIenCe wIth python

10

 2. Create a project folder container.

Organizing the Python library scripts is important.

You can create folders and subfolders by selecting

+New from the ribbon; then for the item type select

Folder, as shown in Figure 1-3.

Figure 1-3. Creating a folder in an Azure project

 3. Create a Python project.

Move inside the created folder and create a new Python project.

Chapter 1 IntroduCtIon to data SCIenCe wIth python

11

Your project should look like this:

 4. Write and run a Python script.

Open the Created Hello World script by clicking it, and start writing

your Python code, as shown in Figure 1-4.

Chapter 1 IntroduCtIon to data SCIenCe wIth python

12

In Figure 1-4, all the green icons show the options that can be

applied on the running file. For instance, you can click + to add new

lines to your file script. Also, you can save, cut, and move lines up and

down. To execute any segment of code, press Ctrl+Enter, or click Run

on the ribbon.

Figure 1-4. A Python script file on Azure

Chapter 1 IntroduCtIon to data SCIenCe wIth python

13

 Offline and Desktop Python Editors

There are many offline Python IDEs such as Spyder, PyDev via Eclipse,

NetBeans, Eric, PyCharm, Wing, Komodo, Python Tools for Visual Studio,

and many more.

The following steps demonstrate how to set up and use Spyder. You

can download Anaconda Navigator and then run the Spyder software, as

shown in Figure 1-5.

On the left side, you can write Python scripts, and on the right side you

can see the executed script in the console.

 The Basics of Python Programming

This section covers basic Python programming.

Figure 1-5. Python Spyder IDE

Chapter 1 IntroduCtIon to data SCIenCe wIth python

14

 Basic Syntax

A Python identifier is a name used to identify a variable, function, class,

module, or other object in the created script. An identifier starts with a

letter from A to Z or from a to z or an underscore (_) followed by zero or

more letters, underscores, and digits (0 to 9).

Python does not allow special characters such as @, $, and % within

identifiers. Python is a case-sensitive programming language. Thus,

Manpower and manpower are two different identifiers in Python.

The following are the rules for naming Python identifiers:

• Class names start with an uppercase letter. All other

identifiers start with a lowercase letter.

• Starting an identifier with a single leading underscore

indicates that the identifier is private.

• Starting an identifier with two leading underscores

indicates a strongly private identifier.

• If the identifier also ends with two trailing underscores,

the identifier is a language-defined special name.

The help? method can be used to get support from the Python user

manual, as shown in Listing 1-1.

Listing 1-1. Getting Help from Python

In [3]: help?

Signature: help(*args, **kwds)

Type: _Helper

String form: Type help() for interactive help, or help(object)

for help about object.

Namespace: Python builtin

Chapter 1 IntroduCtIon to data SCIenCe wIth python

15

File: ~/anaconda3_501/lib/python3.6/_sitebuiltins.py

Docstring:

Define the builtin 'help'.

This is a wrapper around pydoc.help that provides a helpful

message

when 'help' is typed at the Python interactive prompt.

Calling help() at the Python prompt starts an interactive help

session.

Calling help(thing) prints help for the python object 'thing'.

The smallest unit inside a given Python script is known as a token,

which represents punctuation marks, reserved words, and each individual

word in a statement, which could be keywords, identifiers, literals, and

operators.

Table 1-1 lists the reserved words in Python. Reserved words are the

words that are reserved by the Python language already and can’t be

redefined or declared by the user.

Table 1-1. Python Reserved Keywords

and exec not continue global with yield in

assert finally or def if return else is

break for pass except lambda while try

class from print del import raise elif

 Lines and Indentation

Line indentation is important in Python because Python does not depend

on braces to indicate blocks of code for class and function definitions

or flow control. Therefore, a code segment block is denoted by line

indentation, which is rigidly enforced, as shown in Listing 1-2.

Chapter 1 IntroduCtIon to data SCIenCe wIth python

16

Listing 1-2. Line Indentation Syntax Error

In [4]:age, mark, code=10,75,"CIS2403"

 print (age)

 print (mark)

 print (code)

File "<ipython-input-4-5e544bb51da0>", line 4

print (code)

IndentationError: unexpected indent

 Multiline Statements

Statements in Python typically end with a new line. But a programmer

can use the line continuation character (\) to denote that the line should

continue, as shown in Listing 1-3. Otherwise, a syntax error will occur.

Listing 1-3. Multiline Statements

In [5]:TV=15

 Mobile=20 Tablet = 30

total = TV +

Mobile +

 Tablet

print (total)

File "<ipython-input-5-68bc7095f603>", line 5

total = TV +

SyntaxError: invalid syntax

The following is the correct syntax:

In [6]: TV=15

 Mobile=20

 Tablet = 30

 total = TV + \

Chapter 1 IntroduCtIon to data SCIenCe wIth python

17

 Mobile + \

 Tablet

 print (total)

65

The code segment with statements contained within the [], {}, or ()

brackets does not need to use the line continuation character, as shown in

Listing 1-4.

Listing 1-4. Statements with Quotations

In [7]: days = ['Monday', 'Tuesday', 'Wednesday',

'Thursday', 'Friday']

print (days)

['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']

 Quotation Marks in Python

Python accepts single ('), double ("), and triple (''' or """) quotes to

denote string literals, as long as the same type of quote starts and ends the

string. However, triple quotes are used to span the string across multiple

lines, as shown in Listing 1-5.

Listing 1-5. Quotation Marks in Python

In [8]:sms1 = 'Hellow World'

 sms2 = "Hellow World"

 sms3 = """ Hellow World"""

 sms4 = """ Hellow

 World"""

 print (sms1)

 print (sms2)

 print (sms3)

 print (sms4)

Chapter 1 IntroduCtIon to data SCIenCe wIth python

18

Hellow World

Hellow World

Hellow World

Hellow

World

 Multiple Statements on a Single Line

Python allows the use of \n to split line into multiple lines. In addition,

the semicolon (;) allows multiple statements on a single line if neither

statement starts a new code block, as shown in Listing 1-6.

Listing 1-6. The Use of the Semicolon and New Line Delimiter

In [9]: TV=15; name="Nour"; print (name); print ("Welcome

to\nDubai Festival 2018")

Nour

Welcome to

Dubai Festival 2018

 Read Data from Users

The line code segment in Listing 1-7 prompts the user to enter a name and

age, converts the age into an integer, and then displays the data.

Listing 1-7. Reading Data from the User

In [10]:name = input("Enter your name ")

 age = int (input("Enter your age "))

 print ("\nName =", name); print ("\nAge =", age)

Chapter 1 IntroduCtIon to data SCIenCe wIth python

19

Enter your name Nour

Enter your age 12

Name = Nour

Age = 12

 Declaring Variables and Assigning Values

There is no restriction to declaring explicit variables in Python. Once you

assign a value to a variable, Python considers the variable according to

the assigned value. If the assigned value is a string, then the variable is

considered a string. If the assigned value is a real, then Python considers

the variable as a double variable. Therefore, Python does not restrict you

to declaring variables before using them in the application. It allows you to

create variables at the required time.

Python has five standard data types that are used to define the

operations possible on them and the storage method for each of them.

• Number

• String

• List

• Tuple

• Dictionary

The equal (=) operator is used to assign a value to a variable, as shown

in Listing 1-8.

Chapter 1 IntroduCtIon to data SCIenCe wIth python

20

Listing 1-8. Assign Operator

In [11]: age = 11

 name ="Nour"

 tall=100.50

In [12]: print (age)

 print (name)

 print (tall)

11

Nour

100.5

 Multiple Assigns

Python allows you to assign a value to multiple variables in a single

statement, which is also known as multiple assigns. You can assign a single

value to multiple variables or assign multiple values to multiple variables,

as shown in Listing 1-9.

Listing 1-9. Multiple Assigns

In [13]:age= mark = code =25

 print (age)

 print (mark)

 print (code)

25

25

25

In [14]:age, mark, code=10,75,"CIS2403"

 print (age)

 print (mark)

 print (code)

Chapter 1 IntroduCtIon to data SCIenCe wIth python

21

10

75

CIS2403

 Variable Names and Keywords

A variable is an identifier that allocates specific memory space and

assigns a value that could change during the program runtime. Variable

names should refer to the usage of the variable, so if you want to create

a variable for student age, then you can name it as age or student_age.

There are many rules and restrictions for variable names. It’s not allowed

to use special characters or white spaces in variable naming. For instance,

variable names shouldn’t start with any special character and shouldn’t

be any of the Python reserved keywords. The following example shows

incorrect naming: {?age, 1age, age student, and, if, 1_age, etc}.

The following shows correct naming for a variable: {age, age1, age_1,

if_age, etc}.

 Statements and Expressions

A statement is any unit of code that can be executed by a Python

interpreter to get a specific result or perform a specific task. A program

contains a sequence of statements, each of which has a specific purpose

during program execution. The expression is a combination of values,

variables, and operators that are evaluated by the interpreter to do a

specific task, as shown in Listing 1-10.

Listing 1-10. Expression and Statement Forms

In [16]:# Expressions

 x=0.6 # Statement

 x=3.9 * x * (1-x) # Expressions

 print (round(x, 2))

0.94

Chapter 1 IntroduCtIon to data SCIenCe wIth python

22

 Basic Operators in Python

Operators are the constructs that can manipulate the value of operands. Like

different programming languages, Python supports the following operators:

• Arithmetic operators

• Relational operators

• Assign operators

• Logical operators

• Membership operators

• Identity operators

• Bitwise operators

 Arithmetic Operators

Table 1-2 shows examples of arithmetic operators in Python.

Table 1-2. Python Arithmetic Operators

Operators Description Example Output

// performs floor division (gives the integer

value after division)

print (13//5) 2

+ performs addition print (13+5) 18

- performs subtraction print (13-5) 8

* performs multiplication print (2*5) 10

/ performs division print (13/5) 2.6

% returns the remainder after division

(modulus)

print (13%5) 3

** returns an exponent (raises to a power) print (2**3) 8

Chapter 1 IntroduCtIon to data SCIenCe wIth python

23

 Relational Operators

Table 1-3 shows examples of relational operators in Python.

Table 1-3. Python Relational Operators

Operators Description Example Output

< Less than print (13<5) False

> Greater than print (13>5) true

<= Less than or equal to print (13<=5) False

>= Greater than or equal to print (2>=5) False

== equal to print (13==5) False

!= not equal to print (13! =5) true

 Assign Operators

Table 1-4 shows examples of assign operators in Python.

Table 1-4. Python Assign Operators

Operators Description Example Output

= assigns x=10

print (x)

10

/= divides and assigns x=10; x/=2

print (x)

5.0

+= adds and assigns x=10; x+=7

print (x)

17

-= Subtracts and assigns x=10; x-=6

print (x)

4

(continued)

Chapter 1 IntroduCtIon to data SCIenCe wIth python

24

 Logical Operators

Table 1-5 shows examples of logical operators in Python.

Table 1-5. Python Logical Operators

Operators Description Example Output

and Logical and (when both conditions

are true, the output will be true)

x=10>5 and 4>20

print (x)

False

or Logical or (if any one condition

is true, the output will be true)

x=10>5 or 4>20

print (x)

true

not Logical not (complements the

condition; i.e., reverses it)

x=not (10<4)

print (x)

true

Operators Description Example Output

= Multiplies and assigns x=10; x=5

print (x)

50

%= Modulus and assigns x=13; x%=5

print (x)

3

= exponent and assigns x=10; x=3

print(x)

1000

//= Floor division and assigns x=10; x//=2

print(x)

5

Table 1-4. (continued)

A Python program is a sequence of Python statements that have

been crafted to do something. It can be one line of code or thousands of

code segments written to perform a specific task by a computer. Python

statements are executed immediately and do not wait for the entire

Chapter 1 IntroduCtIon to data SCIenCe wIth python

25

program to be executed. Therefore, Python is an interpreted language that

executes line per line. This differs from other languages such as C#, which

is a compiled language that needs to handle the entire program.

 Python Comments

There are two types of comments in Python: single-line comments and

multiline comments.

The # symbol is used for single-line comments.

Multiline comments can be given inside triple quotes, as shown in

Listing 1-11.

Listing 1-11. Python Comment Forms

In [18]: # Python single line comment

In [19]: ''' This

 Is

 Multi-line comment'''

 Formatting Strings

The Python special operator % helps to create formatted output. This

operator takes two operands, which are a formatted string and a value. The

following example shows that you pass a string and the 3.14259 value in

string format. It should be clear that the value can be a single value, a tuple

of values, or a dictionary of values.

In [20]: print ("pi=%s"%"3.14159")

pi=3.14159

Chapter 1 IntroduCtIon to data SCIenCe wIth python

26

 Conversion Types

You can convert values using different conversion specifier syntax, as

summarized in Table 1-6.

Table 1-6. Conversion Syntax

Syntax Description

%c Converts to a single character

%d, %i Converts to a signed decimal integer or long integer

%u Converts to an unsigned decimal integer

%e, %E Converts to a floating point in exponential notation

%f Converts to a floating point in fixed-decimal notation

%g Converts to the value shorter of %f and %e

%G Converts to the value shorter of %f and %E

%o Converts to an unsigned integer in octal

%r Converts to a string generated with repr()

%s Converts to a string using the str() function

%x, %X Converts to an unsigned integer in hexadecimal

For example, the conversion specifier %s says to convert the value to

a string. Therefore, to print a numerical value inside string output, you

can use, for instance, print("pi=%s" % 3.14159). You can use multiple

conversions within the same string, for example, to convert into double,

float, and so on.

In [1]:print("The value of %s is = %02f" % ("pi", 3.14159))

The value of pi is = 3.141590

Chapter 1 IntroduCtIon to data SCIenCe wIth python

27

You can use a dot (.) followed by a positive integer to specify the

precision. In the following example, you can use a tuple of different data

types and inject the output in a string message:

In [21]:print ("Your name is %s, and your height is %.2f while

your weight is %.2d" % ('Ossama', 172.156783, 75.56647))

Your name is Ossama, and your height is 172.16 while your

weight is 75

In the previous example, you can see that %.2f is replaced with the

value 172.16 with two decimal fractions after the decimal point, while %2d

is used to display decimal values only but in a two-digit format.

You can display values read directly from a dictionary, as shown next,

where %(name)s says to take as a string the dictionary value of the key Name

and %(height).2f says to take it as a float with two fraction values, which

are the dictionary values of the key height:

In [23]:print ("Hi %(Name)s, your height is %(height).2f"

%{'Name':"Ossama", 'height': 172.156783})

Hi Ossama, your height is 172.16

 The Replacement Field, {}

You can use the replacement field, {}, as a name (or index). If an index is

provided, it is the index of the list of arguments provided in the field. It’s

not necessary to have indices with the same sequence; they can be in a

random order, such as indices 0, 1, and 2 or indices 2, 1, and 0.

In [24]:x = "price is"

 print ("{1} {0} {2}".format(x, "The", 1920.345))

The price is 1920.345

Chapter 1 IntroduCtIon to data SCIenCe wIth python

28

Also, you can use a mix of values combined from lists, dictionaries,

attributes, or even a singleton variable. In the following example, you

will create a class called A(), which has a single variable called x that is

assigned the value 9.

Then you create an instance (object) called w from the class A().

Then you print values indexed from variable {0} and the {1[2]} value

from the list of values ["a," "or," "is"], where 1 refers to the index

of printing and 2 refers to the index in the given list where the string

index is 0. {2[test]} refers to index 2 in the print string and reads

its value from the passed dictionary from the key test. Finally, {3.x}

refers to the third index, which takes its value from w, which is an

instance of the class A().

In [34]:class A():x=9 w=A()

 print ("{0} {1[2]} {2[test]} {3.x}".format("This", ["a",

"or", "is"], {"test": "another"},w))

This is another 9

In [34]:print ("{1[1]} {0} {1[2]} {2[test]}{3.x}".

format("This", ["a", "or", "is"], {"test": "another"},w))

or This is another 9

 The Date and Time Module

Python provides a time package to deal with dates and times. You can

retrieve the current date and time and manipulate the date and time using

the built-in methods.

The example in Listing 1-12 imports the time package and calls its

.localtime() function to retrieve the current date and time.

Chapter 1 IntroduCtIon to data SCIenCe wIth python

29

Listing 1-12. Time Methods

In [42]:import time localtime = time.asctime(time.

localtime(time.time()))

print ("Formatted time :", localtime)

print(time.localtime())

print (time.time())

Formatted time : Fri Aug 17 19:12:07 2018

time.struct_time(tm_year=2018, tm_mon=8, tm_mday=17,

tm_hour=19, tm_min=12, tm_sec=7, tm_wday=4, tm_yday=229,

tm_isdst=0)

1534533127.8304486

 Time Module Methods

Python provides various built-in time functions, as in Table 1-7, that can be

used for time-related purposes.

Table 1-7. Built-in Time Methods

Methods Description

time() returns time in seconds since January 1, 1970.

asctime(time) returns a 24-character string, e.g., Sat Jun 16 21:27:18 2018.

sleep(time) used to stop time for the given interval of time.

strptime

(String,format)

returns a tuple with nine time attributes. It receives a string

of date and a format.

time.struct_time(tm_year=2018, tm_mon=6,

tm_mday=16, tm_hour=0, tm_min=0, tm_sec=0,

tm_wday=3, tm_yday=177, tm_isdst=-1)

(continued)

Chapter 1 IntroduCtIon to data SCIenCe wIth python

30

Table 1-8. Built-in Calendar Module Functions

Methods Description

prcal(year) prints the whole calendar of the year.

f irstweekday() returns the first weekday. It is by default 0,

which specifies Monday.

isleap(year) returns a Boolean value, i.e., true or false.

returns true in the case the given year is a leap

year; otherwise, false.

monthcalendar(year,month)

returns the given month with each week as

one list.

leapdays(year1,year2) returns the number of leap days from year1

to year2.

prmonth(year,month) prints the given month of the given year.

Table 1-7. (continued)

Methods Description

 gtime()/

gtime(sec)

returns struct_time, which contains nine time attributes.

mktime() returns the seconds in floating point since the epoch.

 strftime

(format)/

strftime

(format,time)

returns the time in a particular format. If the time is not

given, the current time in seconds is fetched.

 Python Calendar Module

Python provides a calendar module, as in Table 1-8, which provides many

functions and methods to work with a calendar.

Chapter 1 IntroduCtIon to data SCIenCe wIth python

31

You can use the Calendar package to display a 2018 calendar as shown

here:

In [45]:import calendar

 calendar.prcal(2018)

Chapter 1 IntroduCtIon to data SCIenCe wIth python

32

 Fundamental Python Programming
Techniques

This section demonstrates numerous Python programming syntax

structures.

 Selection Statements

The if statement is used to execute a specific statement or set of

statements when the given condition is true. There are various forms of if

structures, as shown in Table 1-9.

The if statement is used to make decisions based on specific

conditions occurring during the execution of the program. An action or set

of actions is executed if the outcome is true or false otherwise. Figure 1-6

shows the general form of a typical decision-making structure found in

most programming languages including Python. Any nonzero and non-

null values are considered true in Python, while either zero or null values

are considered false.

Table 1-9. if Statement Structure

Form if statement if-else Statement Nested if Statement

Structure if(condition):

statements

if(condition):

statements

else:

statements

if (condition):

statements

elif (condition):

statements

else:

statements

Chapter 1 IntroduCtIon to data SCIenCe wIth python

33

Listing 1-13 demonstrates two examples of a selection statement,

remember the indentation is important in the Python structure. The first

block shows that the value of x is equal to 5; hence, the condition is testing

whether x equals 5 or not. Therefore, the output implements the statement

when the condition is true.

Listing 1-13. The if-else Statement Structure

In [13]:#Comparison operators

 x=5

 if x==5:

 print ('Equal 5')

elif x>5:

 print ('Greater than 5')

elif x<5:

 print ('Less than 5')

Equal 5

Figure 1-6. Selection statement structure

Chapter 1 IntroduCtIon to data SCIenCe wIth python

34

In [14]:year=2000

 if year%4==0:

 print("Year(", year ,")is Leap")

else:

 print (year , "Year is not Leap")

Year(2000)is Leap

Indentation determines which statement should be executed. In

Listing 1-14, the if statement condition is false, and hence the outer print

statement is the only executed statement.

Listing 1-14. Indentation of Execution

In [12]:#Indentation

 x=2

 if x>2:

 print ("Bigger than 2")

 print (" X Value bigger than 2")

 print ("Now we are out of if block\n")

Now we are out of if block

The nested if statement is an if statement that is the target of another

if statement. In other words, a nested if statement is an if statement

inside another if statement, as shown in Listing 1-15.

Listing 1-15. Nested Selection Statements

In [2]:a=10

 if a>=20:

 print ("Condition is True")

else:

 if a>=15:

 print ("Checking second value")

Chapter 1 IntroduCtIon to data SCIenCe wIth python

35

 else:

 print ("All Conditions are false")

All Conditions are false

 Iteration Statements

There are various iteration statement structures in Python. The for

loop is one of these structures; it is used to iterate the elements of

a collection in the order that they appear. In general, statements

are executed sequentially, where the first statement in a function is

executed first, followed by the second, and so on. There may be a

situation when you need to execute a block of code several numbers

of times.

Control structures allow you to execute a statement or group of

statements multiple times, as shown by Figure 1-7.

Figure 1-7. A loop statement

Chapter 1 IntroduCtIon to data SCIenCe wIth python

36

Table 1-10 demonstrates different forms of iteration statements. The

Python programming language provides different types of loop statements

to handle iteration requirements.

Python provides various support methods for iteration statements

where it allows you to terminate the iteration, skip a specific iteration,

or pass if you do not want any command or code to execute. Table 1-11

summarizes control statements within the iteration execution.

Table 1-10. Iteration Statement Structure

1 for loop

executes a sequence of statements multiple times and abbreviates the

code that manages the loop variable.

2 Nested loops

you can use one or more loop inside any another while, for, or do..

while loop.

3 while loop

repeats a statement or group of statements while a given condition is true.

It tests the condition before executing the loop body.

4 do {....} while ()

repeats a statement or group of statements while a given condition is true.

It tests the condition after executing the loop body.

Chapter 1 IntroduCtIon to data SCIenCe wIth python

37

The range() statement is used with for loop statements where you

can specify one value. For example, if you specify 4, the loop statement

starts from 1 and ends with 3, which is n-1. Also, you can specify

the start and end values. The following examples demonstrate loop

statements.

Listing 1-16 displays all numerical values starting from 1 up to n-1,

where n=4.

Listing 1-16. for Loop Statement

In [23]:# use the range statement

 for a in range (1,4):

 print (a)

1

2

3

Listing 1-17 displays all numerical values starting from 0 up to n-1,

where n=4.

Table 1-11. Loop Control Statements

1 Break statement

terminates the loop statement and transfers execution to the statement

immediately following the loop.

2 Continue statement

Causes the loop to skip the remainder of its body and immediately retests

its condition prior to reiterating.

3 Pass statement

the pass statement is used when a statement is required syntactically but

you do not want any command or code to execute.

Chapter 1 IntroduCtIon to data SCIenCe wIth python

38

Listing 1-17. Using the range() Method

In [24]:# use the range statement

 for a in range (4):

 print (a)

0

1

2

3

Listing 1-18 displays the while iteration statement.

Listing 1-18. while Iteration Statement

In [32]:ticket=4

 while ticket>0:

 print ("Your ticket number is ", ticket)

 ticket -=1

Your ticket number is 4

Your ticket number is 3

Your ticket number is 2

Your ticket number is 1

Listing 1-19 iterates all numerical values in a list to find the maximum

value.

Listing 1-19. Using a Selection Statement Inside a Loop Statement

In [2]:largest = None

 print ('Before:', largest)

 for val in [30, 45, 12, 90, 74, 15]:

if largest is None or val>largest:

 largest = val

 print ("Loop", val, largest)

print ("Largest", largest)

Chapter 1 IntroduCtIon to data SCIenCe wIth python

39

Before: None

Loop 30 30

Loop 45 45

Loop 90 90

Largest 90

In the previous examples, the first and second iterations used the for

loop with a range statement. In the last example, iteration goes through a

list of elements and stops once it reaches the last element of the iterated

list.

A break statement is used to jump statements and transfer the

execution control. It breaks the current execution, and in the case of an

inner loop, the inner loop terminates immediately. However, a continue

statement is a jump statement that skips execution of current iteration.

After skipping, the loop continues with the next iteration. The pass

keyword is used to execute nothing. The following examples demonstrate

how and when to employ each statement.

 The Use of Break, Continues, and Pass
Statements

Listing 1-20 shows the break, continue, and pass statements.

Listing 1-20. Break, Continue, and Pass Statements

In [44]:for letter in 'Python3':

 if letter == 'o':

 break

 print (letter)

Chapter 1 IntroduCtIon to data SCIenCe wIth python

40

P

y

t

h

In [45]: a=0

 while a<=5:

 a=a+1

 if a%2==0:

 continue

 print (a)

 print ("End of Loop")

1

3

5

End of Loop

In [46]: for i in [1,2,3,4,5]:

 if i==3:

 pass

 print ("Pass when value is", i)

 print (i)

1

2

Pass when value is 3

3

4

5

As shown, you can iterate over a list of letters, as shown in Listing 1-20,

and you can iterate over the word Python3 and display all the letters. You

stop iteration once you find the condition, which is the letter o. In addition,

Chapter 1 IntroduCtIon to data SCIenCe wIth python

41

you can use the pass statement when a statement is required syntactically

but you do not want any command or code to execute. The pass statement

is a null operation; nothing happens when it executes.

 try and except

try and except are used to handle unexpected values where you would

like to validate entered values to avoid error occurrence. In the first

example of Listing 1-21, you use try and except to handle the string “Al

Fayoum,” which is not convertible into an integer, while in the second

example, you use try and except to handle the string 12, which is

convertible to an integer value.

Listing 1-21. try and except Statements

In [14]: # Try and Except

astr='Al Fayoum'

 errosms=''

try:

 istr=int(astr) # error

except:

 istr=-1

 errosms="\nIncorrect entry"

print ("First Try:", istr , errosms)

First Try: -1

Incorrect entry

In [15]:# Try and Except

 astr='12'

 errosms=' '

 try:

 istr=int(astr) # error

 except:

Chapter 1 IntroduCtIon to data SCIenCe wIth python

42

 istr=-1

 errosms="\nIncorrect entry"

 print ("First Try:", istr , errosms)

First Try: 12

 String Processing

A string is a sequence of characters that can be accessed by an expression

in brackets called an index. For instance, if you have a string variable

named var1, which maintains the word PYTHON, then var1[1] will return

the character Y, while var1[-2] will return the character O. Python

considers strings by enclosing text in single as well as double quotes.

Strings are stored in a contiguous memory location that can be accessed

from both directions (forward and backward), as shown in the following

example, where

• Forward indexing starts with 0, 1, 2, 3, and so on.

• Backward indexing starts with -1, -2, -3, -4, and so on.

 String Special Operators

Table 1-12 lists the operators used in string processing. Say you have the

two variables a= 'Hello' and b = 'Python'. Then you can implement the

operations shown in Table 1-12.

Chapter 1 IntroduCtIon to data SCIenCe wIth python

43

Table 1-12. String Operators

Operator Description Outputs

+ Concatenation: adds values on either side of the

operator

a + b will give

HelloPython.

* repetition: creates new strings, concatenating

multiple copies of the same string

a*2 will give

-HelloHello.

[] Slice: gives the character from the given index a[1] will give e.

[:] range slice: gives the characters from the given

range

a[1:4] will give

ell.

in Membership: returns true if a character exists in

the given string

H in a will give

true.

not in Membership: returns true if a character does not

exist in the given string

M not in a will

give true.

Various symbols are used for string formatting using the operator %.

Table 1-13 gives some simple examples.

Table 1-13. String Format Symbols

Format Symbol Conversion

%c Character

%s String conversion via

str() prior to formatting

%i Signed decimal integer

%d Signed decimal integer

%u unsigned decimal integer

(continued)

Chapter 1 IntroduCtIon to data SCIenCe wIth python

44

Format Symbol Conversion

%o octal integer

%x hexadecimal integer

(lowercase letters)

%X hexadecimal integer

(uppercase letters)

%e exponential notation (with

lowercase e)

%E exponential notation (with

uppercase E)

%f Floating-point real number

%g the shorter of %f and %e

%G the shorter of %f and %E

Table 1-13. (continued)

 String Slicing and Concatenation

String slicing refers to a segment of a string that is extracted using

an index or using search methods. In addition, the len() method is

a built-in function that returns the number of characters in a string.

Concatenation enables you to join more than one string together to form

another string.

The operator [n:m] returns the part of the string from the nth character

to the mth character, including the first but excluding the last. If you omit

the first index (before the colon), the slice starts at the beginning of the

string. In addition, if you omit the second index, the slice goes to the

end of the string. The examples in Listing 1-22 show string slicing and

concatenation using the + operator.

Chapter 1 IntroduCtIon to data SCIenCe wIth python

45

Listing 1-22. String Slicing and Concatenation

In [3]:var1 = 'Welcome to Dubai'

 var2 = "Python Programming"

 print ("var1[0]:", var1[0])

 print ("var2[1:5]:", var2[1:5])

 var1[0]: W

 var2[1:5]: ytho

In [5]:st1="Hello"

 st2=' World'

 fullst=st1 + st2

 print (fullst)

Hello World

In [11]:# looking inside strings

 fruit = 'banana'

 letter= fruit[1]

 print (letter)

 index=3

 w = fruit[index-1]

 print (w)

 print (len(fruit))

a

n

6

 String Conversions and Formatting Symbols

It is possible to convert a string value into a float, double, or integer if the

string value is applicable for conversion, as shown in Listing 1-23.

Chapter 1 IntroduCtIon to data SCIenCe wIth python

46

Listing 1-23. String Conversion and Format Symbols

In [14]:#Convert string to int

 str3 = '123'

 str3= int (str3)+1

 print (str3)

124

In [15]:#Read and convert data

 name=input('Enter your name: ')

 age=input('Enter your age: ')

 age= int(age) + 1

 print ("Name: %s"% name ,"\t Age:%d"% age)

Enter your name: Omar

Enter your age: 41

Name: Omar Age:42

 Loop Through String

You can use iteration statements to go through a string forward or

backward. A lot of computations involve processing a string one character

at a time. String processing can start at the beginning, select each character

in turn, do something to it, and continue until the end. This pattern of

processing is called a traversal. One way to write a traversal is with a while

loop, as shown in Listing 1-24.

Listing 1-24. Iterations Through Strings

In [30]:# Looking through string

 fruit ='banana'

 index=0

 while index< len(fruit):

 letter = fruit [index]

Chapter 1 IntroduCtIon to data SCIenCe wIth python

47

 print (index, letter)

 index=index+1

0 b

1 a

2 n

3 a

4 n

5 a

In [31]:print ("\n Implementing iteration with continue")

 while True:

 line = input('Enter your data>')

 if line[0]=='#':

 continue

 if line =='done':

 break

 print (line)

 print ('End!')

Implementing iteration with continue

Enter your data>Higher Colleges of Technology

Higher Colleges of Technology

Enter your data>#

Enter your data>done

End!

In [32]:print ("\nPrinting in reverse order")

 index=len(fruit)-1

 while index>=0 :

 letter = fruit [index]

 print (index, letter)

 index=index-1

Chapter 1 IntroduCtIon to data SCIenCe wIth python

48

Printing in reverse order

5 a

4 n

3 a

2 n

1 a

0 b

Letterwise iteration

In [33]:Country='Egypt'

 for letter in Country:

 print (letter)

E

g

y

p

t

You can use iterations as well to count letters in a word or to count

words in lines, as shown in Listing 1-25.

Listing 1-25. Iterating and Slicing a String

In [2]:# Looking and counting

 word='banana'

 count=0

 for letter in word:

 if letter =='a':

 count +=1

 print ("Number of a in ", word, "is :", count)

Number of a in banana is : 3

Chapter 1 IntroduCtIon to data SCIenCe wIth python

49

In [3]:# String Slicing

 s="Welcome to Higher Colleges of Technology"

 print (s[0:4])

 print (s[6:7])

 print (s[6:20])

 print (s[:12])

 print (s[2:])

 print (s [:])

 print (s)

Welc

e

e to Higher Co Welcome to H

lcome to Higher Colleges of Technology Welcome to Higher

Colleges of Technology

Welcome to Higher Colleges of Technology

 Python String Functions and Methods

Numerous built-in methods and functions can be used for string

processing; Table 1-14 lists these methods.

Table 1-14. Built-in String Methods

Method/Function Description

capitalize() Capitalizes the first character of the string.

count(string,

begin,end)

Counts a number of times a substring occurs in a string

between the beginning and end indices.

endswith(suffix,

begin=0,end=n)

returns a Boolean value if the string terminates with a

given suffix between the beginning and end.

(continued)

Chapter 1 IntroduCtIon to data SCIenCe wIth python

50

Table 1-14. (continued)

Method/Function Description

find(substring,

beginIndex,

endIndex)

returns the index value of the string where the substring is

found between the begin index and the end index.

index(subsring,

beginIndex,

endIndex)

throws an exception if the string is not found and works

same as the find() method.

isalnum() returns true if the characters in the string are

alphanumeric (i.e., letters or numbers) and there is at least

one character. otherwise, returns false.

isalpha() returns true when all the characters are letters and there

is at least one character; otherwise, false.

isdigit() returns true if all the characters are digits and there is at

least one character; otherwise, false.

islower() returns true if the characters of a string are in lowercase;

otherwise, false.

isupper() returns false if the characters of a string are in uppercase;

otherwise, false.

isspace() returns true if the characters of a string are white space;

otherwise, false.

len(string) returns the length of a string.

lower() Converts all the characters of a string to lowercase.

upper() Converts all the characters of a string to uppercase.

startswith(str,

begin=0,end=n)

returns a Boolean value if the string starts with the given

str between the beginning and end.

(continued)

Chapter 1 IntroduCtIon to data SCIenCe wIth python

51

Listing 1-26 shows how to use built-in methods to remove white space

from a string, count specific letters within a string, check whether the

string contains another string, and so on.

Listing 1-26. Implementing String Methods

In [29]:var1 =' Higher Colleges of Technology '

 var2='College'

 var3='g'

 print (var1.upper())

 print (var1.lower())

 print ('WELCOME TO'.lower())

 print (len(var1))

 print (var1.count(var3, 2, 29)) # find how many g

letters in var1

 print (var2.count(var3))

HIGHER COLLEGES OF TECHNOLOGY

higher colleges of technology

welcome to

Method/Function Description

swapcase() Inverts the case of all characters in a string.

lstrip() removes all leading white space of a string and can also

be used to remove a particular character from leading

white spaces.

rstrip() removes all trailing white space of a string and can also

be used to remove a particular character from trailing

white spaces.

Table 1-14. (continued)

Chapter 1 IntroduCtIon to data SCIenCe wIth python

52

31

3

1

In [33]:print (var1.endswith('r'))

 print (var1.startswith('O'))

 print (var1.find('h', 0, 29))

 print (var1.lstrip()) # It removes all leading whitespace

of a string in var1

 print (var1.rstrip()) # It removes all trailing

whitespace of a string in var1

 print (var1.strip()) # It removes all leading and

trailing whitespace

 print ('\n')

 print (var1.replace('Colleges', 'University'))

False

False

4

Higher Colleges of Technology

 Higher Colleges of Technology

Higher Colleges of Technology

Higher University of Technology

 The in Operator

The word in is a Boolean operator that takes two strings and returns true if

the first appears as a substring in the second, as shown in Listing 1-27.

Listing 1-27. The in Method in String Processing

In [43]:var1 =' Higher Colleges of Technology '

 var2='College'

 var3='g'

Chapter 1 IntroduCtIon to data SCIenCe wIth python

53

 print (var2 in var1)

 print (var2 not in var1)

True

False

 Parsing and Extracting Strings

The find operator returns the index of the first occurrence of a substring

in another string, as shown in Listing 1-28. The atpost variable is used to

maintain a returned index of the substring @ as it appears in the Maindata

string variable.

Listing 1-28. Parsing and Extracting Strings

In [39]:# Parsing and Extracting strings

 Maindata = 'From ossama.embarak@hct.ac.ae Sunday

Jan 4 09:30:50 2017' atpost = Maindata.find('@')

 print ("\n<<<<<<<<<<<<<<>>>>>>>>>>>>>")

 print (atpost)

 print (Maindata[:atpost])

 data = Maindata[:atpost]

 name=data.split(' ')

 print (name)

 print (name[1].replace('.', ' ').upper())

 print ("\n<<<<<<<<<<<<<<>>>>>>>>>>>>>")

<<<<<<<<<<<<<<>>>>>>>>>>>>>

19

From ossama.embarak

['From', 'ossama.embarak']

OSSAMA EMBARAK

<<<<<<<<<<<<<<>>>>>>>>>>>>>

Chapter 1 IntroduCtIon to data SCIenCe wIth python

54

In [41]:# Another way to split strings

 Maindata = 'From ossama.embarak@hct.ac.ae Sunday

Jan 4 09:30:50 2017'

 name= Maindata[:atpost].replace('From','').upper()

 print (name.replace('.',' ').upper().lstrip())

 print ("\n<<<<<<<<<<<<<<>>>>>>>>>>>>>")

 sppos=Maindata.find(' ', atpost)

 print (sppos)

 print (Maindata[:sppos])

 host = Maindata [atpost + 1 : sppos]

 print (host)

 print ("\n<<<<<<<<<<<<<<>>>>>>>>>>>>>")

OSSAMA EMBARAK

<<<<<<<<<<<<<<>>>>>>>>>>>>>

29

From ossama.embarak@hct.ac.ae

hct.ac.ae

<<<<<<<<<<<<<<>>>>>>>>>>>>>

 Tabular Data and Data Formats

Data is available in different forms. It can be unstructured data,

semistructured data, or structured data. Python provides different

structures to maintain data and to manipulate it such as variables, lists,

dictionaries, tuples, series, panels, and data frames. Tabular data can be

easily represented in Python using lists of tuples representing the records

of the data set in a data frame structure. Though easy to create, these

kinds of representations typically do not enable important tabular data

manipulations, such as efficient column selection, matrix mathematics, or

spreadsheet-style operations. Tabular is a package of Python modules for

working with tabular data. Its main object is the tabarray class, which is a

Chapter 1 IntroduCtIon to data SCIenCe wIth python

55

data structure for holding and manipulating tabular data. You can put data

into a tabarray object for more flexible and powerful data processing. The

Pandas library also provides rich data structures and functions designed to

make working with structured data fast, easy, and expressive. In addition,

it provides a powerful and productive data analysis environment.

A Pandas data frame can be created using the following constructor:

pandas.DataFrame(data, index, columns, dtype, copy)

A Pandas data frame can be created using various input forms such as

the following:

• List

• Dictionary

• Series

• Numpy ndarrays

• Another data frame

Chapter 3 will demonstrate the creation and manipulation of the data

frame structure in detail.

 Python Pandas Data Science Library

Pandas is an open source Python library providing high-performance

data manipulation and analysis tools via its powerful data structures. The

name Pandas is derived from “panel data,” an econometrics term from

multidimensional data. The following are the key features of the Pandas library:

• Provides a mechanism to load data objects from

different formats

• Creates efficient data frame objects with default and

customized indexing

• Reshapes and pivots date sets

Chapter 1 IntroduCtIon to data SCIenCe wIth python

56

• Provides efficient mechanisms to handle missing data

• Merges, groups by, aggregates, and transforms data

• Manipulates large data sets by implementing various

functionalities such as slicing, indexing, subsetting,

deletion, and insertion

• Provides efficient time series functionality

Sometimes you have to import the Pandas package since the standard

Python distribution doesn’t come bundled with the Pandas module.

A lightweight alternative is to install Numpy using popular the Python

package installer pip. The Pandas library is used to create and process

series, data frames, and panels.

 A Pandas Series

A series is a one-dimensional labeled array capable of holding data of any

type (integer, string, float, Python objects, etc.). Listing 1-29 shows how to

create a series using the Pandas library.

Listing 1-29. Creating a Series Using the Pandas Library

In [34]:#Create series from array using pandas and numpy

 import pandas as pd

 import numpy as np

 data = np.array([90,75,50,66])

 s = pd.Series(data,index=['A','B','C','D'])

 print (s)

A 90

B 75

C 50

D 66

dtype: int64

Chapter 1 IntroduCtIon to data SCIenCe wIth python

57

In [36]:print (s[1])

75

In [37]:#Create series from dictionary using pandas

 import pandas as pd

 import numpy as np

 data = {'Ahmed' : 92, 'Ali' : 55, 'Omar' : 83}

 s = pd.Series(data,index=['Ali','Ahmed','Omar'])

 print (s)

Ali 55

Ahmed 92

Omar 83

dtype: int64

In [38]:print (s[1:])

Ahmed 92

Omar 83

dtype: int64

 A Pandas Data Frame

A data frame is a two-dimensional data structure. In other words, data is

aligned in a tabular fashion in rows and columns. In the following table,

you have two columns and three rows of data. Listing 1-30 shows how to

create a data frame using the Pandas library.

Name Age

ahmed 35

ali 17

omar 25

Chapter 1 IntroduCtIon to data SCIenCe wIth python

58

Listing 1-30. Creating a Data Frame Using the Pandas Library

In [39]:import pandas as pd

 data = [['Ahmed',35],['Ali',17],['Omar',25]]

 DataFrame1 = pd.DataFrame(data,columns=['Name','Age'])

 print (DataFrame1)

 Name Age

0 Ahmed 35

1 Ali 17

2 Omar 25

You can retrieve data from a data frame starting from index 1 up to the

end of rows.

In [40]: DataFrame1[1:]

Out[40]: Name Age

 1 Ali 17

 2 Omar 25

You can create a data frame using a dictionary.

In [41]:import pandas as pd

 data = {'Name':['Ahmed', 'Ali', 'Omar',

'Salwa'],'Age':[35,17,25,30]}

 dataframe2 = pd.DataFrame(data, index=[100, 101, 102, 103])

 print (dataframe2)

 Age Name

100 35 Ahmed

101 17 Ali

102 25 Omar

103 30 Salwa

Chapter 1 IntroduCtIon to data SCIenCe wIth python

59

You can select only the first two rows in a data frame.

In [42]: dataframe2[:2]

Out[42]: Age Name

 100 35 Ahmed

 101 17 Ali

You can select only the name column in a data frame.

In [43]: dataframe2['Name']

Out[43]:100 Ahmed

101 Ali

102 Omar

103 Salwa

Name: Name, dtype: object

 A Pandas Panels

A panel is a 3D container of data that can be created from different data

structures such as from a dictionary of data frames, as shown in Listing 1-31.

Listing 1-31. Creating a Panel Using the Pandas Library

In [44]:# Creating a panel

 import pandas as pd

 import numpy as np

 data = {'Temperature Day1' : pd.DataFrame(np.random.

randn(4, 3)),'Temperature Day2' : pd.DataFrame

(np.random.randn(4, 2))}

 p = pd.Panel(data)

 print (p['Temperature Day1'])

 0 1 2

0 1.152400 -1.298529 1.440522

Chapter 1 IntroduCtIon to data SCIenCe wIth python

60

1 -1.404988 -0.105308 -0.192273

2 -0.575023 -0.424549 0.146086

3 -1.347784 1.153291 -0.131740

 Python Lambdas and the Numpy Library

The lambda operator is a way to create small anonymous functions, in

other words, functions without names. These functions are throwaway

functions; they are just needed where they have been created. The lambda

feature is useful mainly for Lisp programmers. Lambda functions are used

in combination with the functions filter(), map(), and reduce().

Anonymous functions refer to functions that aren’t named and are

created by using the keyword lambda. A lambda is created without using

the def keyword; it takes any number of arguments and returns an

evaluated expression, as shown in Listing 1-32.

Listing 1-32. Anonymous Function

In [34]:# Anonymous Function Definition

 summation=lambda val1, val2: val1 + val2#Call

summation as a function

 print ("The summation of 7 + 10 = ", summation(7,10))

The summation of 7 + 10 = 17

In [46]:result = lambda x, y : x * y

 result(2,5)

Out[46]: 10

In [47]:result(4,10)

Out[47]: 40

Chapter 1 IntroduCtIon to data SCIenCe wIth python

61

 The map() Function

The map() function is used to apply a specific function on a sequence of

data. The map() function has two arguments.

r = map(func, seq)

Here, func is the name of a function to apply, and seq is the sequence

(e.g., a list) that applies the function func to all the elements of the

sequence seq. It returns a new list with the elements changed by func, as

shown in Listing 1-33.

Listing 1-33. Using the map() Function

In [65]:def fahrenheit(T):

 return ((float(9)/5)*T + 32)

 def celsius(T):

 return (float(5)/9)*(T-32)

 Temp = (15.8, 25, 30.5,25)

 F = list (map(fahrenheit, Temp))

 C = list (map(celsius, F))

 print (F)

 print (C)

[60.44, 77.0, 86.9, 77.0]

[15.799999999999999, 25.0, 30.500000000000004, 25.0]

In [72]:Celsius = [39.2, 36.5, 37.3, 37.8]

Fahrenheit = map(lambda x: (float(9)/5)*x + 32, Celsius)

for x in Fahrenheit:

 print(x)

102.56

97.7

99.14

100.03999999999999

Chapter 1 IntroduCtIon to data SCIenCe wIth python

62

 The filter() Function

The filter() function is an elegant way to filter out all elements of a list

for which the applied function returns true.

For instance, the function filter(func, list1) needs a function

called func as its first argument. func returns a Boolean value, in other

words, either true or false. This function will be applied to every element

of the list list1. Only if func returns true will the element of the list be

included in the result list.

The filter() function in Listing 1-34 is used to return only even

values.

Listing 1-34. Using the filter() Function

In [79]:fib = [0,1,1,2,3,5,8,13,21,34,55]

 result = filter(lambda x: x % 2==0, fib)

 for x in result:

 print(x)

0

2

8

34

 The reduce () Function

The reduce() function continually applies the function func to a sequence

seq and returns a single value.

The reduce() function is used to find the max value in a sequence of

integers, as shown in Listing 1-35.

Chapter 1 IntroduCtIon to data SCIenCe wIth python

63

Listing 1-35. Using the reduce() Function

In [81]: f = lambda a,b: a if (a > b) else b

reduce(f, [47,11,42,102,13])

102

In [82]: reduce(lambda x,y: x+y, [47,11,42,13])

113

 Python Numpy Package

Numpy is a Python package that stands for “numerical Python.” It is a

library consisting of multidimensional array objects and a collection of

routines for processing arrays.

The Numpy library is used to apply the following operations:

• Operations related to linear algebra and random

number generation

• Mathematical and logical operations on arrays

• Fourier transforms and routines for shape

manipulation

For instance, you can create arrays and perform various operations

such as adding or subtracting arrays, as shown in Listing 1-36.

Listing 1-36. Example of the Numpy Function

In [83]:a=np.array([[1,2,3],[4,5,6]])

 b=np.array([[7,8,9],[10,11,12]])

 np.add(a,b)

Out[83]: array([[8, 10, 12], [14, 16, 18]])

In [84]:np.subtract(a,b) #Same as a-b

Out[84]: array([[-6, -6, -6], [-6, -6, -6]])

Chapter 1 IntroduCtIon to data SCIenCe wIth python

64

 Data Cleaning and Manipulation Techniques

Keeping accurate data is highly important for any data scientist.

Developing an accurate model and getting accurate predictions from

the applied model depend on the missing values treatment. Therefore,

handling missing data is important to make models more accurate and

valid.

Numerous techniques and approaches are used to handle missing data

such as the following:

• Fill NA forward

• Fill NA backward

• Drop missing values

• Replace missing (or) generic values

• Replace NaN with a scalar value

The following examples are used to handle the missing values in a

tabular data set:

In [31]: dataset.fillna(0) # Fill missing values with zero value

In [35]: dataset.fillna(method='pad') # Fill methods Forward

In [35]: dataset.fillna(method=' bfill') # Fill methods Backward

In [37]: dataset.dropna() # remove all missing data

Chapter 5 covers different gathering and cleaning techniques.

 Abstraction of the Series and Data Frame

A series is one of the main data structures in Pandas. It differs from lists

and dictionaries. An easy way to visualize this is as two columns of data.

The first is the special index, a lot like the dictionary keys, while the

second is your actual data. You can determine an index for a series, or

Chapter 1 IntroduCtIon to data SCIenCe wIth python

65

Python can automatically assign indices. Different attributes can be used

to retrieve data from a series’ iloc() and loc() attributes. Also, Python

can automatically retrieve data based on the passed value. If you pass an

object, then Python considers that you want to use the index label–based

loc(). However, if you pass an index integer parameter, then Python

considers the iloc() attribute, as indicated in Listing 1-37.

Listing 1-37. Series Structure and Query

In [6]: import pandas as pd

 animals = ["Lion", "Tiger", "Bear"]

 pd.Series(animals)

Out[6]: 0 Lion

 1 Tiger

 2 Bear

dtype: object

You can create a series of numerical values.

In [5]: marks = [95, 84, 55, 75]

 pd.Series(marks)

Out[5]: 0 95

 1 84

 2 55

 3 75

 dtype: int64

You can create a series from a dictionary where indices are the

dictionary keys.

In [11]: quiz1 = {"Ahmed":75, "Omar": 84, "Salwa": 70}

 q = pd.Series(quiz1)

 q

Chapter 1 IntroduCtIon to data SCIenCe wIth python

66

Out[11]: Ahmed 75

 Omar 84

 Salwa 70

 dtype: int64

The following examples demonstrate how to query a series.

You can query a series using a series label or the lock() attribute.

In [13]: q.loc['Ahmed']

Out[13]: 75

In [20]: q['Ahmed']

Out[20]: 75

You can query a series using a series index or the ilock() attribute.

In [19]: q.iloc[2]

Out[19]: 70

In [21]: q[2]

Out[21]: 70

You can implement a Numpy operation on a series.

In [25]:s = pd.Series([70,90,65,25, 99])

 s

Out[25]:0 70

 1 90

 2 65

 3 25

 4 99

 dtype: int64

Chapter 1 IntroduCtIon to data SCIenCe wIth python

67

In [27]:total =0

 for val in s:

 total += val

 print (total)

349

You can get faster results by using Numpy functions on a series.

In [28]: import numpy as np

 total = np.sum(s)

 print (total)

349

It is possible to alter a series to add new values; it is automatically

detected by Python that the entered values are not in the series, and hence

it adds it to the altered series.

In [29]:s = pd.Series ([99,55,66,88])

 s.loc['Ahmed'] = 85

 s

Out[29]: 0 99

 1 55

 2 66

 3 88

 Ahmed 85

 dtype: int64

You can append two or more series to generate a larger one, as shown

here:

In [32]: test = [95, 84, 55, 75]

 marks = pd.Series(test)

 s = pd.Series ([99,55,66,88])

 s.loc['Ahmed'] = 85

Chapter 1 IntroduCtIon to data SCIenCe wIth python

68

NewSeries = s.append(marks)

NewSeries

Out[32]: 0 99

 1 55

 2 66

 3 88

 Ahmed 85

 0 95

 1 84

 2 55

 3 75

 dtype: int64

The data frame data structure is the main structure for data collection

and processing in Python. A data frame is a two-dimensional series object,

as shown in Figure 1-8, where there’s an index and multiple columns of

content each having a label.

Figure 1-8. Data frame virtual structure

Chapter 1 IntroduCtIon to data SCIenCe wIth python

69

Data frame creation and queries were discussed earlier in this chapter

and will be discussed again in the context of data collection structures in

Chapter 3.

 Running Basic Inferential Analyses

Python provides numerous libraries for inference and statistical analysis such

as Pandas, SciPy, and Numpy. Python is an efficient tool for implementing

numerous statistical data analysis operations such as the following:

• Linear regression

• Finding correlation

• Measuring central tendency

• Measuring variance

• Normal distribution

• Binomial distribution

• Poisson distribution

• Bernoulli distribution

• Calculating p-value

• Implementing a Chi-square test

Linear regression between two variables represents a straight line

when plotted as a graph, where the exponent (power) of both of the

variables is 1. A nonlinear relationship where the exponent of any variable

is not equal to 1 creates a curve shape.

Let’s use the built-in Tips data set available in the Seaborn Python

library to find linear regression between a restaurant customer’s total bill

value and each bill’s tip value, as shown in Figure 1-9. The function in

Seaborn to find the linear regression relationship is regplot.

Chapter 1 IntroduCtIon to data SCIenCe wIth python

70

In [40]:import seaborn as sb

 from matplotlib import pyplot as plt

 df = sb.load_dataset('tips')

 sb.regplot(x = "total_bill", y = "tip", data = df)

 plt.xlabel('Total Bill')

 plt.ylabel('Bill Tips')

 plt.show()

Correlation refers to some statistical relationship involving

dependence between two data sets, such as the correlation between the

price of a product and its sales volume.

Let’s use the built-in Iris data set available in the Seaborn Python library

and try to measure the correlation between the length and the width of the

sepals and petals of three species of iris, as shown in Figure 1- 10.

Figure 1-9. Regression analysis

Chapter 1 IntroduCtIon to data SCIenCe wIth python

71

In [42]: import matplotlib.pyplot as plt

 import seaborn as sns

 df = sns.load_dataset('iris')

 sns.pairplot(df, kind="scatter")

 plt.show()

Figure 1-10. Correlation analysis

Chapter 1 IntroduCtIon to data SCIenCe wIth python

72

In statistics, variance is a measure of how dispersed the values are from

the mean value. Standard deviation is the square root of variance. In other

words, it is the average of the squared difference of values in a data set

from the mean value. In Python, you can calculate this value by using the

function std() from the Pandas library.

In [58]: import pandas as pd

d = {

'Name': pd.Series(['Ahmed','Omar','Ali','Salwa','Majid',

 'Othman','Gameel','Ziad','Ahlam','Zahrah',

 'Ayman','Alaa']),

'Age': pd.Series([34,26,25,27,30,54,23,43,40,30,28,46]),

'Height':pd.Series([114.23,173.24,153.98,172.0,153.20,164.6,

 183.8,163.78,172.0,164.8])}

df = pd.DataFrame(d) #Create a DataFrame

print (df.std())# Calculate and print the standard deviation

Age 9.740574

Height 18.552823

Out[46]: [Text(0,0.5,'Frequency'), Text(0.5,0,'Binomial')]

You can use the describe() method to find the full description of a

data frame set, as shown here:

In [59]: print (df.describe())

 Age Height

count 12.000000 12.000000

mean 33.833333 164.448333

std 9.740574 18.552823

min 23.000000 114.230000

25% 26.750000 161.330000

Chapter 1 IntroduCtIon to data SCIenCe wIth python

73

50% 30.000000 168.400000

75% 40.750000 173.455000

max 54.000000 183.800000

Central tendency measures the distribution of the location of values of

a data set. It gives you an idea of the average value of the data in the data

set and an indication of how widely the values are spread in the data set.

The following example finds the mean, median, and mode values of

the previously created data frame:

In [60]: print ("Mean Values in the Distribution")

 print (df.mean())

 print ("*******************************")

 print ("Median Values in the Distribution")

 print (df.median())

 print ("*******************************")

 print ("Mode Values in the Distribution")

 print (df['Height'].mode())

Mean Values in the Distribution

Age 33.833333

Height 164.448333

dtype: float64

Median Values in the Distribution

Age 30.0

Height 168.4

dtype: float64

Mode Values of height in the Distribution

0 172.0

dtype: float64

Chapter 1 IntroduCtIon to data SCIenCe wIth python

74

 Summary

This chapter introduced the data science field and the use of Python

programming for implementation. Let’s recap what was covered in this

chapter.

 – The data science main concepts and life cycle

 – The importance of Python programming and its main

libraries used for data science processing

 – Different Python data structure use in data science

applications

 – How to apply basic Python programming techniques

 – Initial implementation of abstract series and data frames

as the main Python data structure

 – Data cleaning and its manipulation techniques

 – Running basic inferential statistical analyses

The next chapter will cover the importance of data visualization in

business intelligence and much more.

 Exercises and Answers

 1. Write a Python script to prompt users to enter

two values; then perform the basic arithmetical

operations of addition, subtraction, multiplication,

and division on the values.

Answer:

In [2]: # Store input numbers:

num1 = input('Enter first number: ')

Chapter 1 IntroduCtIon to data SCIenCe wIth python

75

num2 = input('Enter second number: ')

sumval = float(num1) + float(num2) # Add two numbers

minval = float(num1) - float(num2) # Subtract two numbers

mulval = float(num1) * float(num2) # Multiply two numbers

divval = float(num1) / float(num2) #Divide two numbers

Display the sum

print('The sum of {0} and {1} is {2}'.format(num1, num2,

sumval))

Display the subtraction

print('The subtraction of {0} and {1} is {2}'.format(num1, num2,

minval))

Display the multiplication

print('The multiplication of {0} and {1} is {2}'.format(num1,

num2, mulval))

Display the division

print('The division of {0} and {1} is {2}'.format(num1, num2,

divval))

Enter first number: 10

Enter second number: 5

The sum of 10 and 5 is 15.0

The subtraction of 10 and 5 is 5.0

The multiplication of 10 and 5 is 50.0

The division of 10 and 5 is 2.0

 2. Write a Python script to prompt users to enter

the lengths of a triangle sides. Then calculate the

semiperimeters. Calculate the triangle area and

display the result to the user. The area of a triangle is

(s*(s-a)*(s-b)*(s-c))-1/2.

Chapter 1 IntroduCtIon to data SCIenCe wIth python

76

Answer:

In [3]:a = float(input('Enter first side: '))

 b = float(input('Enter second side: '))

 c = float(input('Enter third side: '))

 s = (a + b + c) / 2 # calculate the semiperimeter

 area = (s*(s-a)*(s-b)*(s-c)) ** 0.5 # calculate the area

 print('The area of the triangle is %0.2f' %area)

Enter first side: 10

Enter second side: 9

Enter third side: 7

The area of the triangle is 30.59

 3. Write a Python script to prompt users to enter the

first and last values and generate some random

values between the two entered values.

Answer:

In [7]:import random

a = int(input('Enter the starting value : '))

b = int(input('Enter the end value : '))

print(random.randint(a,b))

random.sample(range(a, b), 3)

Enter the starting value : 10

Enter the end value : 100

14

Out[7]: [64, 12, 41]

 4. Write a Python program to prompt users to enter a

distance in kilometers; then convert kilometers to

miles, where 1 kilometer is equal to 0.62137 miles.

Display the result.

Chapter 1 IntroduCtIon to data SCIenCe wIth python

77

Answer:

In [9]: # convert kilometers to miles

kilometers = float(input('Enter the distance in kilometers: '))

conversion factor

Miles = kilometers * 0.62137

print('%0.2f kilometers is equal to %0.2f miles'

 %(kilometers, Miles))

Enter the distance in kilometers: 120

120.00 kilometers is equal to 74.56 miles

 5. Write a Python program to prompt users to enter a

Celsius value; then convert Celsius to Fahrenheit,

where T(°F) = T(°C) x 1.8 + 32. Display the result.

Answer:

In [11]: # convert Celsius to Fahrenheit

 Celsius = float(input('Enter temperature in Celsius: '))

 # conversion factor

 Fahrenheit = (Celsius * 1.8) + 32

 print('%0.2f Celsius is equal to %0.2f Fahrenheit'

 %(Celsius, Fahrenheit))

Enter temperature in Celsius: 25

25.00 Celsius is equal to 77.00 Fahrenheit

 6. Write a program to prompt users to enter their

working hours and rate per hour to calculate gross

pay. The program should give the employee 1.5

times the hours worked above 30 hours. If Enter

Hours is 50 and Enter Rate is 10, then the calculated

payment is Pay: 550.0.

Chapter 1 IntroduCtIon to data SCIenCe wIth python

78

Answer:

In [6]:Hflage=True

 Rflage=True

 while Hflage & Rflage :

 hours = input ('Enter Hours:')

 try:

 hours = int(hours)

 Hflage=False

 except:

 print ("Incorrect hours number !!!!")

 try:

 rate = input ('Enter Rate:')

 rate=float(rate)

 Rflage=False

 except:

 print ("Incorrect rate !!")

 if hours>40:

 pay= 40 * rate + (rate*1.5) * (hours - 40)

 else:

 pay= hours * rate

 print ('Pay:',pay)

Enter Hours: 50

Enter Rate: 10

Pay: 550.0

 7. Write a program to prompt users to enter a value;

then check whether the entered value is positive or

negative value and display a proper message.

Chapter 1 IntroduCtIon to data SCIenCe wIth python

79

Answer:

In [1]: Val = float(input("Enter a number: "))

 if Val > 0:

 print("{0} is a positive number".format(Val))

 elif Val == 0:

 print("{0} is zero".format(Val))

 else:

 print("{0} is negative number".format(Val))

Enter a number: -12

-12.0 is negative number

 8. Write a program to prompt users to enter a value;

then check whether the entered value is odd or even

and display a proper message.

Answer:

In [4]:# Check if a Number is Odd or Even

 val = int(input("Enter a number: "))

 if (val % 2) == 0:

 print("{0} is an Even number".format(val))

 else:

 print("{0} is an Odd number".format(val))

Enter a number: 13

13 is an Odd number

 9. Write a program to prompt users to enter an age; then

check whether each person is a child, a teenager, an

adult, or a senior. Display a proper message.

Chapter 1 IntroduCtIon to data SCIenCe wIth python

80

Age Category

< 13 Child

13 to 17 teenager

18 to 59 adult

> 59 Senior

Answer:

In [6]:age = int(input("Enter age of a person : "))

 if(age < 13):

 print("This is a child")

 elif(age >= 13 and age <=17):

 print("This is a teenager")

 elif(age >= 18 and age <=59):

 print("This is an adult")

 else:

 print("This is a senior")

Enter age of a person : 40

This is an adult

 10. Write a program to prompt users to enter a car’s

speed; then calculate fines according to the

following categories, and display a proper message.

Speed Limit Fine Value

< 80 0

81 to 99 200

100 to 109 350

> 109 500

Chapter 1 IntroduCtIon to data SCIenCe wIth python

81

Answer:

In [7]:Speed = int(input("Enter your car speed"))

 if(Speed < 80):

 print("No Fines")

 elif(Speed >= 81 and Speed <=99):

 print("200 AE Fine ")

 elif(Speed >= 100 and Speed <=109):

 print("350 AE Fine ")

 else:

 print("500 AE Fine ")

Enter your car speed120

500 AE Fine

 11. Write a program to prompt users to enter a

year; then find whether it’s a leap year. A year is

considered a leap year if it’s divisible by 4 and 100

and 400. If it’s divisible by 4 and 100 but not by 400,

it’s not a leap year. Display a proper message.

Answer:

In [11]:year = int(input("Enter a year: "))

 if (year % 4) == 0:

 if (year % 100) == 0:

 if (year % 400) == 0:

 print("{0} is a leap year".

format(year))

 else:

 print("{0} is not a leap year".

format(year))

Chapter 1 IntroduCtIon to data SCIenCe wIth python

82

 else:

 print("{0} is a leap year".format(year))

 else:

 print("{0} is not a leap year".format(year))

Enter a year: 2000

2000 is a leap year

 12. Write a program to prompt users to enter a

Fibonacci sequence. The Fibonacci sequence is

the series of numbers 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,

The next number is found by adding the two

numbers before it. For example, the 2 is found by

adding the two numbers before it (1+1). Display a

proper message.

Answer:

In [14]:nterms = int(input("How many terms you want? "))

 # first two terms

 n1 = 0

 n2 = 1

 count = 2

 # check if the number of terms is valid

 if nterms <= 0:

 print("Please enter a positive integer")

 elif nterms == 1:

 print("Fibonacci sequence:")

 print(n1)

Chapter 1 IntroduCtIon to data SCIenCe wIth python

83

 else:

 print("Fibonacci sequence:")

 print(n1,",",n2,end=', ') # end=', ' is used

to continue printing in the same line

 while count < nterms:

 nth = n1 + n2

 print(nth,end=' , ')

 # update values

 n1 = n2

 n2 = nth

 count += 1

How many terms you want? 8

Fibonacci sequence:

0 , 1, 1 , 2 , 3 , 5 , 8 , 13 ,

Chapter 1 IntroduCtIon to data SCIenCe wIth python

85© Dr. Ossama Embarak 2018
O. Embarak, Data Analysis and Visualization Using Python,
https://doi.org/10.1007/978-1-4842-4109-7_2

CHAPTER 2

The Importance of
Data Visualization in
Business Intelligence
Data visualization is the process of interpreting data and presenting it in

a pictorial or graphical format. Currently, we are living in the era of big

data, where data has been described as a raw material for business. The

volume of data used in businesses, industries, research organizations,

and technological development is massive, and it is rapidly growing every

day. The more data we collect and analyze, the more capable we can

be in making critical business decisions. However, with the enormous

growth of data, it has become harder for businesses to extract crucial

information from the available data. That is where the importance of data

visualization becomes clear. Data visualization helps people understand

the significance of data by summarizing and presenting a huge amount of

data in a simple and easy-to-understand format in order to communicate

the information clearly and effectively.

86

 Shifting from Input to Output

A decision-maker for any business wants to access highly visual business

intelligence (BI) tools that can help to make the right decisions quickly.

Business intelligence has become more mainstream; hence, vendors are

beginning to focus on both ends of the pipeline and improve the quality

of data input. There is also a strong focus on ensuring that the output is

well-structured and clearly presented. This focus on output has largely

been driven by the demands of consumers, who have been enticed by

what visualization can offer. A BI dashboard can be a great way to compile

several different data visualizations to provide an at-a-glance overview of

business performance and areas for improvement.

 Why Is Data Visualization Important?

A picture is worth a thousand words, as they say. Humans just understand

data better through pictures rather than by reading numbers in rows

and columns. Accordingly, if the data is presented in a graphical format,

people are more able to effectively find correlations and raise important

questions.

Data visualization helps the business to achieve numerous goals.

 – Converting the business data into interactive graphs for

dynamic interpretation to serve the business goals

 – Transforming data into visually appealing, interactive

dashboards of various data sources to serve the business

with the insights

 – Creating more attractive and informative dashboards of

various graphical data representations

 – Making appropriate decisions by drilling into the data

and finding the insights

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

87

 – Figuring out the patterns, trends, and correlations in the

data being analyzed to determine where they must

improve their operational processes and thereby grow

their business

 – Giving a fuller picture of the data under analysis

 – Organizing and presenting massive data intuitively to

present important findings from the data

 – Making better, quick, and informed decisions with data

visualization

 Why Do Modern Businesses Need Data
Visualization?

With the huge volume of data collected about business activities using

different means, business leaders need proper techniques to easily drill

down into the data to see where they can improve operational processes

and grow their business. Data visualization brings business intelligence

to reality. Data visualization is needed by modern businesses for these

reasons:

 – Data visualization helps companies to analyze its differ-

ent processes so the management can focus on the areas

for improvement to generate more revenue and improve

productivity.

 – It brings business intelligence to life.

 – It applies a creative approach to understanding the

hidden information within the business data.

 – It provides a better and faster way to identify patterns,

trends, and correlation in the data sets that would remain

undetected with just text.

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

88

 – It identifies new business opportunities by predicting

upcoming trends or sales volumes and the revenue they

will generate.

 – It supplies managers with information they need to make

more effective comparisons between data sets by plotting

them on the same visualization.

 – It enables managers to understand the correlations

between the operating conditions and the business

performance.

 – It helps businesses to discover the gray areas of the

business and make the right decisions for improvement.

 – Data visualization helps managers to understand custom-

ers’ behaviors and interests and hence retains customers

and market share.

 The Future of Data Visualization

Data visualization is moving from being an art to being a science field.

Data science technologies impose the need to move from relatively

simple graphs to multifaceted relational maps. Multidimensional

visualizations will boost the role that data visualizations can play in

the Internet of Things, network and complexity theories, nanoscience,

social science research, education systems, conative science, space,

and much more. Data visualization will play a vital role, now and in

the future, in applying many concepts such as network theory, Internet

of Things, complexity theory, and more. For instance, network theory

employs algorithms to understand and model pair-wise relationships

between objects to understand relationships and interactions in a variety

of domains, such as crime prevention and disease management, social

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

89

network analysis, biological network analysis, network optimization, and

link analysis.

Data visualization will be used intensively to analyze and visualize

data streams collected from billions of interconnected devices,

from smart appliances and wearables to automobile sensors and

environmental and smart cities monitors. Internet of Things device

data will provide extraordinary insight into what’s happening around

the globe. In this context, data visualization will improve safety

levels, drive operational efficiencies, help to better understand

several worldwide phenomena, and improve and customize provided

intercontinental services.

 How Data Visualization Is Used for
Business Decision-Making

Data visualization is a real asset for any business to help make real-

time business decisions. It visualizes extracted information into logical

and meaningful parts and helps users avoid information overload by

keeping things simple, relevant, and clear. There are many ways in which

visualizations help a business to improve its decision-making.

 Faster Responses

Quick response to customers’ or users’ requirements is important for any

company to retain their clients, as well as to keep their loyalty. With the

massive amount of data collected daily via social networks or via companies’

systems, it becomes incredibly useful to put useful interpretations of the

collected data into the hands of managers and decision-makers so they can

quickly identify issues and improve response times.

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

90

 Simplicity

It is impossible to make efficient decisions based on large amounts

of raw data. Therefore, data visualization gives the full picture of the

scoped parameters and simplifies the data by enabling decision-makers

to cherry- pick the relevant data they need and dive into a detailed view

wherever is needed.

 Easier Pattern Visualization

Data visualization provides easier approaches to identifying upcoming

trends and patterns within data sets and hence enables businesses to make

efficient decisions and prepare strategies in advance.

 Team Involvement

Data visualizations process not only historical data but also real-time data.

Different organization units gain the benefit of having direct access to the

extracted information displayed by data visualization tools. This increases

the levels of collaboration between departments to help them achieve

strategic goals.

 Unify Interpretation

Data visualizations can produce charts and graphics that lead to the same

interpretations by all who use the extracted information for decision-

making. There are many data visualization tools such as R, Python, Matlab,

Scala, and Java. Table 2-1 compares the most common languages, which

are the R and Python languages.

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

91

Table 2-1. The R Language vs. Python

Parameter R Python

Main use Data analysis and

statistics.

Deployment and production.

Users scholars and researchers. programmers and developers.

Flexibility easy-to-use available

library.

It’s easy to construct new models

from scratch.

Integration runs locally. Well-integrated with app.

runs through the cloud.

Database size handles huge size. handles huge size.

IDE examples rstudio. spyder, Ipython notebook,

Jupyter notebook, etc.

Important packages

and libraries

tydiverse, ggplot2,

Caret, zoo.

pandas, numpy, scipy, scikit-

learn, tensorflow, Caret.

Advantages • Comprehensive

statistical analysis

package.

• open source; anyone

can use it.

• It is cross-platform

and can run on many

operating systems.

• anyone can fix bugs

and make code

enhancements.

• python is a general- purpose

language that is easy and

intuitive.

• useful for mathematical

computation.

• Can share data online via

clouds and IDes such as

Jupyter notebook.

• Can be deployed.

• fast processing.

• high code readability.

• supports multiple systems and

platforms.

• easy integration with other

languages such as C and Java.

(continued)

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

92

 Introducing Data Visualization Techniques

Data visualization aims to understand data by extracting and graphing

information to show patterns, spot trends, and identify outliers. There are

two basic types of data visualization.

• Exploration helps to extract information from the

collected data.

• Explanation demonstrates the extracted information.

There are many types of 2D data visualizations, such as temporal,

multidimensional, hierarchical, and network. In the following section,

we demonstrate numerous data visualization techniques provided by the

Python programming language.

Table 2-1. (continued)

Parameter R Python

Disadvantages • Quality of some

packages is not good.

• r can consume all the

memory because of its

memory management.

• slow and high learning

curve.

• Dependencies between

library.

• there is no regular

and direct update for r

packages and bugs.

• Comparatively smaller pool of

python developers.

• python doesn’t have as many

libraries as r.

• not good for mobile

development.

• Database access limitations.

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

93

 Loading Libraries

Some libraries are bundled with Python, while others should be directly

downloaded and installed.

For instance, you can install Matplotlib using pip as follows:

python -m pip install -U pip setuptools

python -m pip install matplotlib

You can install, search, or update Python packages with Jupyter

Notebook or with a desktop Python IDE such as Spyder. Table 2-2 shows

how to use the pip and conda commands.

Let’s list all the installed or upgraded Python libraries using the pip

and conda commands.

conda list

pip list

Table 2-2. Installing and Upgrading Python Packages

Description pip conda Anaconda

Works with python and anaconda anaconda only

search a package pip search matplolib conda search

matplolib

Install a package pip install matplolib conda install

matplolib

upgrade a package pip install

matplolib-upgrade

conda install

matplolib-upgrade

Display installed packages pip list conda list

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

94

Similarly, you can install or upgrade packages or specific Python

packages such as Matplotlib on Jupyter Notebooks, as shown in Listing 2-1.

Listing 2-1. Installed or Upgraded Packages

In [5]: try:

 import matplotlib

 except:

 import pip pip.main(['install', 'matplotlib'])

 import matplotlib

It is possible to import any library and use alias names, as shown here:

In []:import matplotlib.pyplot as plt import numpy as np

 import pandas as pd

 import seaborn as sns

 import pygal from mayavi

 import mlab

 etc....

Once you load any library to your Python script, then you can call the

package functions and attributes.

 Popular Libraries for Data Visualization
in Python

The Python language provides numerous data visualization libraries for

plotting data. The most used and common data visualization libraries are

Pygal, Altair, VisPy, PyQtGraph, Matplotlib, Bokeh, Seaborn, Plotly, and

ggplot, as shown in Figure 2-1.

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

95

Each of these libraries has its own features. Some of these libraries

may be adopted for implementation and dependent on other libraries.

For example, Seaborn is a statistical data visualization library that uses

Matplotlib. In addition, it needs Pandas and maybe NumPy for statistical

processing before visualizing data.

 Matplotlib

Matplotlib is a Python 2D plotting library for data visualization built

on Numpy arrays and designed to work with the broader SciPy stack. It

produces publication-quality figures in a variety of formats and interactive

environments across platforms. There are two options for embedding

graphics directly in a notebook.

Figure 2-1. Data visualization libraries

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

96

• The %matplotlib notebook will lead to interactive plots

embedded within the notebook.

• The %matplotlib inline will lead to static graphs images

of your plot embedded in the notebook.

Listing 2-2 plots fixed data using Matplotlib and adjusts the plot

attributes.

Listing 2-2. Importing and Using the Matplotlib Library

In [12]:import numpy as np

 import matplotlib.pyplot as plt

%matplotlib inline

plt.style.use('seaborn-whitegrid')

X = [590,540,740,130,810,300,320,230,470,620,770,250]

Y = [32,36,39,52,61,72,77,75,68,57,48,48]

plt.scatter(X,Y)

plt.xlim(0,1000)

plt.ylim(0,100)

#scatter plot color

plt.scatter(X, Y, s=60, c='red', marker='^')

#change axes ranges

plt.xlim(0,1000)

plt.ylim(0,100)

#add title

plt.title('Relationship Between Temperature and Iced

Coffee Sales')

#add x and y labels

plt.xlabel('Sold Coffee')

plt.ylabel('Temperature in Fahrenheit')

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

97

#show plot

plt.show()

Figure 2-2 shows a visualization in the Matplot library.

Listing 2-3 plots fixed data using Matplotlib and adjusts the plot

attributes.

Listing 2-3. Importing Numpy and Calling Its Functions

In [20]:%matplotlib inline

 import matplotlib.pyplot as plt

import numpy as np

plt.style.use('seaborn-whitegrid')

Create empty figure

fig = plt.figure()

ax = plt.axes()

x = np.linspace(0, 10, 1000)

Figure 2-2. Visualizing data using Matplotlib

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

98

ax.plot(x, np.sin(x));

plt.plot(x, np.sin(x))

plt.plot(x, np.cos(x))

set the x and y axis range

plt.xlim(0, 11)

plt.ylim(-2, 2)

plt.axis('tight')

#add title

plt.title('Plotting data using sin and cos')

Figure 2-3 shows the accumulated attributes added to the same graph.

All altered attributes are applied to the same graph as shown above.

There are many different plotting formats generated by the Matplotlib

package; some of these formats will be discussed in Chapter 7.

Figure 2-3. Determining the adapted function (sin and cos) by
Matplotlib

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

99

 Seaborn

Seaborn is a Python data visualization library based on Matplotlib that

provides a high-level interface for drawing attractive and informative

statistical graphics (see Listing 2-4).

Listing 2-4. Importing and Using the Seaborn Library

In [34]: import matplotlib.pyplot as plt

%matplotlib inline

import numpy as np

import pandas as pd

import seaborn as sns

plt.style.use('classic')

plt.style.use('seaborn-whitegrid')

Create some data

data = np.random.multivariate_normal([0, 0], [[5, 2], [2, 2]],

size=2000)

data = pd.DataFrame(data, columns=['x', 'y'])

Plot the data with seaborn

sns.distplot(data['x'])

sns.distplot(data['y']);

Figure 2-4 shows a Seaborn graph.

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

100

Let’s use the distribution using a kernel density estimation, which

Seaborn does with sns.kdeplot. You can use the same data set, called

Data, as in the previous example (see Figure 2-5).

Figure 2-4. Seaborn graph

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

101

In [35]: for col in 'xy':

 sns.kdeplot(data[col], shade=True)

Figure 2-5. Seaborn kernel density estimation graph

Passing the full two-dimensional data set to kdeplot as follows, you

will get a two-dimensional visualization of the data (see Figure 2-6):

In [36]: sns.kdeplot(data);

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

102

Let’s use the joint distribution and the marginal distributions together

using sns.jointplot, as shown here (see Figure 2-7):

In [37]: with sns.axes_style('white'):

 sns.jointplot("x", "y", data, kind='kde');

Figure 2-6. Two-dimensional kernel density graph

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

103

Use a hexagonally based histogram in the joint plot, as shown here (see

Figure 2-8):

In [38]: with sns.axes_style('white'):

 sns.jointplot("x", "y", data, kind='hex')

Figure 2-7. Joint distribution graph

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

104

You can also visualize multidimensional relationships among the

samples by calling sns.pairplot (see Figure 2-9):

In [41]: sns.pairplot(data);

Figure 2-8. A hexagonally based histogram graph

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

105

There are many different plotting formats generated by the Seaborn

package; some of these formats will be discussed in Chapter 7.

 Plotly

The Plotly Python graphing library makes interactive, publication-quality

graphs online. Different dynamic graphs formats can be generated online

or offline.

Listing 2-5 implements a dynamic heatmap graph (see Figure 2-10).

Figure 2-9. Multidimensional relationships graph

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

106

Listing 2-5. Importing and Using the Plotly Library

In [67]: import plotly.graph_objs as go

 import numpy as np

 x = np.random.randn(2000)

 y = np.random.randn(2000)

 iplot([go.Histogram2dContour(x=x, y=y,

contours=dict (coloring='heatmap')),

go.Scatter(x=x, y=y, mode='markers',

marker=dict(color='white', size=3,

opacity= opacity=0.3))], show_link=False)

Use plotly.offline to execute the Plotly script offline within a

notebook (Figure 2-11), as shown here:

In [90]: import plotly.offline as offline

 import plotly.graph_objs as go

 offline.plot({'data': [{'y': [14, 22, 30,

44]}],

Figure 2-10. Dynamic heatmap graph

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

107

 'layout': {'title': 'Offline Plotly', 'font':

 dict(size=16)}}, image='png')

Out[90]: 'file:///home/nbuser/library/temp-plot.html'

Executing the Plotly Python script, as shown in Listing 2-6, will

open a web browser with the dynamic Plotly graph drawn, as shown in

Figure 2-12.

Listing 2-6. Importing and Using the Plotly Package

In [64]:from plotly import __version__

 from plotly.offline import download_plotlyjs,

init_notebook_mode, plot, iplot init_notebook_

mode(connected=True)

 print (__version__)

<inline script removed for security reasons>

3.1.0

Figure 2-11. Offline Plotly graph

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

108

In [91]: import plotly.graph_objs as go

 plot([go.Scatter(x=[95, 77, 84], y=[75, 67, 56])])

Out[91]: 'file:///home/nbuser/library/temp-plot.html'

Plotly graphs are more suited to dynamic and online data visualization,

especially for real-time data streaming, which isn’t covered in this book.

 Geoplotlib

Geoplotlib is a toolbox for creating a variety of map types and plotting

geographical data. Geoplotlib needs Pyglet as an object-oriented

programming interface. This type of plotting is not covered in this book.

 Pandas

Pandas is a Python library written for data manipulation and analysis.

You can use Python with Pandas in a variety of academic and commercial

domains, including finance, economics, statistics, advertising, web

analytics, and much more. Pandas is covered in Chapter 6.

Figure 2-12. Plotly dynamic graph

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

https://bitbucket.org/pyglet/pyglet/wiki/Home

109

 Introducing Plots in Python

As indicated earlier, numerous plotting formats can be used, even offline

or online ones. The following are examples of direct plotting.

Listing 2-7 implements a basic plotting plot. Figure 2-13 shows the

graph.

Listing 2-7. Running Basic Plotting

In [116]: import pandas as pd import numpy as np

 df = pd.DataFrame(np.random.randn(200,6),index= pd.date_

range('1/9/2009', periods=200), columns= list('ABCDEF'))

df.plot(figsize=(20, 10)).legend(bbox_to_anchor=(1, 1))

Listing 2-8 creates a bar plot graph (see Figure 2-14).

Listing 2-8. Direct Plotting

In [123]: import pandas as pd

 import numpy as np

Figure 2-13. Direct plot graph

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

110

df = pd.DataFrame(np.random.rand(20,5), columns=['Jan','Feb',

'March','April', 'May'])

df.plot.bar(figsize=(20, 10)).legend(bbox_to_anchor=(1.1, 1))

Listing 2-9 sets stacked=True to produce a stacked bar plot (see

Figure 2-15).

Listing 2-9. Create a stacked bar plot

In [124]: import pandas as pd

df = pd.DataFrame(np.random.rand(20,5), columns=['Jan','Feb',

'March','April', 'May']) df.plot.bar(stacked=True,

figsize=(20, 10)).legend(bbox_to_anchor=(1.1, 1))

Figure 2-14. Direct bar plot graph

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

111

To get horizontal bar plots, use the barh method, as shown in Listing 2-10.

Figure 2-16 shows the resulting graph.

Listing 2-10. Bar Plots

In [126]: import pandas as pd

df = pd.DataFrame(np.random.rand(20,5), columns=['Jan','Feb',

'March','April', 'May']) df.plot.barh(stacked=True,

figsize=(20, 10)).legend(bbox_to_anchor=(1.1, 1))

Figure 2-15. Stacked bar plot graph

Figure 2-16. Horizontal bar plot graph

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

112

Histograms can be plotted using the plot.hist() method; you can

also specify the number of bins, as shown in Listing 2-11. Figure 2-17

shows the graph.

Listing 2-11. Using the Bar’s bins Attribute

In [131]: import pandas as pd

df = pd.DataFrame(np.random.rand(20,5), columns=['Jan','Feb',

'March','April', 'May'])

df.plot.hist(bins= 20, figsize=(10,8)).legend

bbox_to_anchor=(1.2, 1))

Listing 2-12 plots multiple histograms per column in the data set

(see Figure 2-18).

Figure 2-17. Histogram plot graph

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

113

Listing 2-12. Multiple Histograms per Column

In [139]: import pandas as pd

 import numpy as np

df=pd.DataFrame({'April':np.random.randn(1000)+1,'May':np.random.

randn(1000),'June': np.random.randn(1000) - 1}, columns=['April',

'May', 'June'])

df.hist(bins=20)

Listing 2-13 implements a box plot (see Figure 2-19).

Listing 2-13. Creating a Box Plot

In [140]:import pandas as pd

 import numpy as np

Figure 2-18. Column base histograms plot graph

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

114

 df = pd.DataFrame(np.random.rand(20,5),

columns=['Jan','Feb','March','April', 'May'])

 df.plot.box()

Listing 2-14 implements an area plot (see Figure 2-20).

Listing 2-14. Creating an Area Plot

In [145]: import pandas as pd

 import numpy as np

 df = pd.DataFrame(np.random.rand(20,5),

columns= ['Jan','Feb','March','April', 'May'])

 df.plot.area(figsize=(6, 4)).legend

(bbox_to_anchor=(1.3, 1))

Figure 2-19. Box plot graph

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

115

Listing 2-15 creates a scatter plot (see Figure 2-21).

Listing 2-15. Creating a Scatter Plot

In [150]: import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.rand(20,5),columns= ['Jan','Feb',

'March','April', 'May'])

df.plot.scatter(x='Feb', y='Jan', title='Temperature over two

months ')

Figure 2-20. Area plot graph

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

116

See Chapter 7 for more graphing formats.

 Summary

This chapter demonstrated how to implement data visualization in

modern business. Let’s recap what you studied in this chapter.

 – Understand the importance of data visualization.

 – Acknowledge the usage of data visualization in modern

business and its future implementations.

 – Recognize the role of data visualization in

decision-making.

Figure 2-21. Scatter plot graph

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

117

 – Load and use important Python data visualization libraries.

 – Revise exercises with model answers for practicing and

simulating real-life scenarios.

The next chapter will cover data collection structure and much more.

 Exercises and Answers

 1. What is meant by data visualization?

Answer:

Data visualization is the process of interpreting the data in the form of

pictorial or graphical format.

 2. Why is data visualization important?

Answer:

Data Visualization helps business to achieve numerous goals through

the following.

 – Convert the business data into interactive graphs for

dynamic interpretation to serve the business goals.

 – Transforming data into visually appealing, interactive

dashboards of various data sources to serve the business

with the insights.

 – Create more attractive and informative dashboard of

various graphical data representation.

 – Make appropriate decisions by drilling into the data and

finding the insights.

 – Figure out the patterns, trends and correlations in the data

being analyzed to determine where they must improve their

operational processes and thereby grow their business.

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

118

 – Give full picture of the data under analysis.

 – Enable to organize and present massive data intuitively to

present important findings from the data.

 – Make better, quick and informed decisions.

 3. Why do modern businesses need data visualization?

Answer:

Data visualization is needed by the modern business to support the

following areas.

 – Analyze the business different processes where the

management can focus on the areas of improvement to

generate more revenue and improve productivity.

 – Bring business intelligences to life.

 – Apply creative approach to improve the abilities to

understand the hidden information within the business

data.

 – Provide better and faster way to identify patterns,

trends, and correlation in the data sets that would remain

undetected with a text.

 – Identify new business opportunities by predicting

upcoming trends or sales volumes and the revenue they

would generate.

 – Helps to spot trends in data that may not have been

noticeable from the text alone.

 – Supply managers with information they need to make

more effective comparisons between data sets by plotting

them on the same visualization.

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

119

 – Enable managers to understand the correlations between

the operating conditions and business performance.

 – Help to discover the gray areas of the business and hence

take right decisions for improvement.

 – Helps to understand customers’ behaviors and interests,

and hence retains customers and market.

 4. How is data visualization used for business

decision-making?

Answer:

There are many ways in which visualization help the business to

improve decision making.

Faster Times Response: It becomes incredibly

useful to put useful interpretation of the collected

data into the hands of managers and decision

makers enabling them to quickly identify issues and

improve response times.

Simplicity: data visualization techniques gives the

full picture of the scoped parameters and simplify

the data by enabling decision makers to cherry-pick

the relevant data they need and dive to detailed

wherever is needed.

Easier Pattern Visualization: provides easier

approaches to identify upcoming trends and

patterns within datasets, and hence enable to take

efficient decisions and prepare strategies in advance.

Team Involvement: increase the levels of

collaboration between departments and keep them

on the same page to achieve strategic goals.

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

120

Unify Interpretation: produced charts and graphics

have the same interpretation by all beneficial who

use extracted information for decisions making and

hence avoid any misleading.

 5. Write a Python script to create a data frame for the

following table:

Name Mobile_Sales TV_Sales

Ahmed 2540 2200

Omar 1370 1900

Ali 1320 2150

Ziad 2000 1850

Salwa 2100 1770

Lila 2150 2000

Answer:

In []: import pandas as pd

 import numpy as np

 import matplotlib.pyplot as plt

salesMen = ['Ahmed', 'Omar', 'Ali', 'Ziad', 'Salwa', 'Lila']

Mobile_Sales = [2540, 1370, 1320, 2000, 2100, 2150]

TV_Sales = [2200, 1900, 2150, 1850, 1770, 2000]

df = pd.DataFrame()

df ['Name'] =salesMen

df ['Mobile_Sales'] = Mobile_Sales

df['TV_Sales']=TV_Sales

df.set_index("Name",drop=True,inplace=True)

In [13]: df

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

121

Figure 2-22. Bar plot of sales

Out[13]: Name Mobile_Sales TV_Sales

 Ahmed 2540 2200

 Omar 1370 1900

 Ali 1320 2150

 Ziad 2000 1850

 Salwa 2100 1770

 Lila 2150 2000

For the created data frame in the previous question, do the following:

 A. Create a bar plot of the sales volume.

Answer:

In [5]: df.plot.bar(figsize=(20, 10), rot=0).legend(bbox_to_

anchor=(1.1, 1)) plt.xlabel('Salesmen') plt.ylabel('Sales')

plt.title('Sales Volume for two salesmen in \nJanuary and April 2017')

plt.show()

See also Figure 2-22.

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

122

Figure 2-23. Pie chart of sales

 B. Create a pie chart of item sales.

Answer:

In [6]: df.plot.pie(subplots=True)

See also Figure 2-23.

 C. Create a box plot of item sales.

Answer:

In [8]: df.plot.box()

See also Figure 2-24.

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

123

 D. Create an area plot of item sales.

Answer:

In [9]: df.plot.area(figsize=(6, 4)).legend(bbox_to_anchor=(1.3,

 1))

See also Figure 2-25.

Figure 2-24. Box plot of sales

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

124

 E. Create a stacked bar plot of item sales.

Answer:

In [11]: df.plot.bar(stacked=True, figsize=(20, 10)).legend

 (bbox_to_anchor=(1.1, 1))

See also Figure 2-26.

Figure 2-25. Area plot of sales

Figure 2-26. Stacked bar plot of sales

Chapter 2 the ImportanCe of Data VIsualIzatIon In BusIness IntellIgenCe

125© Dr. Ossama Embarak 2018
O. Embarak, Data Analysis and Visualization Using Python,
https://doi.org/10.1007/978-1-4842-4109-7_3

CHAPTER 3

Data Collection

Structures

Lists, dictionaries, tuples, series, data frames, and panels are Python data

collection structures that can be used to maintain a collection of data.

This chapter will demonstrate these various structures in detail with

practical examples.

 Lists

A list is a sequence of values of any data type that can be accessed

forward or backward. Each value is called an element or a list item. Lists

are mutable, which means that you won’t create a new list when you

modify a list element. Elements are stored in the given order. Various

operations can be conducted on lists such as insertion, sort, and

deletion. A list can be created by storing a sequence of different types

of values separated by commas. A Python list is enclosed between a

square brackets ([]), and elements are stored in the index based on a

starting index of 0.

126

 Creating Lists

You can have lists of string values and integers, empty lists, and nested

lists, which are lists inside other lists. Listing 3-1 shows how to create a list.

Listing 3-1. Creating Lists

In [1]: # Create List

 List1 = [1, 24, 76]

 print (List1)

 colors=['red', 'yellow', 'blue']

 print (colors)

 mix=['red', 24, 98.6]

 print (mix)

 nested= [1, [5, 6], 7]

 print (nested)

 print ([])

[1, 24, 76]

['red', 'yellow', 'blue']

['red', 24, 98.6]

[1, [5, 6], 7]

[]

 Accessing Values in Lists

You can access list elements forward or backward. For instance, in

Listing 3-2, list2 [3:] returns elements starting from index 3 to the

end of the list since list2 has four elements where [4,5] is the element

of index 3, which is in the form of nested list. Then you get [[4,5]]

CHAPTER 3 DATA COLLECTION STRUCTURES

127

as a result of print (list2 [3:]). You can also access a list element

backward using negative indices. For example, list3[-3] will return

the third element in the backward sequence n-3, i.e., index 1. Here’s an

example:

Listing 3-2. Accessing Lists

In [9]: list1 = ['Egypt', 'chemistry', 2017, 2018]

 list2 = [1, 2, 3, [4, 5]]

 list3 = ["a", 3.7, '330', "Omar"]

 print (list1[2])

 print (list2 [3:])

 print (list3 [-3:-1])

 print (list3[-3])

 2017

 [[4, 5]]

 [3.7, '330']

 3.7

 Adding and Updating Lists

You can update single or multiple elements of lists by giving the slice on

the left side of the assign operator, and you can add elements to a list with

the append() method, as shown in Listing 3-3.

CHAPTER 3 DATA COLLECTION STRUCTURES

128

Listing 3-3. Adding and Updating List Elements

In [50]: courses=["OOP","Networking","MIS","Project"]

students=["Ahmed", "Ali",

 "Salim", "Abdullah", "Salwa"] OOP_marks = [65, 85, 92]

 OOP_marks.append(50) # Add new element

 OOP_marks.append(77) # Add new element

 print (OOP_marks[:]) # Print list before updating

 OOP_marks[0]=70 # update new element

 OOP_marks[1]=45 # update new element

 list1 = [88, 93]

 OOP_marks.extend(list1) # extend list with another

list print

 (OOP_marks[:]) # Print list after updating

[65, 85, 92, 50, 77]

[70, 45, 92, 50, 77, 88, 93]

As shown in Listing 3-3, you can add a new element to the list using the

append() method. You can also update an element in the list by using the

list name and the element index. For example, OOP_marks[1]=45 changes

the value of index 1 from 85 to 45.

 Deleting List Elements

To remove a list element, either you can delete it using the del statement

in the element index, or you can remove the element using the remove()

method via the element value in the list. If you use the remove() method

to remove an element that is repeated more than one time in the list, it

removes only the first occurrence of that element inside the list. Also, you

can use the pop() method to remove a specific element by its index value,

as shown in Listing 3-4.

CHAPTER 3 DATA COLLECTION STRUCTURES

129

Listing 3-4. Deleting an Element from a List

In [48]: OOP_marks = [70, 45, 92, 50, 77, 45]

 print (OOP_marks)

 del OOP_marks[0] # delete an element using del

 print (OOP_marks)

 OOP_marks.remove (45) # remove an element using

remove() method

 print (OOP_marks)

 OOP_marks.pop (2) # remove an element using pop()

method

 print (OOP_marks)

 [70, 45, 92, 50, 77, 45]

 [45, 92, 50, 77, 45]

 [92, 50, 77, 45]

 [92, 50, 45]

 Basic List Operations

Like string processing, lists respond to + and * operators as concatenation

and repetition, except that the result is a new list, as shown in Listing 3-5.

Listing 3-5. List Operations

In [46]:print (len([5, "Omar", 3])) # find the list

length.

 print ([3, 4, 1] + ["Omar", 5, 6]) # concatenate lists.

print (['Eg!'] * 4) # repeat an element in a list.

 print (3 in [1, 2, 3]) # check if element in a list

 for x in [1, 2, 3]:

 print (x, end=' ') # traverse list elements

CHAPTER 3 DATA COLLECTION STRUCTURES

130

 3

 [3, 4, 1, 'Omar', 5, 6]

 ['Eg!', 'Eg!', 'Eg!', 'Eg!']

 True

 1 2 3

 Indexing, Slicing, and Matrices

Lists are a sequence of indexed elements that can be accessed forward or

backward. Therefore, you can read their elements using a positive index or

negative (backward) index, as shown in Listing 3-6.

Listing 3-6. Indexing and Slicing List Elements

In [9]:list1 = ['Egypt', 'chemistry', 2017, 2018]

 list2 = [1, 2, 3, [4, 5]]

 list3 = ["a", 3.7, '330', "Omar"]

 print (list1[2])

 print (list2 [3:])

 print (list3 [-3:-1])

 print (list3[-3])

 2017

 [[4, 5]]

 [3.7, '330']

 3.7

 Built-in List Functions and Methods

Various functions and methods can be used for list processing, as shown in

Table 3-1.

CHAPTER 3 DATA COLLECTION STRUCTURES

131

 List Functions

Built-in functions facilitate list processing. The following tables show

functions and methods that can be used to manipulate lists. For example,

you can simply use cmp() to compare two lists, and if both are identical,

it returns TRUE; otherwise, it returns FALSE. You can find the list size using

the len() method. In addition, you can find the minimum and maximum

values in a list using the min() and max() methods, respectively. See

Listing 3-7 for an example.

Listing 3-7. A Python Script to Apply List Functions

In [51]: #Built-in Functions and Lists

tickets = [3, 41, 12, 9, 74, 15]

 print (tickets)

 print (len(tickets))

 print (max(tickets))

 print (min(tickets))

 print (sum(tickets))

 print (sum(tickets)/len(tickets))

 [3, 41, 12, 9, 74, 15]

 6

Table 3-1. List Functions

Sr.No. Function Description

1 cmp(list1, list2) Compares elements of both lists

2 len(list1) Gives the total length of the list

3 max(list1) Returns an item from the list with max value

4 min(list1) Returns an item from the list with min value

5 list(seq) Converts a tuple into list

CHAPTER 3 DATA COLLECTION STRUCTURES

132

 74

 3

 154

 25.666666666666668

 List Methods

Built-in methods facilitate list editing. Table 3-2 shows that you can

simply use append(), insert(), and extend() to add new elements to

the list. The pop() and remove() methods are used to remove elements

from a list. Table 3-2 summarizes some methods that you can adapt to

the created list.

Table 3-2. Built-in List Methods

Sr.No. Methods Description

1 list.append(obj) Appends object obj to the list

2 list.count(obj) Returns count of how many times obj

occurs in the list

3 list.extend(seq) Appends the contents of seq to the list

4 list.index(obj) Returns the lowest index in the list that

obj appears in

5 list.insert(index, obj) Inserts object obj into the list at offset

index

6 list.pop(obj=list[-1]) Removes and returns last object or obj

from list

7 list.remove(obj) Removes object obj from list

8 list.reverse() Reverses objects of list in place

9 list.sort([func]) Sorts objects of list; use compare func

if given

CHAPTER 3 DATA COLLECTION STRUCTURES

133

 List Sorting and Traversing

Sorting lists is important, especially for list-searching purposes. You can

create a list from a sequence; in addition, you can sort and traverse list

elements for processing using iteration statements, as shown in Listing 3-8.

Listing 3-8. List Sorting and Traversing

In [58]: #List sorting and Traversing

 seq=(41, 12, 9, 74, 3, 15) # use sequence for creating

a list

 tickets=list(seq)

 print (tickets)

 tickets.sort()

 print (tickets)

 print ("\nSorted list elements ")

 for ticket in tickets:

 print (ticket)

 [41, 12, 9, 74, 3, 15]

 [3, 9, 12, 15, 41, 74]

 Sorted list elements

 3

 9

 12

 15

 41

 74

CHAPTER 3 DATA COLLECTION STRUCTURES

134

 Lists and Strings

You can split a string into a list of characters. In addition, you can split a

string into a list of words using the split() method. The default delimiter

for the split() method is a white space. However, you can specify which

characters to use as the word boundaries. For example, you can use a

hyphen as a delimiter, as in Listing 3-9.

Listing 3-9. Converting a String into a List of Characters or Words

In [63]: # convert string to a list of characters

 Word = 'Egypt'

 List1 = list(Word)

 print (List1)

 ['E', 'g', 'y', 'p', 't']

In [69]: # use the delimiter

 Greeting= 'Welcome-to-Egypt'

 List2 =Greeting.split("-")

 print (List2)

 Greeting= 'Welcome-to-Egypt'

 delimiter='-'

 List2 =Greeting.split(delimiter)

 print (List2)

 ['Welcome', 'to', 'Egypt']

 ['Welcome', 'to', 'Egypt']

In [70]: # we can break a string into words using the split

method

 Greeting= 'Welcome to Egypt'

 List2 =Greeting.split()

 print (List2)

CHAPTER 3 DATA COLLECTION STRUCTURES

135

 print (List2[2])

 ['Welcome', 'to', 'Egypt']

 Egypt

The join() method is the inverse of the split method (see Listing 3-10).

It takes a list of strings and concatenates the elements. You have to specify

the delimiter that the join() method will add between the list elements to

form a string.

Listing 3-10. Using the join() Method

In [73]: List1 = ['Welcome', 'to', 'Egypt']

 delimiter = ' '

 delimiter.join(List1)

Out[73]: 'Welcome to Egypt'

In [74]: List1 = ['Welcome', 'to', 'Egypt']

 delimiter = '-'

 delimiter.join(List1)

Out[74]: 'Welcome-to-Egypt'

 Parsing Lines

You can read text data from a file and convert it into a list of words for

further processing. Figure 3-1 shows that you can read myfile.txt, parse it

line per line, and convert the data into a list of words.

CHAPTER 3 DATA COLLECTION STRUCTURES

136

In the previous example, you can extract only years or e-mails of

contacts, as shown in Figure 3-2.

 Aliasing

The assign operator is dangerous if you don’t use it carefully. The

association of a variable with an object is called a reference. In addition,

an object with more than one reference and more than one name is called

Figure 3-2. Extracting specific data from a text file via lists

Figure 3-1. Parsing text lines

CHAPTER 3 DATA COLLECTION STRUCTURES

137

an alias. Listing 3-11 demonstrates the use of the assign operator. Say you

have a list called a. If a refers to an object and you assign b = a, then both

variables a and b refer to the same object, and an operation conducted on

a will automatically adapt to b.

Listing 3-11. Alias Objects

With Alias Without Alias

In [117]:a = [1, 2, 3]

 b = a

 print (a)

 print (b)

In [120]:a = [1, 2, 3]

b = [1, 2, 3]

print (a)

print (b)

 [1, 2, 3]

 [1, 2, 3]

[1, 2, 3]

[1, 2, 3]

In [118]:a.append(77)

 print (a)

 print (b)

In [121]:a.append(77)

print (a)

print (b)

 [1, 2, 3, 77]

 [1, 2, 3, 77]

[1, 2, 3, 77]

[1, 2, 3]

In [119]: b is a In [122]: b is a

Out[119]: True Out[122]: False

 Dictionaries

A dictionary is an unordered set of key-value pair; each key is separated

from its value by a colon (:). The items (the pair) are separated by commas,

and the whole thing is enclosed in curly braces ({}). In fact, an empty

dictionary is written only with curly braces:. Dictionary keys should be

unique and should be of an immutable data type such as string, integer, etc.

CHAPTER 3 DATA COLLECTION STRUCTURES

138

Dictionary values can be repeated many times, and the values can be of

any data type. It’s a mapping between keys and values; you can create a

dictionary using the dict() method.

 Creating Dictionaries

You can create a dictionary and assign a key-value pair directly. In

addition, you can create an empty dictionary and then assign values to

each generated key, as shown in Listing 3-12.

Listing 3-12. Creating Dictionaries

In [36]: Prices = {"Honda":40000, "Suzuki":50000,

"Mercedes":85000, "Nissan":35000, "Mitsubishi": 43000}

 print (Prices)

 {'Honda': 40000, 'Suzuki': 50000, 'Mercedes': 85000,

'Nissan': 35000, 'Mitsubishi': 43000}

In [37]: Staff_Salary = { 'Omar Ahmed' : 30000 , 'Ali Ziad' :

24000,

 'Ossama Hashim': 25000,

'Majid Hatem':10000}

 print(Staff_Salary)

 STDMarks={"Salwa Ahmed":50, "Abdullah Mohamed":80,

"Sultan Ghanim":90}

 print(STDMarks)

 {'Omar Ahmed': 30000, 'Ali Ziad': 24000,

'Ossama Hashim': 25000, 'Majid Hatem': 10000}

 {'Salwa Ahmed': 50, 'Abdullah Mohamed': 80,

'Sultan Ghanim': 90}

CHAPTER 3 DATA COLLECTION STRUCTURES

139

In [38]:STDMarks = dict()

 STDMarks['Salwa Ahmed']=50

 STDMarks['Abdullah Mohamed']=80

 STDMarks['Sultan Ghanim']=90

 print (STDMarks)

 {'Salwa Ahmed': 50, 'Abdullah Mohamed': 80, 'Sultan

Ghanim': 90}

 Updating and Accessing Values in Dictionaries

Once you have created a dictionary, you can update and access its values

for any further processing. Listing 3-13 shows that you can add a new item

called STDMarks['Omar Majid'] = 74 where Omar Majid is the key and 74

is the value mapped to that key. Also, you can update the existing value of

the key Salwa Ahmed.

Listing 3-13. Updating and Adding a New Item to a Dictionary

In [39]: STDMarks={ "Salwa Ahmed":50, "Abdullah Mohamed":80,

"Sultan

 Ghanim":90}

 STDMarks['Salwa Ahmed'] = 85 # update current value of

the key 'Salwa Ahmed'

 STDMarks['Omar Majid'] = 74 # Add a new item to the

dictionary

 print (STDMarks)

 {'Salwa Ahmed': 85, 'Abdullah Mohamed': 80, 'Sultan

Ghanim': 90, 'Omar Majid': 74}

You can directly access any element in the dictionary or iterate all

dictionary elements, as shown in Listing 3-14.

CHAPTER 3 DATA COLLECTION STRUCTURES

140

Listing 3-14. Accessing Dictionary Elements

In [2]: Staff_Salary = { 'Omar Ahmed' : 30000 , 'Ali Ziad' :

24000, 'Ossama Hashim': 25000, 'Majid Hatem':10000}

 print('Salary package for Ossama Hashim is ', end=“)

 # access specific dictionary element

 print(Staff_Salary['Ossama Hashim'])

 Salary package for Ossama Hashim is 25000

In [3]: # Define a function to return salary after discount tax

5% def Netsalary (salary):

 return salary - (salary * 0.05) # also, could be

return salary *0.95

 #Iterate all elements in a dictionary

 print ("Name" , '\t', "Net Salary")

 for key, value in Staff_Salary.items():

 print (key , '\t', Netsalary(value))

 Name Net Salary

 Omar Ahmed 28500.0

 Ali Ziad 22800.0

 Ossama Hashim 23750.0

 Majid Hatem 9500.0

Listing 3-14 shows that you can create a function to calculate the net

salary after deducting the salary tax value of 5 percent, and you iterate all

dictionary elements. In each iteration, you print the key name and the

returned net salary value.

CHAPTER 3 DATA COLLECTION STRUCTURES

141

 Deleting Dictionary Elements

You can either remove individual dictionary elements using the element

key or clear the entire contents of a dictionary. Also, you can delete the

entire dictionary in a single operation using a del keyword, as shown in

Listing 3-15. It should be noted that it’s not allowed to have repeated keys

in a dictionary.

Listing 3-15. Alter a Dictionary

In [40]: STDMarks={"Salwa Ahmed":50, "Abdullah Mohamed":80,

"Sultan Ghanim":90}

 print (STDMarks)

 del STDMarks['Abdullah Mohamed'] # remove entry with

key 'Abdullah Mohamed'

 print (STDMarks)

 STDMarks.clear() # remove all entries in STDMarks

dictionary

 print (STDMarks)

 del STDMarks # delete entire dictionary

 {'Salwa Ahmed': 50, 'Abdullah Mohamed': 80, 'Sultan

Ghanim': 90}

 {'Salwa Ahmed': 50, 'Sultan Ghanim': 90}

 {}

 Built-in Dictionary Functions

Various built-in functions can be implemented on dictionaries. Table 3- 3

shows some of these functions. The compare function cmp() in older Python

versions was used to compare two dictionaries; it returns 0 if both dictionaries

are equal, 1 if dic1 > dict2, and -1 if dict1 < dict2. But starting with Python 3,

the cmp() function is not available anymore, and you cannot define it. See also

Listing 3-16.

CHAPTER 3 DATA COLLECTION STRUCTURES

142

Listing 3-16. Implementing Dictionary Functions

In [43]:Staff_Salary = { 'Omar Ahmed' : 30000 , 'Ali Ziad' :

24000,

 'Ossama Hashim': 25000, 'Majid

Hatem':10000}

 STDMarks={ "Salwa Ahmed":50, "Abdullah Mohamed":80,

"Sultan

 Ghanim":90}

In [52]: def cmp(a, b):

 for key, value in a.items():

 for key1, value1 in b.items():

 return (key >key1) - (key < key1)

In [54]: print (cmp(STDMarks,Staff_Salary))

 print (cmp(STDMarks,STDMarks))

 print (len(STDMarks))

 print (str(STDMarks))

 print (type(STDMarks))

 1

Table 3-3. Built-in Dictionary Functions

No Function Description

1 cmp(dict1, dict2) Compares elements of two dictionaries.

2 len(dict) Gives the total length of the dictionary, i.e., the

number of items in the dictionary.

3 str(dict) Produces a printable string representation of a

dictionary.

4 type(variable) Returns the type of the passed variable. If the

passed variable is a dictionary, then it would return

a dictionary type.

CHAPTER 3 DATA COLLECTION STRUCTURES

143

 0

 3

 {'Salwa Ahmed': 50, 'Abdullah Mohamed': 80, 'Sultan

Ghanim': 90}

 <class 'dict'>

 Built-in Dictionary Methods

Python provides various methods for dictionary processing. Table 3-4

summarizes the methods that can be used to access dictionaries.

Table 3-4. Built-in Dictionary Methods

No Methods Description

1 dict1.clear() Removes all elements of dictionary dict1

2 dict1.copy() Returns a copy of dictionary dict1

3 dict1.fromkeys() Creates a new dictionary with keys from seq and

values

4 dict1.get(key,

default=None)

For the key name key, returns the value or default

if key not in dictionary

5 dict1.has_key(key) Returns true if key is in dictionary dict1, false

otherwise

6 dict1.items() Returns a list of dict1’s (key, value) tuple pairs

7 dict1.keys() Returns list of the dictionary dict1’s keys

8 dict1.

setdefault(key,

default=None)

Similar to get(), but will set dict1

[key]=default if key is not already in dict1

9 dict1.update(dict2) Adds dictionary dict2’s key-values pairs to dict1

10 dict1.values() Returns list of dictionary dict1’s values

CHAPTER 3 DATA COLLECTION STRUCTURES

144

Listing 3-17 shows the use and implementation of dictionary methods.

Listing 3-17. Implementing Dictionary Methods

In [89]: Staff_Salary = { 'Omar Ahmed' : 30000 , 'Ali Ziad' :

24000,

 'Ossama Hashim': 25000, 'Majid

Hatem':10000}

 STDMarks={ "Salwa Ahmed":50, "Abdullah Mohamed":80,

"Sultan

 Ghanim":90}

 print (Staff_Salary.get('Ali Ziad'))

 print (STDMarks.items())

 print (Staff_Salary.keys())

 print()

 STDMarks.setdefault('Ali Ziad')

 print (STDMarks)

 print (STDMarks.update(dict1))

 print (STDMarks)

 24000

 dict_items([('Salwa Ahmed', 50), ('Abdullah Mohamed',

80), ('Sultan Ghanim', 90)])

 dict_keys(['Omar Ahmed', 'Ali Ziad', 'Ossama Hashim',

'Majid Hatem'])

 {'Salwa Ahmed': 50, 'Abdullah Mohamed': 80, 'Sultan

Ghanim': 90, 'Ali Ziad': None}

 None

 {'Salwa Ahmed': 50, 'Abdullah Mohamed': 80, 'Sultan

Ghanim': 90, 'Ali Ziad': None}

CHAPTER 3 DATA COLLECTION STRUCTURES

145

You can sort a dictionary by key and by value, as shown in Listing 3-18.

Listing 3-18. Sorting a Dictionary

In [96]: Staff_Salary = { 'Omar Ahmed' : 30000 , 'Ali Ziad' :

24000, 'Ossama Hashim': 25000, 'Majid Hatem':10000}

 print ("\nSorted by key")

 for k in sorted(Staff_Salary):

 print (k, Staff_Salary[k])

 Sorted by key

 Ali Ziad 24000

 Majid Hatem 10000

 Omar Ahmed 30000

 Ossama Hashim 25000

In [97]: Staff_Salary = { 'Omar Ahmed' : 30000 , 'Ali Ziad' :

24000, 'Ossama Hashim': 25000, 'Majid Hatem':10000}

 print ("\nSorted by value")

 for w in sorted(Staff_Salary, key=Staff_Salary.get,

reverse=True):

 print (w, Staff_Salary[w])

 Sorted by value

 Omar Ahmed 30000

 Ossama Hashim 25000

 Ali Ziad 24000

 Majid Hatem 10000

 Tuples

A tuple is a sequence just like a list of immutable objects. The differences

between tuples and lists are that the tuples cannot be altered; also, tuples

use parentheses, whereas lists use square brackets.

CHAPTER 3 DATA COLLECTION STRUCTURES

146

 Creating Tuples

You can create tuples simply by using different comma-separated values.

You can access an element in the tuple by index, as shown in Listing 3-19.

Listing 3-19. Creating and Displaying Tuples

In [1]:Names = ('Omar', 'Ali', 'Bahaa')

 Marks = (75, 65, 95)

 print (Names[2])

 print (Marks)

 print (max(Marks))

 Bahaa

 (75, 65, 95)

 95

In [2]: for name in Names:

 print (name)

 Omar

 Ali

 Bahaa

Let’s try to alter a tuple to modify any element, as shown in Listing 3-20;

we get an error because, as indicated earlier, tuples cannot be altered.

Listing 3-20. Altering a Tuple for Editing

In [3]: Marks[1]=66

 TypeError Traceback (most recent call last)

 <ipython-input-3-b225998b9edb> in <module>()

 ----> 1 Marks[1]=66

 TypeError: 'tuple' object does not support item

assignment

CHAPTER 3 DATA COLLECTION STRUCTURES

147

Like lists, you can access tuple elements forward and backward using

the element’s indices. Here’s an example:

You can sort a list of tuples. Listing 3-21 shows how to sort tuple

elements in place as well as how to create another sorted tuple.

Listing 3-21. Sorting a Tuple

In [1]:import operator

 MarksCIS = [(88,65),(70,90,85), (55,88,44)]

 print (MarksCIS) # original tuples

 print (sorted(MarksCIS)) # direct sorting

 [(88, 65), (70, 90, 85), (55, 88, 44)]

 [(55, 88, 44), (70, 90, 85), (88, 65)]

In [2]: print (MarksCIS) # original tuples

 #create a new sorted tuple

 MarksCIS2 = sorted(MarksCIS, key=lambda x: (x[0], x[1]))

 print (MarksCIS2)

 [(88, 65), (70, 90, 85), (55, 88, 44)]

 [(55, 88, 44), (70, 90, 85), (88, 65)]

In [3]:print (MarksCIS) # original tuples

 MarksCIS.sort(key=lambda x: (x[0], x[1])) # sort in tuple

 print (MarksCIS)

 [(88, 65), (70, 90, 85), (55, 88, 44)]

 [(55, 88, 44), (70, 90, 85), (88, 65)]

CHAPTER 3 DATA COLLECTION STRUCTURES

148

By default the sort built-in function detected that the items are in

tuples form, so the sort function sorts tuples based on the first element,

then based on the second element.

 Concatenating Tuples

As mentioned, tuples are immutable, which means you cannot update

or change the values of tuple elements. You can take portions of existing

tuples to create new tuples, as Listing 3-22 demonstrates.

Listing 3-22. Concatenating Tuples

In [5]:MarksCIS=(70,85,55)

 MarksCIN=(90,75,60)

 Combind=MarksCIS + MarksCIN

 print (Combind)

 (70, 85, 55, 90, 75, 60)

 Accessing Values in Tuples

To access an element in a tuple, you can use square brackets and the

element index for retrieving an element value, as shown in Listing 3-23.

Listing 3-23. Accessing Values in a Tuple

In [4]:MarksCIS = (70, 85, 55)

 MarksCIN = (90, 75, 60)

 print ("The third mark in CIS is ", MarksCIS[2])

 print ("The third mark in CIN is ", MarksCIN[2])

 The third mark in CIS is 55

 The third mark in CIN is 60

You can delete a tuple using de, as shown in Listing 3-24.

CHAPTER 3 DATA COLLECTION STRUCTURES

149

Listing 3-24. Deleting a Tuple

In [5]: MarksCIN = (90, 75, 60)

 print (MarksCIN)

 del MarksCIN

 print (MarksCIN)

 (90, 75, 60)

 --

 NameError Traceback

(most recent

call last)

 <ipython-input-5-4c08fec39768> in <module>()

 2 print (MarksCIN) 3 del MarksCIN

 ----> 4 print (MarksCIN)

 NameError: name 'MarksCIN' is not defined

You received an error because you ordered Python to print a tuple

named MarksCIN, which has been removed. You can access a tuple

element forward and backward; in addition, you can slice values from

a tuple using indices. Listing 3-25 shows that you can slice in a forward

manner where MarksCIS[1:4] retrieves elements from element 1 up

to element 3, while MarksCIS[:] retrieves all elements in a tuple. In

backward slicing, MarksCIS[-3] retrieves the third element backward, and

MarksCIS[-4:-2] retrieves the fourth element backward up to the third

element but not the second backward element.

Listing 3-25. Slicing Tuple Values

In [6]: MarksCIS = (88, 65, 70,90,85,45,78,95,55)

 print ("\nForward slicing")

 print (MarksCIS[1:4])

 print (MarksCIS[:3])

 print (MarksCIS[6:])

 print (MarksCIS[4:6])

CHAPTER 3 DATA COLLECTION STRUCTURES

150

 print ("\nBackward slicing")

 print (MarksCIS[-4:-2])

 print (MarksCIS[-3])

 print (MarksCIS[-3:])

 print (MarksCIS[:-3])

 Forward slicing

 (65, 70, 90)

 (88, 65, 70)

 (78, 95, 55)

 (85, 45)

 Backward slicing

 (45, 78)

 78

 (78, 95, 55)

 (88, 65, 70, 90, 85, 45)

 Basic Tuples Operations

Like strings, tuples respond to the + and * operators as concatenation and

repetition to get a new tuple. See Table 3-5.

Table 3-5. Tuple Operations

Expression Results Description

len((5, 7, 2,6)) 4 Length

(1, 2, 3,10) + (4, 5, 6,7) (1, 2, 3,10, 4, 5, 6,7) Concatenation

('Hi!',) * 4 ('Hi!', 'Hi!', 'Hi!',

'Hi!')

Repetition

10 in (10, 2, 3) True Membership

for x in (10, 1, 5):

print x,

10 1 5 Iteration

CHAPTER 3 DATA COLLECTION STRUCTURES

151

 Series

A series is defined as a one-dimensional labeled array capable of

holding any data type (integers, strings, floating-point numbers, Python

objects, etc.).

SeriesX = pd.Series(data, index=index),

Here, pd is a Pandas form, and data refers to a Python dictionary, an

ndarray, or even a scalar value.

 Creating a Series with index

If the data is an ndarray, then the index is a list of axis labels that is directly

passed; otherwise, an auto index is created by Python starting with 0 up to

n-1. See Listing 3-26 and Listing 3-27.

Listing 3-26. Creating a Series of Ndarray Data with Labels

In [8]: import numpy as np

 import pandas as pd

 Series1 = pd.Series(np.random.randn(4), index=['a',

'b', 'c', 'd'])

 print(Series1)

 print(Series1.index)

 a 0.350241

 b -1.214802

 c 0.704124

 d 0.866934

 dtype: float64

 Index(['a', 'b', 'c', 'd'], dtype='object')

CHAPTER 3 DATA COLLECTION STRUCTURES

152

Listing 3-27. Creating a Series of Ndarray Data Without Labels

In [9]:import numpy as np

 import pandas as pd

 Series2 = pd.Series(np.random.randn(4))

 print(Series2)

 print(Series2.index)

 0 1.784219

 1 -0.627832

 2 0.429453

 3 -0.473971

 dtype: float64

 RangeIndex(start=0, stop=4, step=1)

Creating a series from ndarrays is valid to most Numpy functions;

also, operations such as slicing will slice the index. See Listing 3-28 and

Listing 3-29.

Listing 3-28. Slicing Data from a Series

In [10]: print (" \n Series slicing ")

 print (Series1[:3])

 print ("\nIndex accessing")

 print (Series1[[3,1,0]])

 print ("\nSingle index")

 x = Series1[0]

 print (x)

 Series slicing

 a 0.350241

 b -1.214802

 c 0.704124

 dtype: float64

CHAPTER 3 DATA COLLECTION STRUCTURES

153

 Index accessing

 d 0.866934

 b -1.214802

 a 0.350241

 dtype: float64

 Single index

 0.35024081401881596

Listing 3-29. Sample Operations in a Series

In [11]: print ("\nSeries Sample operations")

 print ("\n Series values greater than the mean: %.4f"

% Series1.mean())

 print (Series1 [Series1> Series1.mean()])

 print ("\n Series values greater than the

Meadian:%.4f" % Series1.median())

 print (Series1 [Series1> Series1.median()])

 print ("\nExponential value ")

 Series1Exp = np.exp(Series1)

 print (Series1Exp)

 Series Sample operations

 Series values greater than the mean: 0.1766

 a 0.350241

 c 0.704124

 d 0.866934

 dtype: float64

 Series values greater than the Median: 0.5272

 c 0.704124

 d 0.866934

 dtype: float64

CHAPTER 3 DATA COLLECTION STRUCTURES

154

 Exponential value

 a 1.419409

 b 0.296769

 c 2.022075

 d 2.379604

 dtype: float64

 Creating a Series from a Dictionary

You can create a series directly from a dictionary, as shown in Listing 3-30.

If you don’t explicitly pass the index, Python version +3.6 considers the

series index by the dictionary insertion order. Otherwise, the series index

will be the lexically ordered list of the dictionary keys.

Listing 3-30. Creating a Series from a Dictionary

In [12]: dict = {'m' : 2, 'y' : 2018, 'd' : 'Sunday'}

 print ("\nSeries of non declared index")

 SeriesDict1 = pd.Series(dict)

 print(SeriesDict1)

 print ("\nSeries of declared index")

 SeriesDict2 = pd.Series(dict, index=['y', 'm', 'd',

's']) print(SeriesDict2)

 Series of non declared index

 d Sunday

 m 2

 y 2018

 dtype: object

 Series of declared index

 y 2018

 m 2

CHAPTER 3 DATA COLLECTION STRUCTURES

155

 d Sunday

 s NaN

 dtype: object

You can use the get method to access a series values by index label, as

shown in Listing 3-31.

Listing 3-31. Altering a Series and Using the Get() Method

In [13]: print ("\nUse the get and set methods to access"

 "a series values by index label\n")

 SeriesDict2 = pd.Series(dict, index=['y', 'm', 'd',

's']) print (SeriesDict2['y']) # Display the year

SeriesDict2['y']=1999 # change the year value

 print (SeriesDict2) # Display all dictionary

values print (SeriesDict2.get('y')) # get specific

value by its key

 Use the get and set methods to access a series values

by index label

 2018

 y 1999

 m 2

 d Sunday

 s NaN

 dtype: object

 1999

 Creating a Series from a Scalar Value

If data is a scalar value, an index must be provided. The value will be

repeated to match the length of index. See Listing 3-32.

CHAPTER 3 DATA COLLECTION STRUCTURES

156

Listing 3-32. Creating a Series Using a Scalar Value

In [14]: print ("\n CREATE SERIES FORM SCALAR VALUE ")

 Scl = pd.Series(8., index=['a', 'b', 'c', 'd'])

 print (Scl)

 CREATE SERIES FORM SCALAR VALUE

 a 8.0

 b 8.0

 c 8.0

 d 8.0

 dtype: float64

 Vectorized Operations and Label Alignment
with Series

Series operations automatically align the data based on label. Thus, you

can write computations without giving consideration to whether the series

involved have the same labels. If labels are not matches, it gives a missing

value NaN. See Listing 3-33.

Listing 3-33. Vectorizing Operations on a Series

In [16]: SerX = pd.Series([1,2,3,4], index=['a', 'b', 'c', 'd'])

 print ("Addition");

 print(SerX + SerX)

 print ("Addition with non-matched labels");

 print (SerX[1:] + SerX[:-1])

 print ("Multiplication");

 print (SerX * SerX)

 print ("Exponential");

 print (np.exp(SerX))

CHAPTER 3 DATA COLLECTION STRUCTURES

157

 Addition

 a 2

 b 4

 c 6

 d 8

 dtype: int64

 Addition with non-matched labels

 a NaN

 b 4.0

 c 6.0

 d NaN

 dtype: float64

 Multiplication

 a 1

 b 4

 c 9

 d 16

 dtype: int64

 Exponential

 a 2.718282

 b 7.389056

 c 20.085537

 d 54.598150

 dtype: float64

 Name Attribute

You can name a series; also, you can alter a series, as shown in Listing 3-34.

CHAPTER 3 DATA COLLECTION STRUCTURES

158

Listing 3-34. Using a Series Name Attribute

In [17]:std = pd.Series([77,89,65,90], name='StudentsMarks')

 print (std.name)

 std = std.rename("Marks")

 print (std.name)

 StudentsMarks

 Marks

 Data Frames

A data frame is a two-dimensional tabular labeled data structure with

columns of potentially different types. A data frame can be created from

numerous data collections such as the following:

• A 1D ndarray, list, dict, or series

• 2D Numpy ndarray

• Structured or record ndarray

• A series

• Another data frame

A data frame has arguments, which are an index (row labels) and

columns (column labels).

 Creating Data Frames from a Dict of Series
or Dicts

You can simply create a data frame from a dictionary of series; it’s also

possible to assign an index. If there is an index without a value, it gives a

NaN value, as shown in Listing 3-35.

CHAPTER 3 DATA COLLECTION STRUCTURES

http://docs.scipy.org/doc/numpy/user/basics.rec.html

159

Listing 3-35. Creating a Data Frame from a Dict of Series

In [5]: import pandas as pd

 dict1 = {'one' : pd.Series([1., 2., 3.],

index=['a', 'b', 'c']),

 'two' : pd.Series([1., 2., 3., 4.],

index=['a', 'b', 'c', 'd'])}

 df = pd.DataFrame(dict1)

 df

Out[5]: one two

 a 1.0 1.0

 b 2.0 2.0

 c 3.0 3.0

 d NaN 4.0

In [6]: # set index for the DataFrame

 pd.DataFrame(dict1, index=['d', 'b', 'a'])

Out[6]: one two

 d NaN 4.0

 b 2.0 2.0

 a 1.0 1.0

In [8]: # Control the labels appearance of the DataFrame

pd.DataFrame(dict1, index=['d', 'b', 'a'], columns=['two',

'three', 'one'])

Out[8]: two three one

 d 4.0 NaN NaN

 b 2.0 NaN 2.0

 a 1.0 NaN 1.0

CHAPTER 3 DATA COLLECTION STRUCTURES

160

 Creating Data Frames from a Dict of
Ndarrays/Lists

When you create a data frame from an ndarray, the ndarrays must all be

the same length. Also, the passed index should be of the same length as

the arrays. If no index is passed, the result will be range(n), where n is the

array length. See Listing 3-36.

Listing 3-36. Creating a Data Frame from an Ndarray

In [11]: # without index

 ndarrdict = {'one' : [1., 2., 3., 4.],'two' :

[4., 3., 2., 1.]}

 pd.DataFrame(ndarrdict)

Out[11]: one two

 0 1.0 4.0

 1 2.0 3.0

 2 3.0 2.0

 3 4.0 1.0

In [12]: # Assign index

 pd.DataFrame(ndarrdict, index=['a', 'b', 'c', 'd'])

Out[12]: one two

 a 1.0 4.0

 b 2.0 3.0

 c 3.0 2.0

 d 4.0 1.0

CHAPTER 3 DATA COLLECTION STRUCTURES

161

 Creating Data Frames from a Structured or
Record Array

Listing 3-37 creates a data frame by first specifying the data types of each

column and then the values of each row. ('A', 'i4') determines the

column label and its data type as integers, ('B', 'f4') determines the

label as B and the data type as float, and finally ('C', 'a10') assigns the

label C and data type as a string with a maximum of ten characters.

Listing 3-37. Creating a Data Frame from a Record Array

In [18]:import pandas as pd

 import numpy as np

 data = np.zeros((2,), dtype=[('A', 'i4'),('B', 'f4'),

('C', 'a10')])

 data[:] = [(1,2.,'Hello'), (2,3.,"World")]

 pd.DataFrame(data)

Out[18]: A B C

 0 1 2.0 b'Hello'

 1 2 3.0 b'World'

In [16]: pd.DataFrame(data, index=['First', 'Second'])

Out[16]: A B C

 First 1 2.0 b'Hello'

 Second 2 3.0 b'World'

In [17]: pd.DataFrame(data, columns=['C', 'A', 'B'])

Out[17]: C A B

 0 b'Hello' 1 2.0

 1 b'World' 2 3.0

 Creating Data Frames from a List of Dicts

Also, you can create data frame from a list of dictionaries, as shown in

Listing 3-38.

CHAPTER 3 DATA COLLECTION STRUCTURES

162

Listing 3-38. Creating a Data Frame from a List of Dictionaries

In [19]: data2 = [{'A ': 1, 'B ': 2}, {'A': 5, 'B': 10, 'C': 20}]

 pd.DataFrame(data2)

Out[19]: A B C

 0 1 2 NaN

 1 5 10 20.0

In [20]: pd.DataFrame(data2, index=['First', 'Second'])

Out[20]: A B C

 First 1 2 NaN

 Second 5 10 20.0

In [21]: pd.DataFrame(data2, columns=['A', 'B'])

Out[21]: A B

 0 1 2

 1 5 10

 Creating Data Frames from a Dict of Tuples

Another method to create a multi-indexed data frame is to pass a

dictionary of tuples, as indicated in Listing 3-39.

Listing 3-39. Creating a Data Frame from a Dictionary of Tuples

In [22]: pd.DataFrame({('a', 'b'): {('A', 'B'): 1, ('A', 'C'): 2},

 ('a', 'a'): {('A', 'C'): 3, ('A',

'B'): 4},

 ('a', 'c'): {('A', 'B'): 5, ('A',

'C'): 6},

 ('b', 'a'): {('A', 'C'): 7, ('A',

'B'): 8},

 ('b', 'b'): {('A', 'D'): 9, ('A',

'B'): 10}})

CHAPTER 3 DATA COLLECTION STRUCTURES

163

 Selecting, Adding, and Deleting Data
Frame Columns

Once you have a data frame, you can simply add columns, remove

columns, and select specific columns. Listing 3-40 demonstrates how to

alter a data frame and its related operations.

Listing 3-40. Adding Columns and Making Operations on a Created

Data Frame

In [25]: # DATAFRAME COLUMN SELECTION, ADDITION, DELETION

 ndarrdict = {'one' : [1., 2., 3., 4.], 'two' :

[4., 3., 2., 1.]}

 df = pd.DataFrame(ndarrdict, index=['a', 'b', 'c', 'd'])

 df

CHAPTER 3 DATA COLLECTION STRUCTURES

164

In [26]: df['three'] = df['one'] * df['two'] # Add column

 df['flag'] = df['one'] > 2 # Add column

 df

You can insert a scalar value to a data frame; it will naturally be

propagated to fill the column. Also, if you insert a series that does not have

the same index as the data frame, it will be conformed to the data frame’s

index. To delete a column, you can use the del or pop method, as shown in

Listing 3-41.

Listing 3-41. Adding a Column Using a Scalar and Assigning to a

Data Frame

In [27]: df['Filler'] = 'HCT'

 df['Slic'] = df['one'][:2]

 df

CHAPTER 3 DATA COLLECTION STRUCTURES

165

In [28]:# Delet columns

 del df['two']

 Three = df.pop('three')

 df

In [29]: df.insert(1, 'bar', df['one'])

 df

By default, columns get inserted at the end. However, you can use

the insert() function to insert at a particular location in the columns, as

shown previously.

 Assigning New Columns in Method Chains

A data frame has an assign() method that allows you to easily create new

columns that are potentially derived from existing columns. Also, you can

change values of specific columns by altering the columns and making the

necessary operations, as in column A in Listing 3-42.

CHAPTER 3 DATA COLLECTION STRUCTURES

166

Listing 3-42. Using the assign() Method to Add a Derived Column

In [54]: import numpy as np

 import pandas as pd

 df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})

 df = df.assign(C=lambda x: x['A'] + x['B'])

 df = df.assign(D=lambda x: x['A'] + x['C'])

 df

In [55]: df = df.assign(A=lambda x: x['A'] *2)

 df

 Indexing and Selecting Data Frames

Table 3-6 summarizes the data frame indexing and selection methods of

columns and rows.

CHAPTER 3 DATA COLLECTION STRUCTURES

167

Listing 3-43 applies different approaches for rows and columns

selections from a data frame.

Listing 3-43. Data Frame Row and Column Selections

In [56]: df

In [61]: df['B']

Table 3-6. Data Frame Indexing and Selection Methods

Operation Syntax Result

Select column df[col] Series

Select row by label df.loc[label] Series

Select row by integer location df.iloc[loc] Series

Slice rows df[5:10] Data frame

Select rows by Boolean vector df[bool_vec] Data frame

CHAPTER 3 DATA COLLECTION STRUCTURES

168

In [59]: df.iloc[2]

In [62]: df[1:]

In [65]: df[df['C']>7]

See Listing 3-44.

Listing 3-44. Operations on Data Frames

In [69]:df1 = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})

 df2 = pd.DataFrame({"A": [7, 4, 6], "B": [10, 4, 15]})

 print (df1)

 print()

 print(df2)

CHAPTER 3 DATA COLLECTION STRUCTURES

169

In [70]: df1 + df2

In [71]: df1-df2

In [72]: df2 - df1.iloc[2]

CHAPTER 3 DATA COLLECTION STRUCTURES

170

In [75]: df2

In [78]: df2*2+1

 Transposing a Data Frame

You can transpose a data frame using the T operator, as shown in Listing 3-45.

Listing 3-45. Transposing a Data Frame

In [78]: df2

CHAPTER 3 DATA COLLECTION STRUCTURES

171

In [78]: df2[:].T

 Data Frame Interoperability with Numpy
Functions

You can implement matrix operations using the dot method on a data

frame. For example, you can implement matrix multiplication as in

Listing 3-46.

Listing 3-46. Matrix Multiplications

In [78]: df1

In [78]: df1.T.dot(df1)

CHAPTER 3 DATA COLLECTION STRUCTURES

172

 Panels

A panel is a container for three-dimensional data; it’s somewhat less

frequently used by Python programmers.

A panel creation has three main attributes.

 – items: axis 0; each item corresponds to a data frame

contained inside

 – major_axis: axis 1; it is the index (rows) of each of the

data frames

 – minor_axis: axis 2; it is the columns of each of the data

frames

 Creating a Panel from a 3D Ndarray

You can create a panel from a 3D ndarray with optional axis labels, as

shown in Listing 3-47.

Listing 3-47. Creating a Panel from a 3D Ndarray

In [3]:import pandas as pd

 import numpy as np

 P1 = pd.Panel(np.random.randn(2, 5, 4), items=['Item1',

 'Item2'],major_axis=pd.date_range('10/05/2018',

periods=5), minor_axis=['A', 'B', 'C', 'D'])

 P1

CHAPTER 3 DATA COLLECTION STRUCTURES

173

 Creating a Panel from a Dict of Data
Frame Objects

You can create a panel from a dictionary of a data frame, as shown in

Listing 3-48.

Listing 3-48. Creating a Panel from a Dictionary of Data Frames

In [4]: data = {'Item1' : pd.DataFrame(np.random.randn(4, 3)),

 'Item2' : pd.DataFrame(np.random.randn(4, 2))}

 P2 = pd.Panel(data)

 P2

In [5]: p3 = pd.Panel.from_dict(data, orient='minor')

 p3

See Listing 3-49.

CHAPTER 3 DATA COLLECTION STRUCTURES

174

Listing 3-49. Creating a Panel from a Data Frame

In [26]: df = pd.DataFrame({'Item': ['TV', 'Mobile', 'Laptop'],

 'Price': np.random.randn(3)**2*1000})

 df

In [29]: data = {'stock1': df, 'stock2': df}

 panel = pd.Panel.from_dict(data, orient='minor')

 panel['Item']

In [30]: panel['Price']

CHAPTER 3 DATA COLLECTION STRUCTURES

175

 Selecting, Adding, and Deleting Items

A panel is like a dict of data frames; you can slice elements, select items,

and so on. Table 3-7 gives three operations for panel items selections.

See Listing 3-50.

Listing 3-50. Slicing and Selecting Items from a Panel

In [33]: import pandas as pd

 import numpy as np

 P1 = pd.Panel(np.random.randn(2, 5, 4),

items=['Item1',

 'Item2'], major_axis=pd.date_

range('10/05/2018',

 periods=5), minor_axis=['A', 'B', 'C', 'D'])

P1['Item1']

Table 3-7. Panel Item Selection and Slicing Operations

Operation Syntax Result

Select item wp[item] Data frame

Get slice at major_axis label wp.major_xs(val) Data frame

Get slice at minor_axis label wp.minor_xs(val) Data frame

CHAPTER 3 DATA COLLECTION STRUCTURES

176

In [34]: P1.major_xs(P1.major_axis[2])

In [35]: P1.minor_axis

Out[35]: Index(['A', 'B', 'C', 'D'], dtype='object')

In [36]: P1.minor_xs('C')

 Summary

This chapter covered data collection structures in Python and their

implementations. Here’s a recap of what was covered:

 – How to maintain a collection of data in different forms

 – How to create lists and how to manipulate list content

 – What a dictionary is and the purpose of creating a dic-

tionary as a data container

CHAPTER 3 DATA COLLECTION STRUCTURES

177

 – How to create tuples and what the difference is between

tuple data structure and dictionary structure, as well as the

basic tuple operations

 – How to create a series from other data collection forms

 – How to create data frames from different data collection

structures and from another data frame

 – How to create a panel as a 3D data collection from a series

or data frame

The next chapter will cover file I/O processing and using regular

expressions as a tool for data extraction and much more.

 Exercises and Answers

 1. Write a program to create a list of names; then

define a function to display all the elements in

the received list. Call the function to execute its

statements and display all names in the list.

Answer:

In [124]: Students =["Ahmed", "Ali", "Salim", "Abdullah",

"Salwa"]

 def displaynames (x):

 for name in x:

 print (name)

 displaynames(Students) # Call the function display

names

 Ahmed

 Ali

 Salim

CHAPTER 3 DATA COLLECTION STRUCTURES

178

 Abdullah

 Salwa

 2. Write a program to read text file data and create

a dictionary of all keywords in the text file. The

program should count how many times each

word is repeated inside the text file and then find

the keyword with a highest repeated number.

The program should display both the keywords

dictionary and the most repeated word.

Answer:

In [4]: # read data from file and add it to dictionary for

processing

handle = open("Egypt.txt")

text = handle.read()

words = text.split()

counts = dict()

for word in words:

 counts[word] = counts.get(word,0) + 1

print (counts)

bigcount = None

bigword = None

CHAPTER 3 DATA COLLECTION STRUCTURES

179

for word,count in counts.items():

 if bigcount is None or count > bigcount:

 bigword = word

 bigcount = count

print ("\n bigword and bigcount")

print (bigword, bigcount)

 3. Write a program to compare tuples of integers and

tuples of strings.

Answer:

In [14]: print ((100, 1, 2) > (150, 1, 2))

 print ((0, 1, 120) < (0, 3, 4))

 print (('Javed', 'Salwa') > ('Omar', 'Sam'))

 print (('Khalid', 'Ahmed') < ('Ziad', 'Majid'))

 False

 True

 False

 True

 4. Write a program to create a series to maintain three

students’ names and GPA values.

Name GPA

Omar 2.5

Ali 3.5

Osama 3

CHAPTER 3 DATA COLLECTION STRUCTURES

180

Answer:

 5. Write a program to create a data frame to maintain

three students’ names associated with their grades

in three courses and then add a new column named

Mean to maintain the calculated mean mark per

course. Display the final data frame.

Name Course 1 Course2 Course3

Omar 90 50 89

Ali 78 75 73

Osama 67 85 80

CHAPTER 3 DATA COLLECTION STRUCTURES

181

Answer:

In [31]: data = {'Omar': [90, 50, 89], 'Ali': [78, 75, 73],

'Osama': [67, 85, 80]}

 df1 = pd.DataFrame (data, index= ['Course1',

'Course2', 'Course3'])

 df1

In [32]: df1['Omar']

Out[32]:Course1 90

 Course2 50

 Course3 89

 Name: Omar, dtype: int64

In [33]: df1['Mean'] = (df1['Ali'] + df1['Omar'] +

df1['Osama'])/3

 df1

CHAPTER 3 DATA COLLECTION STRUCTURES

183© Dr. Ossama Embarak 2018
O. Embarak, Data Analysis and Visualization Using Python,
https://doi.org/10.1007/978-1-4842-4109-7_4

CHAPTER 4

File I/O Processing
and Regular
Expressions
In this chapter, you’ll study input-output functions and file processing.

In addition, you’ll study regular expressions and how to extract data that

matches specific patterns.

 File I/O Processing

Python provides numerous methods for input, output, and file processing.

You can get input from the screen and output data to the screen as well as

read data from files and store data in files.

 Data Input and Output

You can read data from a user using the input() function. Received data

by default is in text format. Hence, you should use conversion functions to

convert the data into numeric values if required, as shown in Listing 4-1.

184

Listing 4-1. Screen Data Input/Output

In [2]: Name = input ("Enter your name: ")

 Name

Enter your name: Osama Hashim

Out[2]: 'Osama Hashim'

In [3]: Mark = input("Enter your mark: ") Mark = float(Mark)

Enter your mark: 92

In [4]:print ("Welcome to Grading System \nHCT 2018")

 print ("\nCampus\t Name\t\tMark\tGrade")

 if (Mark>=85):

 Grade="B+"

 print ("FMC\t", Name,"\t",Mark,"\t", Grade)

Welcome to Grading System

HCT 2018

Campus Name Mark Grade

FMC Osama Hashim 92.0 B+

Here you are converting the Mark value into a float using float(Mark).

You use \t to add tabs and \n to jump lines on the screen.

 Opening and Closing Files

Python’s built-in open() function is used to open a file stored on a

computer hard disk or in the cloud. Here’s its syntax:

file object = open(file_name [, access_mode][, buffering])

Table 4-1 describes its modes.

Chapter 4 File i/O prOCessing and regular expressiOns

185

Table 4-1. Open File Modes

No. Modes Description

1 r Opens a file for reading only; the default mode

2 rb Opens a file for reading only in binary format

3 r+ Opens a file for both reading and writing

4 rb+ Opens a file for both reading and writing in binary format

5 w Opens a file for writing only

6 wb Opens a file for writing only in binary format

7 w+ Opens a file for both writing and reading

8 wb+ Opens a file for both writing and reading in binary format

9 a Opens a file for appending

10 ab Opens a file for appending in binary format

11 a+ Opens a file for both appending and reading

12 ab+ Opens a file for both appending and reading in binary format

Table 4-2. Opened File Attributes

No. Attribute Description

1 file.closed returns true if the file is closed; false otherwise

2 file.mode returns access mode with which file was opened

3 file.name returns name of the file

 File Object Attributes

Python provides various methods for detecting the open file’s information,

as shown in Table 4-2.

Chapter 4 File i/O prOCessing and regular expressiOns

186

Listing 4-2 displays the attributes of an open file called Egypt.txt.

Listing 4-2. Opened File Attributes

In [41]: # Open a file and find its attributes

 Filehndl = open("Egypt.txt", "r")

 print ("Name of the file: ", Filehndl.name)

 print ("Closed or not : ", Filehndl.closed)

 print ("Opening mode : ", Filehndl.mode)

Name of the file: Egypt.txt

Closed or not : False

Opening mode : r

You can close an opened file using the close() method to clear all

related content from memory and to close any opened streams to the back-

end file, as shown in Listing 4-3.

Listing 4-3. Closing Files

In [40]: Filehndl = open("Egypt.txt", "r")

 print ("Closed or not : ", Filehndl.closed)

 Filehndl.close()

 print ("Closed or not : ", Filehndl.closed)

Closed or not : False

Closed or not : True

 Reading and Writing to Files

The file.write() method is used to write to a file as shown in below

figure, and the file.read() method is used to read data from an opened

file. A file can be opened for writing (W), reading (r), or both (r+), as shown

in Listing 4-4.

Chapter 4 File i/O prOCessing and regular expressiOns

187

Listing 4-4. Writing to a File

In [39]:Filehndl = open("Egypt.txt", "w+")

 Filehndl.write("Python Processing Files\nMay

2018!!\n")

 # Close opend file

 Filehndl.close()

As shown in the following figure, data has been written into the

“Egypt.txt” file.

The rename() method is used to rename a file; it takes two arguments:

the current filename and the new filename. Also, the remove() method can

be used to delete files by supplying the name of the file to be deleted as an

argument.

In [34]: import os

 os.rename("Egypt.txt", "test2.txt")

 os.remove("test2.txt")

 Directories in Python

Python provides various methods for creating and accessing directories.

Listing 4-5 demonstrates how to create, move, and delete directories. You

can find the current working directory using Python’s getcwd() method.

Chapter 4 File i/O prOCessing and regular expressiOns

188

Listing 4-5. Creating and Deleting Directories

In [35]: import os

 os.mkdir("Data 1") # create a directory

 os.mkdir("Data_2")

 os.chdir("Data_3") # create a Childe directory

 os.getcwd() # Get the current working

directory

 os.rmdir('Data 1') # remove a directory

 os.rmdir('Data_3') # remove a directory

 Regular Expressions

A regular expression is a special sequence of characters that helps find

other strings or sets of strings matching specific patterns; it is a powerful

language for matching text patterns.

 Regular Expression Patterns

Different regular expression syntax can be used for extracting data from

text files, XML, JSON, HTML containers, and so on.

Table 4-3 lists some Python regular expression syntax.

Chapter 4 File i/O prOCessing and regular expressiOns

189

Table 4-3. Python Regular Expression Syntax

No. Pattern Description

1 ^ Matches beginning of the line.

2 $ Matches end of the line.

3 . Matches any single character except a newline.

4 [...] Matches any single character in brackets.

5 [^...] Matches any single character not in brackets.

6 re* Matches zero or more occurrences of the preceding

expression.

7 re+ Matches one or more occurrence of the preceding expression.

8 re? Matches zero or one occurrence of the preceding expression.

9 re{ n} Matches exactly n number of occurrences of the preceding

expression.

10 re{ n,} Matches n or more occurrences of the preceding expression.

11 re{ n, m} Matches at least n and at most m occurrences of the

preceding expression.

12 a| b Matches either a or b.

13 (re) groups regular expressions and remembers matched text.

14 (?imx) temporarily toggles on i, m, or x options within a regular

expression.

15 (?-imx) temporarily toggles off i, m, or x options within a regular

expression.

16 (?: re) groups regular expressions without remembering matched

text.

17 (?imx: re) temporarily toggles on i, m, or x options within parentheses.

(continued)

Chapter 4 File i/O prOCessing and regular expressiOns

190

Table 4-3. (continued)

No. Pattern Description

18 (?-imx:

re)

temporarily toggles off i, m, or x options within parentheses.

19 (?#...) Comment.

20 (?= re) specifies the position using a pattern. doesn’t have a range.

21 (?! re) specifies the position using pattern negation. doesn’t have a

range.

22 (?> re) Matches independent pattern without backtracking.

23 \w Matches word characters.

24 \W Matches nonword characters.

25 \s Matches whitespace. equivalent to [\t\n\r\f].

26 \S Matches nonwhitespace.

27 \d Matches digits. equivalent to [0-9].

28 \D Matches nondigits.

29 \A Matches beginning of the string.

30 \Z Matches end of the string. if a newline exists, it matches just

before the newline.

31 \z Matches end of the string.

32 \G Matches point where the last match finished.

33 \b Matches word boundaries when outside brackets.

34 \B Matches nonword boundaries.

35 \n, \t, etc. Matches newlines, carriage returns, tabs, etc.

36 \1...\9 Matches nth grouped subexpression.

37 \10 Matches nth grouped subexpression if it matched already.

Chapter 4 File i/O prOCessing and regular expressiOns

191

For instance, if you have a text file of e-mail log data and you want to

extract only the text lines where the @uct.ac.za pattern appears, then you

can use iteration to capture only the lines with the given pattern, as shown

in Listing 4-6.

Listing 4-6. Reading and Processing a Text File

In [46]: print ("\nUsing in to select lines // only print lines

which has specific string ")

 fhand = open('Emails.txt')

 for line in fhand:

 line = line.rstrip()

 if not '@uct.ac.za' in line :

 continue

 print (line)

You can extract only the lines starting with From:. Once it has been

extracted, then you can split each line into a list and slice only the e-mail

element, as indicated in Listing 4-7 and Listing 4-8.

Listing 4-7. Extracting Lines Starting with a Specific Pattern

In [45]: print("\nSearching Through a File\n")

 fhand = open('Emails.txt')

 for line in fhand:

 line = line.rstrip()

 if line.startswith('From:') :

 print (line)

 Searching Through a File

 From: stephen.marquard@uct.ac.za

 From: louis@media.berkeley.edu

 From: zqian@umich.edu

 From: rjlowe@iupui.edu

Chapter 4 File i/O prOCessing and regular expressiOns

192

 From: zqian@umich.edu

 From: rjlowe@iupui.edu

 From: cwen@iupui.edu

 From: cwen@iupui.edu

 From: gsilver@umich.edu

 From: gsilver@umich.edu

 From: zqian@umich.edu

 From: gsilver@umich.edu

 From: wagnermr@iupui.edu

 From: zqian@umich.edu

 From: antranig@caret.cam.ac.uk

 From: gopal.ramasammycook@gmail.com

 From: david.horwitz@uct.ac.za

 From: david.horwitz@uct.ac.za

 From: david.horwitz@uct.ac.za

 From: david.horwitz@uct.ac.za

 From: stephen.marquard@uct.ac.za

 From: louis@media.berkeley.edu

 From: louis@media.berkeley.edu

 From: ray@media.berkeley.edu

 From: cwen@iupui.edu

 From: cwen@iupui.edu

 From: cwen@iupui.edu

Listing 4-8. Extracting e-mails without regular expressions

In [47]: print("\nSearching Through a File\n") fhand =

 open('Emails.txt')

 for line in fhand:

 line = line.rstrip()

 if line.startswith('From:') :

 line = line.split()

 print (line[1])

Chapter 4 File i/O prOCessing and regular expressiOns

193

 Searching Through a File

 stephen.marquard@uct.ac.za louis@media.berkeley.edu

zqian@umich.edu

 rjlowe@iupui.edu

 zqian@umich.edu

 rjlowe@iupui.edu

 cwen@iupui.edu

 cwen@iupui.edu

 gsilver@umich.edu

 gsilver@umich.edu

 zqian@umich.edu

 gsilver@umich.edu

 wagnermr@iupui.edu

 zqian@umich.edu

 antranig@caret.cam.ac.uk

 gopal.ramasammycook@gmail.com

 david.horwitz@uct.ac.za

 david.horwitz@uct.ac.za

 david.horwitz@uct.ac.za

 david.horwitz@uct.ac.za

 stephen.marquard@uct.ac.za

 louis@media.berkeley.edu

 louis@media.berkeley.edu

 ray@media.berkeley.edu

 cwen@iupui.edu

 cwen@iupui.edu

 cwen@iupui.edu

Although regular expressions are useful for extracting data from word

bags, they should be carefully used. The regular expression in Listing 4-9

finds all the text starting with a capital X followed by any character

repeated zero or more times and ending with a colon (:).

Chapter 4 File i/O prOCessing and regular expressiOns

194

Listing 4-9. Regular Expression Example

In [48]: import re

 print ("\nRegular Expressions\n'^X.*:' \n") hand =

open('Data.txt')

 for line in hand:

 line = line.rstrip()

 y = re.findall('^X.*:',line)

 print (y)

This is a text file maintaining text data which we used to apply regular

expressions as shown below.

In the following code, the expression '^X.*:' retrieves all lines starting

with a capital X followed by any character including white spaces zero

or more times and ending with a colon delimiter (:) . However, it doesn’t

consider the whitespaces. Listing 4-10 retrieves only the values that have

no whitespaces included in the matched patterns.

'X.*:'

['X-Sieve:']

['X-DSPAM-Result:']

['X-DSPAM-Confidence:']

['X- Content-Type-Message-Body:']

['X-Plane is behind schedule:']

Chapter 4 File i/O prOCessing and regular expressiOns

195

Listing 4-10. Extracting Nonwhitespace Patterns

In [49]: print ("\nRegular Expressions\nWild-Card Characters

'^X-\S+:'\n")

 hand = open('Data.txt')

 for line in hand:

 line = line.rstrip()

 y = re.findall('^X-\S+:',line) # match any

nonwhite space characters

 print (y)

 Regular Expressions

 Wild-Card Characters 'X-\S+:'

 ['X-Sieve:']

 ['X-DSPAM-Result:']

 ['X-DSPAM-Confidence:']

 []

 []

Regular expressions enable you to extract numerical values within a

string and find specific patterns of characters within a string of characters,

as shown in Listing 4-11.

Listing 4-11. Extracting Numerical Values and Specific Characters

In [50]: print ("\n Matching and Extracting Data \n")

 x = 'My 2 favorite numbers are 19 and 42'

 y = re.findall('[0-9]+',x)

 print (y)

 Matching and Extracting Data

 ['2', '19', '42']

Chapter 4 File i/O prOCessing and regular expressiOns

196

In [51]: y = re.findall('[AEsOUn]+',x) # find any of these

characters in string

 print (y)

 ['n', 's', 'n']

Although regular expressions are useful for extracting data, they should

be carefully implemented. The following examples show the greedy and

nongreedy extraction. In the first example in Listing 4-12, Python finds

a string starting with F and containing any number of characters up to

a colon and then stops when it reaches the end of the line. That is why

it continues to retrieve characters even when it finds the first colon. In

the second example, re.findall('^F.+?:', x) asks Python to retrieve

characters starting with an F and ending with the first occurrence of a

delimiter, which is a colon regardless of whether it reached the end of the

line or not.

Listing 4-12. Greedy and Nongreedy Matching

In [52]: print ("\nGreedy Matching \n")

 x = 'From: Using the : character'

 y = re.findall('^F.+:', x)

 print (y)

 Greedy Matching

 ['From: Using the :']

In [53]: print ("\nNon-Greedy Matching \n")

 x = 'From: Using the : character'

 y = re.findall('^F.+?:', x)

 print (y)

 Non-Greedy Matching

 ['From:']

Table 4-4 demonstrates various implementations of regular

expressions.

Chapter 4 File i/O prOCessing and regular expressiOns

197

 Special Character Classes

Some special characters are used within regular expressions to extract

data. Table 4-5 summarizes some of these special characters.

Table 4-4. Examples of Regular Expressions

No. Example Description

1 [Pp]ython Matches "Python" or "python"

2 rub[ye] Matches "ruby" or "rube"

3 [aeiou] Matches any one lowercase vowel

4 [0-9] Matches any digit; same as [0123456789]

5 [a-z] Matches any lowercase asCii letter

6 [A-Z] Matches any uppercase asCii letter

7 [a-zA-Z0-9] Matches any of the above

8 [^aeiou] Matches anything other than a lowercase vowel

9 [^0-9] Matches anything other than a digit

Table 4-5. Regular Expression Special Characters

No. Example Description

1 . Matches any character except newline

2 \d Matches a digit: [0-9]

3 \d Matches a nondigit: [^0-9]

4 \s Matches a whitespace character: [\t\r\n\f]

5 \s Matches nonwhitespace: [^ \t\r\n\f]

6 \w Matches a single word character: [A-Za-z0-9_]

7 \W Matches a nonword character: [^A-Za-z0-9_]

Chapter 4 File i/O prOCessing and regular expressiOns

198

 Repetition Classes

It is possible to have a string with different spelling such as “ok” and “okay.”

To handle such cases, you can use repetition expressions, as shown in

Table 4-6.

Table 4-6. Regular Expression Repetition Characters

No. Example Description

1 ruby? Matches "rub" or "ruby"; the y is optional

2 ruby* Matches "rub" plus zeros or more ys

3 ruby+ Matches "rub" plus one or more ys

4 \d{3} Matches exactly three digits

5 \d{3,} Matches three or more digits

6 \d{3,5} Matches three, four, or five digits

 Alternatives

Alternatives refer to expressions where you can use multiple expression

statements to extract data, as shown in Table 4-7.

Table 4-7. Alternative Regular Expression Characters

No Example Description

1 python|RLang Matches "python" or " RLang "

2 R(L|Lang)) Matches " RL" or " RLang"

3 Python(!+|\?) "Python" followed by one or more ! or one ?

Chapter 4 File i/O prOCessing and regular expressiOns

199

 Anchors

Anchors enable you to determine the position in which you can find the

match pattern in a string. Table 4-8 demonstrates numerous examples of

anchors.

Table 4-8. Anchor Characters

No. Example Description

1 ^Python Matches "Python" at the start of a string or internal line

2 Python$ Matches "Python" at the end of a string or line

3 \APython Matches "Python" at the start of a string

4 Python\Z Matches "Python" at the end of a string

5 \bPython\b Matches "Python" at a word boundary

6 \brub\B \B is nonword boundary: matches "rub" in rube and ruby

but not on its own

7 Python(?=!) Matches "Python," if followed by an exclamation point

8 Python(?!!) Matches "Python," if not followed by an exclamation

point

Not only are regular expressions used to extract data from strings, but

various built-in methods can be used for the same purposes. Listing 4-13

demonstrates the use of methods versus regular expressions to extract the

same characters.

Listing 4-13. The Use of Methods vs. Regular Expressions

In [54]: import re

 print ("\nFine-Tuning String Extraction \n")

 mystr="From ossama.embarak@hct.ac.ae Sat Jun 5

08:14:16 2018" Extract = re.findall('\S+@\S+',mystr)

Chapter 4 File i/O prOCessing and regular expressiOns

200

 print (Extract)

 E_xtracted = re.findall('^From.*? (\S+@\S+)',mystr) #

non greedy white space

 print (E_xtracted)

 print (E_xtracted[0])

 Fine-Tuning String Extraction

 ['ossama.embarak@hct.ac.ae']

 ['ossama.embarak@hct.ac.ae']

ossama.embarak@hct.ac.ae

In [57]: mystr="From ossama.embarak@hct.ac.ae Sat Jun 5

08:14:16 2018"

 atpos = mystr.find('@')

 sppos = mystr.find(' ',atpos) # find white space

starting from atpos

 host = mystr[atpos+1 : sppos]

 print (host)

 usernamepos = mystr.find(' ')

 username = mystr[usernamepos+1 : atpos]

 print (username)

 hct.ac.ae

 ossama.embarak

re.findall('@([^]*)',mystr) retrieves a substring in the mystr

string, which starts after @and continues until finding the whitespace.

Similarly, re.findall('^From .*@([^]*)', mystr) retrieves a

substring in the mystr string, which starts after From and finds zero or

more characters and then the @ character and then anything other than

whitespace characters. See Listing 4-14.

Chapter 4 File i/O prOCessing and regular expressiOns

201

Listing 4-14. Using the Regular Expression findall() Method

In [58]: print ("\n The Regex Version\n")

 import re

 mystr="From ossama.embarak@hct.ac.ae Sat Jun 5

08:14:16 2018"

 Extract = re.findall('@([^]*)',mystr)

 print (Extract)

 Extract = re.findall('^From .*@([^]*)',mystr)

 print (Extract)

 The Regex Version

 ['hct.ac.ae']

 ['hct.ac.ae']

In [59]: print ("\nScape character \n")

 mystr = 'We just received $10.00 for cookies and

$20.23 for juice'

 Extract = re.findall('\$[0-9.]+',mystr)

 print (Extract)

 Scape character

 ['$10.00', '$20.23']

 Summary

This chapter covered input/output data read or pulled from stored files or

directly read from users. Let’s recap what was covered in this chapter.

 – The chapter covered how to open files for reading, writing, or

both. Furthermore, it covered how to access the attributes of

open files and close all opened sessions.

 – The chapter covered how to collect data directly for users via the

screen.

Chapter 4 File i/O prOCessing and regular expressiOns

202

 – It covered regular expressions and their patterns and special

character usage.

 – The chapter covered how to apply regular expressions to extract

data and how to use alternatives, anchors, and repetition expres-

sions for data extraction.

The next chapter will study techniques of gathering and cleaning data

for further processing, and much more.

 Exercises and Answer

 1. Write a Python script to extract a course number,

code, and name from the following text using

regular expressions:

CoursesData = """101 COM Computers

205 MAT Mathematics

189 ENG English"""

Answer:

In [60]: import re

 CoursesData = """101 COM Computers

 205 MAT Mathematics

 189 ENG English"""

In [61]: # Extract all course numbers

 Course_numbers = re.findall('[0-9]+', CoursesData)

 print (Course_numbers)

 # Extract all course codes

 Course_codes = re.findall('[A-Z]{3}', CoursesData)

 print (Course_codes)

Chapter 4 File i/O prOCessing and regular expressiOns

203

 # Extract all course names

 Course_names = re.findall('[A-Za-z]{4,}', CoursesData)

print (Course_names)

 ['101', '205', '189']

 ['COM', 'MAT', 'ENG']

 ['Computers', 'Mathematics', 'English']

 2. Write a Python script to extract each course’s details

in a tuple form from the following text using regular

expressions. In addition, use regular expressions to

retrieve string values in the CoursesData and then

retrieve numerical values in CoursesData.

Answer:

CoursesData = """101 COM Computers

205 MAT Mathematics

189 ENG English"""

In [63]: # define the course text pattern groups and extract

 course_pattern = '([0-9]+)\s*([A-Z]{3})\s*([A-Za-z]

{4,})'

 re.findall(course_pattern, CoursesData)

Out[63]: [('101', 'COM', 'Computers'),

 ('205', 'MAT', 'Mathematics'),

 ('189', 'ENG', 'English')]

In [64]: print(re.findall('[a-zA-Z]+', CoursesData)) # []

Matches any character inside

['COM', 'Computers', 'MAT', 'Mathematics', 'ENG', 'English']

In [65]: print(re.findall('[0-9]+', CoursesData)) # [] Matches

any numeric inside

['101', '205', '189']

Chapter 4 File i/O prOCessing and regular expressiOns

204

 3. Write a Python script to extract digits of size 4 and

digits of size 2 to 4 using regular expressions.

Answer:

CoursesData = """101 COM Computers

205 MAT Mathematics

189 ENG English"""

In [66]: import re

 CoursesData = """10 COM Computers

 205 MAT Mathematics 1899 ENG English"""

 print(re.findall('\d{4}', CoursesData)) # {n} Matches

repeat n times.

 print(re.findall('\d{2,4}', CoursesData))

 ['1899']

 ['10', '205', '1899']

Chapter 4 File i/O prOCessing and regular expressiOns

205© Dr. Ossama Embarak 2018
O. Embarak, Data Analysis and Visualization Using Python,
https://doi.org/10.1007/978-1-4842-4109-7_5

CHAPTER 5

Data Gathering
and Cleaning
In the 21st century, data is vital for decision-making and developing

long- term strategic plans. Python provides numerous libraries and built-

in features that make it easy to support data analysis and processing.

Making business decisions, forecasting weather, studying protein

structures in biology, and designing a marketing campaign are all

examples that require collecting data and then cleaning, processing, and

visualizing it.

There are five main steps for data science processing.

 1. Data acquisition is where you read data

from various sources of unstructured data,

semistructured data, or full-structured data that

might be stored in a spreadsheet, comma-separated

file, web page, database, etc.

 2. Data cleaning is where you remove noisy data and

make operations needed to keep only the relevant

data.

 3. Exploratory analysis is where you look at your

cleaned data and make statistical processing fits for

specific analysis purposes.

206

 4. An analysis model needs to be created. Advanced

tools such as machine learning algorithms can be

used in this step.

 5. Data visualization is where the results are plotted

using various systems provided by Python to help in

the decision-making process.

Python provides several libraries for data gathering, cleaning,

integration, processing, and visualizing.

• Pandas is an open source Python library used to load,

organize, manipulate, model, and analyze data by

offering powerful data structures.

• Numpy is a Python package that stands for “numerical

Python. It is a library consisting of multidimensional

array objects and a collection of routines for manipulating

arrays. It can be used to perform mathematical, logical,

and linear algebra operations on arrays.

• SciPy is another built-in Python library for numerical

integration and optimization.

• Matplotlib is a Python library used to create 2D graphs

and plots. It supports a wide variety of graphs and plots

such as histograms, bar charts, power spectra, error charts,

and so on, with additional formatting such as control line

styles, font properties, formatting axes, and more.

 Cleaning Data

Data is collected and entered manually or automatically using various

methods such as weather sensors, financial stock market data servers,

users’ online commercial preferences, etc. Collected data is not

Chapter 5 Data GatherinG anD CleaninG

207

error- free and usually has various missing data points and

erroneously entered data. For instance, online users might not want

to enter their information because of privacy concerns. Therefore,

treating missing and noisy data (NA or NaN) is important for any data

analysis processing.

 Checking for Missing Values

You can use built-in Python methods to check for missing values. Let’s

create a data frame using the Numpy and Pandas libraries. Include the

index values a to h, and give the columns labels of stock1, stock2, and

stock3, as shown in Listing 5-1.

Listing 5-1. Creating a Data Frame Including NaN

In [47]: import pandas as pd

 import numpy as np

 dataset = pd.DataFrame(np.random.randn(5, 3),

index=['a', 'c', 'e', 'f', 'h'],columns=['stock1',

'stock2', 'stock3'])

 dataset.rename(columns={"one":'stock1',"two":'stock2',

"three":'stock3'}, inplace=True)

 dataset = dataset.reindex(['a', 'b', 'c', 'd', 'e',

'f', 'g', 'h'])

 print (dataset)

Chapter 5 Data GatherinG anD CleaninG

208

It should be clear that you can use Numpy to create an array of random

values, as shown in Listing 5-2.

Listing 5-2. Creating a Matrix of Random Values

In [46]: import numpy as np

 np.random.randn(5, 3)

In Listing 5-2, you are ignoring rows b, d, and g. That’s why you got

NaN, which means non-numeric values. Pandas provides the isnull()

and notnull() functions to detect the missing values in a data set. A

Boolean value is returned when NaN has been detected; otherwise, False is

returned, as shown in Listing 5-3.

Listing 5-3. Checking Null Cases

In [48]: print (dataset['stock1'].isnull())

Chapter 5 Data GatherinG anD CleaninG

209

 Handling the Missing Values

There are various techniques that can be used to handle missing values.

• You can replace NaN with a scalar value.

Listing 5-4 replaces all NaN cases with 0 values.

Listing 5-4. Replacing NaN with a Scalar Value

In [49]: print (dataset)

 dataset.fillna(0)

Chapter 5 Data GatherinG anD CleaninG

210

• You can fill NaN cases forward and backward.

Another technique to handle missing values is to fill

them forward using pad/fill or fill them backward

using bfill/backfill methods. In Listing 5-5, the

values of row a are replicating the missing values in

row b.

Listing 5-5. Filling In Missing Values Forward

In [50]: # Fill missing values forward

 print (dataset)

 dataset.fillna(method='pad')

Chapter 5 Data GatherinG anD CleaninG

211

• You can drop the missing values.

Another technique is to exclude all the rows with

NaN values. The Pandas dropna() function can be

used to drop entire rows from the data set. As you

can see in Listing 5-6, rows b, d, and g are removed

entirely from the data set.

Listing 5-6. Dropping All NaN Rows

In [51]: print (dataset)

 dataset.dropna()

• You can replace the missing (or generic) values.

The replace() method can be used to replace a

specific value in a data set with another given value.

In addition, it can be used to replace NaN cases, as

shown in Listing 5-7.

Chapter 5 Data GatherinG anD CleaninG

212

Listing 5-7. Using the replace() Function

In [52]: print (dataset)

 dataset.replace(np.nan, 0)

 Reading and Cleaning CSV Data

In this section, you will read data from a comma-separated values

(CSV) file. The CSV sales file format shown in Figure 5-1 will be used to

demonstrate the data cleaning process.

Chapter 5 Data GatherinG anD CleaninG

213

You can use the Pandas library to read a file and display the first five

records. An autogenerated index has been generated by Python starting

with 0, as shown in Listing 5-8.

Listing 5-8. Reading a CSV File and Displaying the First Five

Records

In [53]: import pandas as pd

 sales = pd.read_csv("Sales.csv")

 print ("\n\n<<<<<<< First 5 records <<<<<<<\n\n")

 print (sales.head())

Figure 5-1. Sales data in CSV format

Chapter 5 Data GatherinG anD CleaninG

214

You can display the last five records using the tail() method.

In [54]: print (sales.tail())

pd.read_csv() is used to read the entire CSV file; sometimes you need

to read only a few records to reduce memory usage, though. In that case,

you can use the nrows attribute to control the number of rows you want to

read.

In [55]: import pandas as pd

 salesNrows = pd.read_csv("Sales.csv", nrows=4)

 salesNrows

Similarly, you can read specific columns using a column index or label.

Listing 5-9 reads columns 0, 1, and 6 using the usecols attribute and then

uses the column labels instead of the column indices.

Listing 5-9. Renaming Column Labels

In [58]: salesNrows = pd.read_csv("Sales.csv", nrows=4,

usecols=[0, 1, 6])

 salesNrows

Chapter 5 Data GatherinG anD CleaninG

215

In [60]: salesNrows = pd.read_csv("Sales.csv", nrows=4,

usecols=['SALES_ID' , 'SALES_BY_REGION', 'FEBRUARY', 'MARCH'])

 salesNrows

In Listing 5-10, the .rename() method is used to change data set

column labels (e.g., SALES_ID changed to ID). In addition, you set

inplace=True to commit these changes to the original data set, not to a

copy of it.

Listing 5-10. Renaming Column Labels

In [56]: salesNrows.rename(columns={"SALES_ID":'ID',"SALES_BY_

REGION":'REGION'}, inplace=True)

 salesNrows

Chapter 5 Data GatherinG anD CleaninG

216

You can find the unique values in your data set variables; you just

refer to each column as a variable or pattern that can be used for further

processing. See Listing 5-11.

Listing 5-11. Finding Unique Values in Columns

In [57]: print (len(salesNrows['JANUARY'].unique()))

 print (len(salesNrows['REGION'].unique()))

 print (salesNrows['JANUARY'].unique())

To get precise data, you can replace all values that are anomalies with

NaN for further processing. For example, as shown in Listing 5-12, you can

use na_values =["n.a.", "not avilable", -1] to generate NaN cases

while you are reading the CSV file.

Listing 5-12. Automatically Replacing Matched Cases with NaN

In [61]: import pandas as pd

 sales = pd.read_csv("Sales.csv", nrows=7, na_values

=["n.a.", "not avilable"])

 mydata = sales.head(7)

 mydata

Chapter 5 Data GatherinG anD CleaninG

217

In [62]: import pandas as pd

 sales = pd.read_csv("Sales.csv", nrows=7, na_values

=["n.a.", "not avilable", -1])

 mydata = sales.head(7)

 mydata

Since you have different patterns in a data set, you should be able to

use different values for data cleaning and replacement. The following

example is reading from the sales.csv file and storing the data into the

sales data frame. All values listed in the na_values attribute are replaced

with the NaN value. So, for the January column, all ["n.a.", "not

available", -1] values are converted into NaN.

In [25]: sales = pd.read_csv("Sales.csv", na_values = {

 "SALES_BY_REGION": ["n.a.", "not avilabl”],

 "JANUARY": ["n.a.", "not avilable", -1],

 "FEBRUARY": ["n.a.", "not avilable", -1]})

 sales.head(20)

Another professional method to clean data, while you are loading it,

is to define functions for data cleaning. In Listing 5-13, you define and call

two functions: CleanData_Sales() to clean numerical values and reset

all NaN values to 0 and CleanData_REGION() to clean string values and

reset all NaN values to Abu Dhabi. Then you call these functions in the

converters attribute.

Chapter 5 Data GatherinG anD CleaninG

218

Listing 5-13. Defining and Calling Functions for Data Cleaning

In [26]: def CleanData_Sales(cell):

 if (cell=="n.a." or cell=="-1" or cell=="not

avilable"):

 return 0

 return cell

 def CleanData_REGION(cell):

 if (cell=="n.a." or cell=="-1" or cell=="not

avilable"):

 return 'AbuDhabi'

 return cell

In [28]: sales = pd.read_csv("Sales.csv", nrows=7, converters={

 "SALES_BY_REGION": CleanData_REGION,

 "JANUARY": CleanData_Sales,

 "FEBRUARY": CleanData_Sales,

 "APRIL": CleanData_Sales,

 })

 sales.head(20)

 Merging and Integrating Data

Python provides the merge() method to merge different data sets together

using a specific common pattern. Listing 5-14 reads two different data sets

about export values in a different range of years but for the same countries.

Chapter 5 Data GatherinG anD CleaninG

219

Listing 5-14. Two Files of Export Sales

In [35]: import pandas as pd

 a = pd.read_csv("1. Export1_Columns.csv")

 b = pd.read_csv("1. Export2_Columns.csv")

Suppose that you want to drop specific years from this study such as

2009, 2012, 2013, and 2014. Listing 5-15 and Listing 5-16 demonstrate

different methods that are used to drop these columns.

Listing 5-15. Loading Two Different Data Sets with One Common

Attribute

In [35]: import pandas as pd

 a = pd.read_csv("1. Export1_Columns.csv")

 b = pd.read_csv("1. Export2_Columns.csv")

In [31]: a.head()

Chapter 5 Data GatherinG anD CleaninG

220

In [30]: b.head()

Listing 5-16. Dropping Columns 2009, 2012, 2013, and 2014

In [32]: b.drop('2014', axis=1, inplace=True)

 columns = ['2013', '2012']

 b.drop(columns, inplace=True, axis=1)

 b.head()

Chapter 5 Data GatherinG anD CleaninG

221

Python’s .merge() method can used to merge data sets; you can

specify the merging variables, or you can let Python find the matching

variables and implement the merging, as shown in Listing 5-17.

Listing 5-17. Merging Two Data Sets

In [102]: mergedDataSet = a.merge(b, on="Country Name")

 mergedDataSet.head()

Merge two datasets using column labeled County Code_x and County

Code_y as shown below.

In [103]: dataX = a.merge(b)

 dataX.head()

You can merge two data sets using Index via Rows Union operation, as

indicated in Listing 5-18, where the .concat() method is used to merge

Data1 and Data2 over axis 0. This is a row-wise operation.

Chapter 5 Data GatherinG anD CleaninG

222

Listing 5-18. Row Union of Two Data Sets

In [71]: Data1 = a.head()

 Data1=Data1.reset_index()

 Data1

In [72]: Data2 = a.tail()

 Data2=Data2.reset_index()

 Data2

In [78]: # stack the DataFrames on top of each othe

 VerticalStack = pd.concat((Data1, Data2), axis=0)

VerticalStack

Chapter 5 Data GatherinG anD CleaninG

223

 Reading Data from the JSON Format

The Pandas library can read JSON files using the read_json function

directly from the cloud or from a hard disk. Listing 5-19 demonstrates

how to create JSON data and load it in JSON format and then iterate or

manipulate the data. The JSON format is similar to a dictionary structure

where you have a key-value pair, but in JSON, you can have subattributes

with inner values, similar to email in the first example, and its subattribute

hide with the value NO.

Listing 5-19. Creating and Manipulating JSON Data

In [73]: import json data = '''{

 "name" : "Ossama",

 "phone" : { "type" : "intl", "number" : "+971 50 244

5467"},

 "email" : {"hide" : "No" }

 }'''

Chapter 5 Data GatherinG anD CleaninG

224

 info = json.loads(data)

 print ('Name:',info["name"])

 print ('Hide:',info["email"]["hide"])

 Name: Ossama

 Hide: No

In [74]: input = '''[

 { "id" : "001", "x" : "5", "name" : "Ossama"} ,

 { "id" : "009","x" : "10","name" : "Omar" }

]'''

 info = json.loads(input) print ('User count:',

len(info)) for item in info:

 print ('\nName', item['name'])

 print ('Id', item['id'])

 print ('Attribute', item['x'])

 User count: 2

 Name Ossama

 Id 001

 Attribute 5

 Name Omar

 Id 009

 Attribute 10

You can directly read JSON data from an online resource, as shown in

Listing 5-20 and Listing 5-21.

Listing 5-20. JSON Sample Data

url=' http://python-data.dr-chuck.net/comments_244984.json'

print ('Retrieving', url)

uh = urllib.urlopen(url)

data = uh.read()

Chapter 5 Data GatherinG anD CleaninG

225

Listing 5-21. Loading a JSON File

In [101]: import json

 with open('comments.json') as json_data:

 JSONdta = json.load(json_data)

 print(JSONdta)

You can access JSON data and make further operations on the

extracted data. For instance, you can calculate the total number of

all users, find the average value of all counts, and more, as shown in

Listing 5-22.

Chapter 5 Data GatherinG anD CleaninG

226

Listing 5-22. Accessing JSON Data

In [102]:sumv=0

 counter=0

 for i in range(len(JSONdta["comments"])):

 counter+=1

 Name = JSONdta["comments"][i]["name"]

 Count = JSONdta["comments"][i]["count"]

 sumv+=int(Count)

 print (Name," ", Count)

 print ("\nCount: ", counter)

 print ("Sum: ", sumv)

The following is a sample of extracted data from the JSON file and the

calculated total number of all users:

 Reading Data from the HTML Format

You can read online HTML files, but you should install and use the

Beautiful Soup package to do so. Listing 5-23 shows how to make a request

to a URL to be loaded into the Python environment. Then you use the

Chapter 5 Data GatherinG anD CleaninG

227

HTML parser parameter to read the entire HTML file. You can also extract

values stored with HTML tags.

Listing 5-23. Reading and Parsing an HTML File

In [104]:import urllib from bs4

 import BeautifulSoup

 response = urllib.request.urlopen('http://python-data.

dr-chuck.net/known_by_Rona.html'

 html_doc = response.read()

 soup = BeautifulSoup(html_doc, 'html.parser')

 print(html_doc[:700])

 print("\n")

 print (soup.title)

 print(soup.title.string)

 print(soup.a.string)

In [103]: import urllib.request

 with urllib.request.urlopen("http://python-data.dr-

chuck.net/known_by_Rona.html") as url:

 strhtml = url.read()

 #I'm guessing this would output the html source code?

print(strhtml[:700])

Chapter 5 Data GatherinG anD CleaninG

228

You can also load HTML and use the Beautiful Soup package to

parse HTML tags and display the first ten anchor tags, as shown in

Listing 5-24.

Listing 5-24. Parsing HTML Tags

In [107]: import urllib from bs4

import BeautifulSoup

 response = urllib.request.urlopen('http://python-

data.dr chuck.net/known_by_Rona.html' html_doc =

response.read()

 print (html_doc[:300])

 soup = BeautifulSoup(html_doc, 'html.parser')

 print ("\n") counter=0

 for link in soup.findAll("a"):

 print(link.get("href"))

 if counter<10: counter+=1

 continue

 else:

 break

Let’s create an html variable that maintains some web page content

and read it using Beautiful Soup, as shown in Listing 5-25.

Chapter 5 Data GatherinG anD CleaninG

229

Listing 5-25. Reading HTML Using Beautiful Soup

In [108]: htmldata="""<html>

 <head>

 <title>

 The Dormouse's story

 </title>

 </head>

 <body>

 <p class="title">

 The Dormouse's story

 </p>

 <p class="story">

 Once upon a time there were three little

sisters; and their names were

 <a class="sister" href="http://example.com/

elsie" id="link1"> Elsie

 ,

 <a class="sister" href="http://example.com/

lacie" id="link2"> Lacie

 and

 <a class="sister" href="http://example.com/

tillie" id="link2"> Tillie

 ; and they lived at the bottom of a well.

 </p>

Chapter 5 Data GatherinG anD CleaninG

230

 <p class="story"> ...

 </p>

 </body>

 </html>

 """

 from bs4 import BeautifulSoup

 soup = BeautifulSoup(htmldata, 'html.parser')

 print(soup.prettify())

You can also use Beautiful Soup to extract data from HTML. You can

extract data, tags, or all related data such as all hyperlinks in the parsed

HTML content, as shown in Listing 5-26.

Chapter 5 Data GatherinG anD CleaninG

231

Listing 5-26. Using Beautiful Soup to Extract Data from HTML

In [109]: soup.title

Out[109]: <title>

 The Dormouse's story

 </title>

In [110]: soup.title.name

Out[110]: 'title'

In [111]: soup.title.string

Out[111]: "\n The Dormouse's story\n "

In [112]: soup.title.parent.name

Out[112]: 'head'

In [113]: soup.p

Out[113]: <p class="title">

 The Dormouse's story

 </p>

In [114]: soup.p['class']

Out[114]: ['title']

In [115]: soup.a

Out[115]: <a class="sister" href="http://example.com/elsie"

id="link1"> Elsie

Chapter 5 Data GatherinG anD CleaninG

232

In [116]: soup.find_all('a')

Out[116]: [<a class="sister" href="http://example.com/elsie"

id="link1"> Elsie

 , <a class="sister" href="http://example.com/

lacie" id="link2"> Lacie

 , <a class="sister" href="http://example.com/

tillie" id="link2"> Tillie

]

In [117]: soup.find(id="link2")

Out[117]: <a class="sister" href="http://example.com/lacie"

id="link2"> Lacie

It is possible to extract all the URLs found within a page’s <a> tags, as

shown in Listing 5-27.

Listing 5-27. Extracting All URLs in Web Page Content

In [118]: for link in soup.find_all('a'):

 print(link.get('href'))

Another common task is extracting all the text from a page and

ignoring all the tags, as shown in Listing 5-28.

Chapter 5 Data GatherinG anD CleaninG

233

Listing 5-28. Extracting Only the Contents

In [119]: print(soup.get_text())

 Reading Data from the XML Format

Python provides the xml.etree.ElementTree (ET) module to implement

a simple and efficient parsing of XML data. ET has two classes for this

purpose: ElementTree, which represents the whole XML document as a

tree, and Element, which represents a single node in this tree. Interactions

with the whole document (reading and writing to/from files) are usually

done on the ElementTree level. The interactions with a single XML element

and its subelements are done on the Element level. In Listing 5-29, you are

creating an XML container and reading it using ET for parsing purposes.

Then you extract data from the container using the find() and get()

methods, parsing through the generated tree.

Chapter 5 Data GatherinG anD CleaninG

234

Listing 5-29. Reading XML and Extracting Its Data

In [128]: xmldata = """

 <?xml version="1.0"?>

 <data>

 <student

 name="Omar">

 <rank>2</rank>

 <year>2017</year>

 <GPA>3.5</GPA>

 <concentration name="Networking"

Semester="7"/> </student>

 <student name="Ali">

 <rank>3</rank>

 <year>2016</year>

 <GPA>2.8</GPA>

 <concentration name="Security"

Semester="6"/>

 </student>

 <student name="Osama">

 <rank>1</rank>

 <year>2018</year>

 <GPA>3.7</GPA>

 <concentration name="App Development"

Semester="8"/> </student>

 </data>

 """.strip()

In [129]:from xml.etree import ElementTree as ET stuff =

ET.fromstring(xmldata) lst = stuff.findall('student')

 print ('Students count:', len(lst)) for item in lst:

Chapter 5 Data GatherinG anD CleaninG

235

 print ("\nName:", item.get("name"))

 print ('concentration:', item.

find("concentration").get("name"))

 print ('Rank:', item.find('rank').text)

 print ('GPA:', item.find("GPA").text)

 Summary

This chapter covered data gathering and cleaning so that you can

have reliable data for analysis. This list recaps what you studied in this

chapter:

 – How to apply cleaning techniques to handle missing

values

 – How to read CSV-formatted data offline and directly from

the cloud

Chapter 5 Data GatherinG anD CleaninG

236

 – How to merge and integrate data from different sources

 – How to read and extract data from JSON, HTML, and

XML formats

The next chapter will study how to explore and analyze data and much

more.

 Exercises and Answers

 1. Write a Python script to read the data in an Excel

file named movies.xlsx and save this data in a data

frame called mov. Perform the following steps:

 a. Read the contents of the second sheet that is

named 2000s in the Excel file (movies.xlsx)

and store this content in a data frame called

Second_sheet.

 b. Write the code needed to show the first seven

rows from the data frame Second_sheet using

an appropriate method.

 c. Write the code needed to show the last five

rows using an appropriate method.

Chapter 5 Data GatherinG anD CleaninG

237

 d. Use a suitable command to show only one

column that is named Budget.

 e. Use a suitable command to show the total rows

in the first sheet that is called 2000s.

 f. Use a suitable command to show the maximum

value stored in the Budget column.

 g. Use a suitable command to show the minimum

value stored in the Budget column.

 h. Write a single command to show the details

(count, min, max, mean, std, 25%, 50%, 75%)

about the column User Votes.

 i. Use a suitable conditional statement that

stores the rows in which the country name is

USA and the Duration value is less than 50 in a

data frame named USA50. Show the values in

data frame USA50.

Chapter 5 Data GatherinG anD CleaninG

238

 j. Using a suitable command, create a calculated

column named Avg Reviews in Second_sheet

by adding Reviews by Users and Reviews by

Critics and divide it by 2. Display the first five

rows of the Second_sheet after creating the

previous calculated column.

 k. Using a suitable command, sort the Country

values in ascending order (smallest to largest)

and Avg_reviews in descending order (largest

to smallest).

 l. Write a Python script to read the following

HTML and extract and display only the

content, ignoring the tag structure:

Chapter 5 Data GatherinG anD CleaninG

239

<html>

 <head>

 <title>

 Python Book Version 2018

 </title>

 </head>

 <body>

 <p class="title">

 Author Name: Ossama Embarak

 </p>

 <p class="story">

 Python techniques for gathering and cleaning data

 <a class="sister" href="https://leanpub.com/

AgilePythonProgrammingAppliedForEveryone" id="link1">

 Data Cleaning

 , Data Processing and Visualization

 <a class="sister" href="http://www.lulu.com/shop/ossama-

embarak/agile-python-programming-applied-for-everyone/

paperback/product-23694020.html" id="link2">

 Data Visualization

 </p>

 <p class="story">

 @July 2018

 </p>

 </body>

 </html>

Chapter 5 Data GatherinG anD CleaninG

240

Answer:

from bs4 import BeautifulSoup

soup = BeautifulSoup(htmldata, 'html.parser')

print(soup.prettify())

print(soup.get_text())

Chapter 5 Data GatherinG anD CleaninG

241

Chapter 5 Data GatherinG anD CleaninG

243© Dr. Ossama Embarak 2018
O. Embarak, Data Analysis and Visualization Using Python,
https://doi.org/10.1007/978-1-4842-4109-7_6

CHAPTER 6

Data Exploring
and Analysis
Nowadays, massive data is collected daily and distributed over various

channels. This requires efficient and flexible data analysis tools. Python’s

open source Pandas library fills that gap and deals with three different data

structures: series, data frames, and panels. A series is a one-dimensional

data structure such as a dictionary, array, list, tuple, and so on. A data

frame is a two-dimensional data structure with heterogeneous data types,

i.e., tabular data. A panel refers to a three-dimensional data structure

such as a three-dimensional array. It should be clear that the higher-

dimensional data structure is a container of its lower-dimensional data

structure. In other words, a panel is a container of a data frame, and a data

frame is a container of a series.

 Series Data Structures

As mentioned earlier, a series is a sequence of one-dimensional data such

as a dictionary, list, array, tuple, and so on.

244

 Creating a Series

Pandas provides a Series() method that is used to create a series

structure. A serious structure of size n should have an index of length

n. By default Pandas creates indices starting at 0 and ending with n-1.

A Pandas series can be created using the constructor pandas.Series

(data, index, dtype, copy) where data could be an array, constant,

list, etc. The series index should be unique and hashable with length n,

while dtype is a data type that could be explicitly declared or inferred

from the received data. Listing 6-1 creates a series with a default index

and with a set index.

Listing 6-1. Creating a Series

In [5]: import pandas as pd

 import numpy as np

 data = np.array(['O','S','S','A'])

 S1 = pd.Series(data) # without adding index

 S2 = pd.Series(data,index=[100,101,102,103]) # with

adding index print (S1) print ("\n") print (S2)

 0 O

 1 S

 2 S

 3 A

 dtype: object

 100 O

 101 S

 102 S

 103 A

 dtype: object

Chapter 6 Data exploring anD analysis

245

In [40]:import pandas as pd

 import numpy as np

 my_series2 = np.random.randn(5, 10)

 print ("\nmy_series2\n", my_series2)

This is the output of creating a series of random values of 5 rows and

10 columns.

As mentioned earlier, you can create a series from a dictionary;

Listing 6-2 demonstrates how to create an index for a data series.

Listing 6-2. Creating an Indexed Series

In [6]: import pandas as pd

 import numpy as np

 data = {'X' : 0., 'Y' : 1., 'Z' : 2.}

 SERIES1 = pd.Series(data)

 print (SERIES1)

 X 0.0

 Y 1.0

 Z 2.0

 dtype: float64

In [7]: import pandas as pd

 import numpy as np

 data = {'X' : 0., 'Y' : 1., 'Z' : 2.}

 SERIES1 = pd.Series(data,index=['Y','Z','W','X'])

 print (SERIES1)

 Y 1.0

Chapter 6 Data exploring anD analysis

246

 Z 2.0

 W NaN

 X 0.0

 dtype: float64

If you can create series data from a scalar value as shown in Listing 6-3,

then an index is mandatory, and the scalar value will be repeated to match

the length of the given index.

Listing 6-3. Creating a Series Using a Scalar

In [9]: # Use sclara to create a series

 import pandas as pd

 import numpy as np

 Series1 = pd.Series(7, index=[0, 1, 2, 3, 4])

 print (Series1)

 0 7

 1 7

 2 7

 3 7

 4 7

 dtype: int64

 Accessing Data from a Series with a Position

Like lists, you can access a series data via its index value. The examples in

Listing 6-4 demonstrate different methods of accessing a series of data.

The first example demonstrates retrieving a specific element with index 0.

The second example retrieves indices 0, 1, and 2. The third example

retrieves the last three elements since the starting index is -3 and moves

backward to -2, -1. The fourth and fifth examples retrieve data using the

series index labels.

Chapter 6 Data exploring anD analysis

247

Listing 6-4. Accessing a Data Series

In [18]: import pandas as pd

 Series1 = pd.Series([1,2,3,4,5],index =

 ['a','b','c','d','e'])

 print ("Example 1:Retrieve the first element")

 print (Series1[0])

 print ("\nExample 2:Retrieve the first three element")

 print (Series1[:3])

 print ("\nExample 3:Retrieve the last three element")

 print(Series1[-3:])

 print ("\nExample 4:Retrieve a single element")

 print (Series1['a'])

 print ("\nExample 5:Retrieve multiple elements")

 print (Series1[['a','c','d']])

Chapter 6 Data exploring anD analysis

248

 Exploring and Analyzing a Series

Numerous statistical methods can be applied directly on a data series.

Listing 6-5 demonstrates the calculation of mean, max, min, and standard

deviation of a data series. Also, the .describe() method can be used to

give a data description, including quantiles.

Listing 6-5. Analyzing Series Data

In [10]: import pandas as pd

 import numpy as np

 my_series1 = pd.Series([5, 6, 7, 8, 9, 10])

 print ("my_series1\n", my_series1)

 print ("\n Series Analysis\n ")

 print ("Series mean value : ", my_series1.mean()) #

find mean value in a series

 print ("Series max value : ",my_series1.max()) #

find max value in a series

 print ("Series min value : ",my_series1.min()) #

find min value in a series

 print ("Series standard deviation value : ",

my_series1.std()) # find standard deviation

 my_series1

 0 5

 1 6

 2 7

 3 8

 4 9

 5 10

 dtype: int64

Chapter 6 Data exploring anD analysis

249

 Series Analysis

 Series mean value : 7.5

 Series max value : 10

 Series min value : 5

 Series standard deviation value : 1.8708286933869707

In [11]: my_series1.describe()

Out[11]: count 6.000000

 mean 7.500000

 std 1.870829

 min 5.000000

 25% 6.250000

 50% 7.500000

 75% 8.750000

 max 10.000000

 dtype: float64

If you copied by reference one series to another, then any changes

to the series will adapt to the other one. After copying my_series1 to my_

series_11, once you change the indices of my_series_11, it reflects back

to my_series1, as shown in Listing 6-6.

Listing 6-6. Copying a Series to Another with a Reference

In [17]: my_series_11 = my_series1

 print (my_series1)

 my_series_11.index = ['A', 'B', 'C', 'D', 'E', 'F']

 print (my_series_11)

 print (my_series1)

 0 5

 1 6

 2 7

 3 8

Chapter 6 Data exploring anD analysis

250

 4 9

 5 10

 dtype: int64

 A 5

 B 6

 C 7

 D 8

 E 9

 F 10

 dtype: int64

 A 5

 B 6

 C 7

 D 8

 E 9

 F 10

 dtype: int64

You can use the .copy() method to copy the data set without having a

reference to the original series. See Listing 6-7.

Listing 6-7. Copying Series Values to Another

In [21]: my_series_11 = my_series1.copy()

 print (my_series1)

 my_series_11.index = ['A', 'B', 'C', 'D', 'E', 'F']

 print (my_series_11)

 print (my_series1)

 0 5

 1 6

 2 7

 3 8

Chapter 6 Data exploring anD analysis

251

 4 9

 5 10

 dtype: int64

 A 5

 B 6

 C 7

 D 8

 E 9

 F 10

 dtype: int64

 0 5

 1 6

 2 7

 3 8

 4 9

 5 10

 dtype: int64

 Operations on a Series

Numerous operations can be implemented on series data. You can check

whether an index value is available in a series or not. Also, you can check

all series elements against a specific condition, such as if the series value is

less than 8 or not. In addition, you can perform math operations on series

data directly or via a defined function, as shown in Listing 6-8.

Listing 6-8. Operations on Series

In [23]: 'F' in my_series_11

Out[23]: True

In [27]: temp = my_series_11 < 8

 temp

Chapter 6 Data exploring anD analysis

252

Out[27]: A True

 B True

 C True

 D False

 E False

 F False

 dtype: bool

 In [35]: len(my_series_11)

Out[35]: 6

In [28]: temp = my_series_11[my_series_11 < 8] * 2

 temp

Out[28]: A 10

 B 12

 C 14

 dtype: int64

Define a function to add two series and call the function, like this:

In [37]: def AddSeries(x,y):

 for i in range (len(x)):

 print (x[i] + y[i])

In [39]: print ("Add two series\n")

 AddSeries (my_series_11, my_series1)

 Add two series

 10

 12

 14

 16

 18

 20

Chapter 6 Data exploring anD analysis

253

You can visualize data series using the different plotting systems that

are covered in Chapter 7. However, Figure 6-1 demonstrates how to get

an at-a-glance idea of your series data and graphically explore it via visual

plotting diagrams. See Listing 6-9.

Listing 6-9. Visualizing Data Series

In [49]: import matplotlib.pyplot as plt

 plt.plot(my_series2)

 plt.ylabel('index')

 plt.show()

In [54]: from numpy import *

 import math

 import matplotlib.pyplot as plt

 t = linspace(0, 2*math.pi, 400)

Figure 6-1. Line visualization

Chapter 6 Data exploring anD analysis

254

 a = sin(t)

 b = cos(t)

 c = a + b

In [50]: plt.plot(t, a, 'r') # plotting t, a separately

 plt.plot(t, b, 'b') # plotting t, b separately

 plt.plot(t, c, 'g') # plotting t, c separately

 plt.show()

We can add multiple plots to the same canvas as shown in Figure 6-2.

 Data Frame Data Structures

As mentioned earlier, a data frame is a two-dimensional data structure

with heterogeneous data types, i.e., tabular data.

Figure 6-2. Multiplots on the same canvas

Chapter 6 Data exploring anD analysis

255

 Creating a Data Frame

Pandas can create a data frame using the constructor pandas.

DataFrame(data, index, columns, dtype, copy). A data frame can be

created from lists, series, dictionaries, Numpy arrays, or other data frames.

A Pandas data frame not only helps to store tabular data but also performs

arithmetic operations on rows and columns of the data frame. Listing 6-10

creates a data frame from a single list and a list of lists.

Listing 6-10. Creating a Data Frame from a List

In [19]: import pandas as pd

 data = [10,20,30,40,50]

 DF1 = pd.DataFrame(data)

 print (DF1)

 0 10

 1 20

 2 30

 3 40

 4 50

In [22]: import pandas as pd

 data = [['Ossama',25],['Ali',43],['Ziad',32]]

 DF1 = pd.DataFrame(data,columns=['Name','Age'])

 print (DF1)

 Name Age

 0 Ossama 25

 1 Ali 43

 2 Ziad 32

In [21]: import pandas as pd

 data = [['Ossama',25],['Ali',43],['Ziad',32]]

 DF1 = pd.DataFrame(data,columns=['Name','Age'],

dtype=float) print (DF1)

Chapter 6 Data exploring anD analysis

256

 Name Age

 0 Ossama 25.0

 1 Ali 43.0

 2 Ziad 32.0

You can create a data frame from dictionaries or arrays, as shown in

Listing 6-11. Also, you can set the data frame indices. However, if you don’t

set the indices, then the data frame starts with 0 and goes up to n-1, where

n is the length of the list. Column names are taken by default from the

dictionary keys. However, it’s possible to set labels for columns as well. The

first data frame’s df1 columns are labeled with the dictionary key names;

that’s why you don’t see NaN cases except for the missing value of the project

in dictionary 1. While in the second data frame, named df2, you change the

column name from Test1 to Test_1, and you get NaNs for all the records.

This is because of the absence of Test_1 in the dictionary key of data.

Listing 6-11. Creating a DataFrame from a Dictionary

In [13]: import pandas as pd

 data = [{'Test1': 10, 'Test2': 20},{'Test1': 30,

'Test2': 20, 'Project': 20}]

 # With three column indices, values same as dictionary

keys

 df1 = pd.DataFrame(data, index=['First', 'Second'],

columns=['Test2', 'Project' , 'Test1'])

 #With two column indices with one index with another

name

 df2 = pd.DataFrame(data, index=['First', 'Second'],

columns=['Project', 'Test_1','Test2 ')]

 print (df1)

 print ("\n")

 print (df2)

Chapter 6 Data exploring anD analysis

257

 Test2 Project Test1

 First 20 NaN 10

 Second 20 20.0 30

 Project Test_1 Test2

 First NaN NaN 20

 Second 20.0 NaN 20

Pandas allows you to create a data frame from a dictionary of series

where you get the union of all series indices passed. As shown in Listing

6-12 with the student Salwa, no Test1 value is given. That’s why NaN is set

automatically.

Listing 6-12. Creating a Data Frame from a Series

In [16]: import pandas as pd

 data = { 'Test1' : pd.Series([70, 55, 89],

index=['Ahmed', 'Omar', 'Ali']),

 'Test2' : pd.Series([56, 82, 77, 65],

index=['Ahmed', 'Omar', 'Ali', 'Salwa'])}

 df1 = pd.DataFrame(data)

 print (df1)

 Test1 Test2

 Ahmed 70.0 56

 Ali 89.0 77

 Omar 55.0 82

 Salwa NaN 65

Chapter 6 Data exploring anD analysis

258

 Updating and Accessing a Data Frame’s
Column Selection

You can select a specific column using the column labels. For example,

df1['Test2'] is used to select only the column labeled Test2 in the data

frame, while df1[:] is used to display all the columns and all the rows, as

shown in Listing 6-13.

Listing 6-13. Data Frame Column Selection

In [51]: import pandas as pd

 data = { 'Test1' : pd.Series([70, 55, 89],

index=['Ahmed', 'Omar', 'Ali']),

 'Test2' : pd.Series([56, 82, 77, 65],

index=['Ahmed', 'Omar', 'Ali', 'Salwa'])}

 df1 = pd.DataFrame(data)

 print (df1['Test2']) # Column selection

 print("\n")

 print (df1[:]) # Column selection

 Ahmed 56

 Ali 77

 Omar 82

 Salwa 65

 Name: Test2, dtype: int64

 Test1 Test2

 Ahmed 70.0 56

 Ali 89.0 77

 Omar 55.0 82

 Salwa NaN 65

Chapter 6 Data exploring anD analysis

259

You can select columns by using the column labels or the column

index. df1.iloc[:, [1,0]] is used to display all rows for columns 1

and 0 starting with column 1, which refers to the column named Test2.

In addition, df1[0:4:1] is used to display all the rows starting from row

0 up to row 3 incremented by 1, which gives all rows from 0 up to 3. See

Listing 6-14.

Listing 6-14. Data Frame Column and Row Selection

In [46]: df1.iloc[:, [1,0]]

Out[46]: Test2 Test1

 Ahmed 56 70.0

 Ali 77 89.0

 Omar 82 55.0

 Salwa 65 NaN

In [39]: df1[0:4:1]

Out[39]: Test1 Test2

 Ahmed 70.0 56

 Ali 89.0 77

 Omar 55.0 82

 Salwa NaN 65

 Column Addition

You can simply add a new column and add its values directly using a

series. In addition, you can create a new column by processing the other

columns, as shown in Listing 6-15.

Chapter 6 Data exploring anD analysis

260

Listing 6-15. Adding a New Column to a Data Frame

In [66]: # add a new Column

 import pandas as pd

 data = { 'Test1' : pd.Series([70, 55, 89],

index=['Ahmed', 'Omar', 'Ali']),

 'Test2' : pd.Series([56, 82, 77, 65],

index=['Ahmed', 'Omar', 'Ali', 'Salwa'])}

 df1 = pd.DataFrame(data)

 print (df1)

 df1['Project'] = pd.Series([90,83,67, 87],

index=['Ali','Omar','Salwa', 'Ahmed'])

 print ("\n")

 df1['Average'] = round((df1['Test1']+df1['Test2']+

df1['Project'])/3, 2)

 print (df1)

 Test1 Test2

 Ahmed 70.0 56

 Ali 89.0 77

 Omar 55.0 82

 Salwa NaN 65

 Test1 Test2 Project Average

 Ahmed 70.0 56 87 71.00

 Ali 89.0 77 90 85.33

 Omar 55.0 82 83 73.33

 Salwa NaN 65 67 NaN

 Column Deletion

You can delete any column using the del method. For example,

del df2['Test2'] deletes the Test2 column from the data set. In

addition, you can use the pop method to delete a column. For example,

Chapter 6 Data exploring anD analysis

261

df2.pop('Project') is used to delete the column Project. However, you

should be careful when you use the del or pop method since a reference

might exist. In this case, it deletes not only from the executed data frame

but also from the referenced data frame. Listing 6-16 creates the data frame

df1 and copies df1 to df2.

Listing 6-16. Creating and Copying a Data Frame

In [70]: import pandas as pd

 data = { 'Test1' : pd.Series([70, 55, 89],

index=['Ahmed', 'Omar', 'Ali']),

 'Test2' : pd.Series([56, 82, 77, 65],

index=['Ahmed', 'Omar', 'Ali', 'Salwa'])}

 print (df1)

 df2 = df1

 print ("\n")

 print (df2)

 Test1 Test2 Project Average

 Ahmed 70.0 56 87 71.00

 Ali 89.0 77 90 85.33

 Omar 55.0 82 83 73.33

 Salwa NaN 65 67 NaN

 Test1 Test2 Project Average

Ahmed 70.0 56 87 71.00

Ali 89.0 77 90 85.33

Omar 55.0 82 83 73.33

Salwa NaN 65 6 7 NaN

In the previous Python script, you saw how to create df2 and assign

it df1. In Listing 6-17, you are deleting the Test2 and Project variables

using the del and pop methods sequentially. As shown, both variables are

deleted from both data frames df1 and df2 because of the reference existing

between these two data frames as a result of using the assign (=) operator.

Chapter 6 Data exploring anD analysis

262

Listing 6-17. Deleting Columns from a Data Frame

In [71]: # Delete a column in data frame using del function

 print ("Deleting the first column using DEL function:")

 del df2['Test2']

 print (df2)

 # Delete a column in data frame using pop function

 print ("\nDeleting another column using POP function:")

 df2.pop('Project')

 print (df2)

 Deleting the first column using DEL function:

 Test1 Project Average

 Ahmed 70.0 87 71.00

 Ali 89.0 90 85.33

 Omar 55.0 83 73.33

 Salwa NaN 67 NaN

 Deleting another column using POP function:

 Test1 Average

 Ahmed 70.0 71.00

 Ali 89.0 85.33

 Omar 55.0 73.33

 Salwa NaN NaN

In [72]: print (df1)

 Test1 Average

 Ahmed 70.0 71.00

 Ali 89.0 85.33

 Omar 55.0 73.33

 Salwa NaN NaN

Chapter 6 Data exploring anD analysis

263

In [73]: print (df2)

 Test1 Average

 Ahmed 70.0 71.00

 Ali 89.0 85.33

 Omar 55.0 73.33

 Salwa NaN NaN

To solve this problem, you can use the df. copy() method instead of

the assign operator (=). Listing 6-18 shows that you deleted the variables

Test2 and Project using the del() and pop() methods sequentially, but

only df2 has been affected, while df1 remains unchanged.

Listing 6-18. Using the Copy Method to Delete Columns from a

Data Frame

In [83]: # add a new Column

 import pandas as pd

 data = { 'Test1' : pd.Series([70, 55, 89],

index=['Ahmed', 'Omar', 'Ali']),

 'Test2' : pd.Series([56, 82, 77, 65],

index=['Ahmed', 'Omar', 'Ali', 'Salwa'])}

 df1 = pd.DataFrame(data)

 df1['Project'] = pd.Series([90,83,67, 87],

index=['Ali','Omar','Salwa', 'Ahmed'])

 print ("\n")

 df1['Average'] = round((df1['Test1']+df1['Test2']+df1

['Project'])/3, 2)

 print (df1)

 print ("\n")

 df2= df1.copy() # copy df1 into df2 using copy() method

 print (df2)

 #delete columns using del and pop methods

 del df2['Test2']

Chapter 6 Data exploring anD analysis

264

 df2.pop('Project')

 print ("\n")

 print (df1)

 print ("\n")

 print (df2)

 Row Selection

In Listing 6-19, you are selecting the second row for student Omar. Also, you

use the slicing methods to retrieve rows 2 and 3.

Chapter 6 Data exploring anD analysis

265

Listing 6-19. Retrieving Specific Rows

In [106]: # add a new Column

 import pandas as pd

 data = { 'Test1' : pd.Series([70, 55, 89],

index=['Ahmed', 'Omar', 'Ali']),

 'Test2' : pd.Series([56, 82, 77, 65],

index=['Ahmed', 'Omar', 'Ali', 'Salwa'])}

 df1 = pd.DataFrame(data)

 df1['Project'] = pd.Series([90,83,67, 87],index=

['Ali','Omar','Salwa', 'Ahmed'])

 print ("\n")

 df1['Average'] = round((df1['Test1']+df1['Test2']+df1

['Project'])/3, 2)

 print (df1)

 print ("\nselect iloc function to retrieve row number 2")

 print (df1.iloc[2])

 print ("\nslice rows")

 print (df1[2:4])

Chapter 6 Data exploring anD analysis

266

 Row Addition

Listing 6-20 demonstrates how to add rows to an existing data frame.

Listing 6-20. Adding New Rows to the Data Frame

In [134]: import pandas as pd

 data = { 'Test1' : pd.Series([70, 55, 89],

index=['Ahmed', 'Omar', 'Ali']),

 'Test2' : pd.Series([56, 82, 77, 65],

index=['Ahmed', 'Omar', 'Ali', 'Salwa']),

 'Project' : pd.Series([87, 83, 90, 67],

index=['Ahmed', 'Omar', 'Ali', 'Salwa']),

 'Average' : pd.Series([71, 73.33, 85.33, 66],

index=['Ahmed', 'Omar', 'Ali', 'Salw

 data = pd.DataFrame(data)

 print (data)

 print("\n")

 df2 = pd.DataFrame([[80, 70, 90, 80]], columns

= ['Test1','Test2','Project','Average'],

index=['Khalid'])

 datadata.append(df2)

 print (data)

Chapter 6 Data exploring anD analysis

267

 Row Deletion

Pandas provides the df.drop() method to delete rows using the label

index, as shown in Listing 6-21.

Listing 6-21. Deleting Rows from a Data Frame

In [138]: print (data)

 print ('\n')

 data = data.drop('Omar')

 print (data)

 Exploring and Analyzing a Data Frame

Pandas provides various methods for analyzing data in a data frame.

The .describe() method is used to generate descriptive statistics that

summarize the central tendency, dispersion, and shape of a data set’s

distribution, excluding NaN values.

DataFrame.describe(percentiles=None,include=None, exclude=None)

[source]

DataFrame.describe() analyzes both numeric and object series, as

well as data frame column sets of mixed data types. The output will vary

depending on what is provided. Listing 6-22 analyzes the Age, Salary,

Chapter 6 Data exploring anD analysis

268

Height, and Weight attributes in a data frame. It also shows the mean, max,

min, standard deviation, and quantiles of all attributes. However, Salwa’s

Age is missing; you get the full description of Age attributes excluding

Salwa’s data.

Listing 6-22. Creating a Data Frame with Five Attributes

In [61]: print (df1)

data = {'Age' : pd.Series([30, 25, 44,],

index=['Ahmed', 'Omar', 'Ali']),

'Salary' : pd.Series([25000, 17000, 30000, 12000],

index=['Ahmed', 'Omar', 'Ali',

'Height' : pd.Series([160, 154, 175, 165],

index=['Ahmed', 'Omar', 'Ali', 'Salwa'

'Weight' : pd.Series([85, 70, 92, 65], index=['Ahmed', 'Omar',

'Ali', 'Salwa']),

'Gender' : pd.Series(['Male', 'Male', 'Male', 'Female'],

index=['Ahmed', 'Omar',

data = pd.DataFrame(data)

print (data)

print("\n")

df2 = pd.DataFrame([[42, 31000, 170, 80, 'Female']], columns

=['Age','Salary','Height'

 , index=['Mona'])

data = data.append(df2)

print (data)

Chapter 6 Data exploring anD analysis

269

Applying the data.describe() method, you get the full description

of all attributes except the Gender attribute because of its string data

type. You can enforce implementation of all attributes by using the

include='all' method attribute. Also, you can apply the analysis to a

specific pattern, for example, to the Salary pattern only, which finds

the mean, min, max, std, and quantiles of all employees’ salaries. See

Listing 6-23.

Listing 6-23. Analyzing a Data Frame

In [63]: data.describe()

Chapter 6 Data exploring anD analysis

270

In [64]: data.describe(include='all')

In [66]: data.Salary.describe()

Listing 6-24 includes only the numeric columns in a data frame’s

description.

Chapter 6 Data exploring anD analysis

271

Listing 6-24. Analyzing Only Numerical Patterns

In [67]: data.describe(include=[np.number])

Listing 6-25 includes only string columns in a data frame’s description.

Listing 6-25. Analyzing String Patterns Only (Gender)

In [68]: data.describe(include=[np.object])

In [70]: data.describe(exclude=[np.number])

Chapter 6 Data exploring anD analysis

272

You can measure overweight employee by calculating the optimal weight

and comparing this with their recorded weight, as shown in Listing 6-26.

Listing 6-26. Checking the Weight Optimality

In [71]: data

In [75]: OptimalWeight = data['Height']- 100

 OptimalWeight

In [93]:unOptimalCases = data['Weight'] <= OptimalWeight

unOptimalCases

Chapter 6 Data exploring anD analysis

273

 Panel Data Structures

As mentioned earlier, a panel is a three-dimensional data structure like a

three-dimensional array.

 Creating a Panel

Pandas creates a panel using the constructor pandas.Panel(data, items,

major_axis, minor_axis, dtype, copy). The panel can be created from

a dictionary of data frames and narrays. The data can take various forms,

such as ndarray, series, map, lists, dictionaries, constants, and also another

data frames.

The following Python script creates an empty panel:

#creating an empty panel

import pandas as pd

p = pd.Panel ()

Listing 6-27 creates a panel with three dimensions.

Listing 6-27. Creating a Panel with Three Dimensions

In [143]: # creating an empty panel

 import pandas as pd

 import numpy as np

 data = np.random.rand(2,4,5)

 Paneldf = pd.Panel(data)

 print (Paneldf)

Chapter 6 Data exploring anD analysis

274

 Accessing Data from a Panel with a Position

Listing 6-28 creates a panel and fills it with random data, where the

first item in the panel is a 4x3 array and the second item is a 4x2 array

of random values. For the Item2 column, two values are NaN since its

dimension is 4x2. You can also access data from a panel using item labels,

as shown in Listing 6-28.

Listing 6-28. Selecting and Displaying Panel Items

In [147]: # creating an empty panel

import pandas as pd

import numpy as np

data = {'Item1' : pd.DataFrame(np.random.randn(4, 3)),

 'Item2' : pd.DataFrame(np.random.randn(4, 2))}

Paneldf = pd.Panel(data)

print (Paneldf['Item1'])

print ("\n")

print (Paneldf['Item2'])

Python displays the panel items in a data frame with two dimensions,

as shown previously. Data can be accessed using the method panel.

major_axis(index) and also using the method panel.minor_

axis(index). See Listing 6-29.

Chapter 6 Data exploring anD analysis

275

Listing 6-29. Selecting and Displaying a Panel with Major and

Minor Dimensions

In [149]: print (Paneldf.major_xs(1))

In [150]: print (Paneldf.minor_xs(1))

 Exploring and Analyzing a Panel

Once you have a panel, you can make statistical analysis on the

maintained data. In Listing 6-30, you can see two groups of employees,

each of which has five attributes maintained in a panel called P. You

implement the .describe() method for Group1, as well as for the Salary

attribute in this group.

Listing 6-30. Panel Analysis

In [104]: import pandas as pd

data1 = {'Age' : pd.Series([30, 25, 44,], index=['Ahmed',

'Omar', 'Ali']),

'Salary' : pd.Series([25000, 17000, 30000, 12000],

index=['Ahmed', 'Omar', 'Ali', 'Salwa']),

'Height' : pd.Series([160, 154, 175, 165], index=['Ahmed',

'Omar', 'Ali', 'Salwa']),

Chapter 6 Data exploring anD analysis

276

'Weight' : pd.Series([85, 70, 92, 65], index=['Ahmed', 'Omar',

'Ali', 'Salwa']),

'Gender' : pd.Series(['Male', 'Male', 'Male', 'Female'],

index=['Ahmed', 'Omar', 'Ali', 'Salwa'])}

data2 = {'Age' : pd.Series([24, 19, 33,25], index=['Ziad',

'Majid', 'Ayman', 'Ahlam']),

'Salary' : pd.Series([17000, 7000, 22000, 21000],

index=['Ziad', 'Majid', 'Ayman', 'Ahlam']),

'Height' : pd.Series([170, 175, 162, 177], index=['Ziad',

'Majid', 'Ayman', 'Ahlam']),

'Weight' : pd.Series([77, 84, 74, 90], index=['Ziad', 'Majid',

'Ayman', 'Ahlam']),

'Gender' : pd.Series(['Male', 'Male', 'Male', 'Female'],

index=['Ziad', 'Majid', 'Ayman', 'Ahlam'])}

data = {'Group1': data1, 'Group2': data2}

p = pd.Panel(data)

In [106]: p['Group1'].describe()

In [107]: p['Group1']['Salary'].describe()

Chapter 6 Data exploring anD analysis

277

 Data Analysis

As indicated earlier, Pandas provides numerous methods for data analysis.

The objective in this section is to get familiar with the data and summarize

its main characteristics. Also, you can define your own methods for specific

statistical analyses.

 Statistical Analysis

Most of the following statistical methods were covered earlier with practical

examples of the three main data collections: series, data frames, and panels.

• df.describe(): Summary statistics for numerical

columns

• df.mean(): Returns the mean of all columns

• df.corr(): Returns the correlation between columns

in a data frame

• df.count(): Returns the number of non-null values in

each data frame column

• df.max(): Returns the highest value in each column

• df.min(): Returns the lowest value in each column

• df.median(): Returns the median of each column

• df.std(): Returns the standard deviation of each

column

Listing 6-31 creates a data frame with six columns and ten rows.

Listing 6-31. Creating a Data Frame

In [11]: import pandas as pd

import numpy as np

Chapter 6 Data exploring anD analysis

278

Number = [1,2,3,4,5,6,7,8,9,10]

Names = ['Ali Ahmed','Mohamed Ziad','Majid Salim','Salwa

Ahmed', 'Ahlam Mohamed', 'Omar Ali', 'Amna Mohammed','Khalid

Yousif', 'Safa Humaid', 'Amjad Tayel']

City = ['Fujairah','Dubai','Sharjah','AbuDhabi','Fujairah','Dub

ai', 'Sharja ', 'AbuDhabi','Sharjah','Fujairah']

columns = ['Number', 'Name', 'City']

dataset= pd.DataFrame({'Number': Number , 'Name': Names,

'City': City}, columns = columns)

Gender= pd.DataFrame({'Gender':['Male','Male','Male','Female',

'Female', 'Male', 'Female', 'Male','Female', 'Male']})

Height = pd.DataFrame(np.random.randint(120,175, size=(12, 1)))

Weight = pd.DataFrame(np.random.randint(50,110, size=(12, 1)))

dataset['Gender']= Gender

dataset['Height']= Height

dataset['Weight']= Weight

dataset.set_index('Number')

Chapter 6 Data exploring anD analysis

279

The Python script and examples in Listing 6-32 show the summary

of height and weight variables, the mean values of height and weight,

the correlation between the numerical variables, and the count of

all records in the data set. The correlation coefficient is a measure

that determines the degree to which two variables’ movements are

associated. The most common correlation coefficient, generated by the

Pearson correlation, may be used to measure the linear relationship

between two variables. However, in a nonlinear relationship, this

correlation coefficient may not always be a suitable measure of

dependence. The range of values for the correlation coefficient is -1.0

to 1.0. In other words, the values cannot exceed 1.0 or be less than -1.0,

whereby a correlation of -1.0 indicates a perfect negative correlation,

and a correlation of 1.0 indicates a perfect positive correlation. The

correlation coefficient is denoted as r. If its value greater than zero, it’s

a positive relationship; while if the value is less than zero, it’s a negative

relationship. A value of zero indicates that there is no relationship

between the two variables.

As shown, there is a weak negative correlation (-0.301503) between the

height and width of all members in the data set. Also, the initial stats show

that the height has the highest deviation; in addition, the 75th quantile of

the height is equal to 159.

Listing 6-32. Summary and Statistics of Variables

In [186]: # Summary statistics for numerical columns

print (dataset.describe())

Chapter 6 Data exploring anD analysis

280

In [187]: print (dataset.mean()) # Returns the mean of all

columns

In [188]: # Returns the correlation between columns in a

DataFrame

print (dataset.corr())

In [189]: # Returns the number of non-null values in each

DataFrame column

print (dataset.count())

Chapter 6 Data exploring anD analysis

281

In [190]: # Returns the highest value in each column

print (dataset.max())

In [191]: # Returns the lowest value in each column

print (dataset.min())

In [192]: # Returns the median of each column

print (dataset.median())

In [193]: # Returns the standard deviation of each column

print (dataset.std())

Chapter 6 Data exploring anD analysis

282

 Data Grouping

You can split data into groups to perform more specific analysis over

the data set. Once you perform data grouping, you can compute

summary statistics (aggregation), perform specific group operations

(transformation), and discard data with some conditions (filtration). In

Listing 6-33, you group data using City and find the count of genders per

city. In addition, you group the data set by city and display the results,

where for example rows 1 and 5 are people from Dubai. You can use

multiple grouping attributes. You can group the data set using City and

Gender. The retrieved data shows that, for instance, Fujairah has females

(row 4) and males (rows 0 and 9).

Listing 6-33. Data Grouping

In [3]: dataset.groupby('City')['Gender'].count()

The following output shows that we have 2 students from Abu dhabi, 2

from Dubai, 3 from Fujairah and 3 from Sharjah groupped by gender.

In [4]: print (dataset.groupby('City').groups)

In [5]: print (dataset.groupby(['City','Gender']).groups)

Chapter 6 Data exploring anD analysis

283

 Iterating Through Groups

You can iterate through a specific group, as shown in Listing 6-34. When

you iterate through the gender, it should be clear that by default the

groupby object has the same name as the group name.

Listing 6-34. Iterating Through Grouped Data

In [7]: grouped = dataset.groupby('Gender')

 for name,group in grouped:

 print (name)

 print (group)

 print ("\n")

You can also select a specific group using the get_group() method, as

shown in Listing 6-35 where you group data by gender and then select only

females.

Chapter 6 Data exploring anD analysis

284

Listing 6-35. Selecting a Single Group

In [9]: grouped = dataset.groupby('Gender')

 print (grouped.get_group('Female'))

 Aggregations

Aggregation functions return a single aggregated value for each

group. Once the groupby object is created, you can implement various

functions on the grouped data. In Listing 6-36, you calculate the mean

and size of height and weight for both males and females. In addition,

you calculate the summation and standard deviations for both patterns

of males and females.

Listing 6-36. Data Aggregation

In [18]: # Aggregation

 grouped = dataset.groupby('Gender')

 print (grouped['Height'].agg(np.mean))

 print ("\n")

 print (grouped['Weight'].agg(np.mean))

 print ("\n")

 print (grouped.agg(np.size))

 print ("\n")

 print (grouped['Height'].agg([np.sum, np.mean,

np.std]))

Chapter 6 Data exploring anD analysis

285

 Transformations

Transformation on a group or a column returns an object that is

indexed the same size as the one being grouped. Thus, the transform

should return a result that is the same size as that of a group chunk.

See Listing 6-37.

Listing 6-37. Creating the Index

In [26]: dataset = dataset.set_index(['Number'])

 print (dataset)

Chapter 6 Data exploring anD analysis

286

In Listing 6-38, you group data by Gender, then implement the function

lambda x: (x - x.mean()) / x.std()*10, and display results for both

height and weight. The lambda operator or lambda function is a way to

create a small anonymous function, i.e., a function without a name. This

function is throwaway function; in other words, it is just needed where it

has been created.

Listing 6-38. Transformation

In [28]: grouped = dataset.groupby('Gender')

 score = lambda x: (x - x.mean()) / x.std()*10

 print (grouped.transform(score))

 Filtration

Python provides direct filtering for data. In Listing 6-39, you applied

filtering by city, and the return cities appear more than three times in the

data set.

Listing 6-39. Filtration

In [30]: print (dataset.groupby('City').filter(lambda x: len(x)

>= 3))

Chapter 6 Data exploring anD analysis

287

 Summary

This chapter covered how to explore and analyze data in different

collection structures. Here is a list of what you just studied in this

chapter:

 – How to implement Python techniques to explore and

analyze a series of data, create a series, access data from

series with the position, and apply statistical methods on a

series.

 – How to explore and analyze data in a data frame, create a

data frame, and update and access data. This included

column and row selection, addition, and deletion, as well

as applying statistical methods on a data frame.

 – How to apply statistical methods on a panel to explore and

analyze its data.

 – How to apply statistical analysis on the derived data from

implementing Python data grouping, iterating through

groups, aggregations, transformations, and filtration

techniques.

The next chapter will cover how to visualize data using numerous

plotting packages and much more.

Chapter 6 Data exploring anD analysis

288

 Exercises and Answers

 A. Create a data frame called df from the following

tabular data dictionary that has these index labels:

['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h',

'i', 'j'].

Answer:

You should import both the Pandas and Numpy libraries.

import numpy as np

import pandas as pd

You must create a dictionary and list of labels and

then call the data frame method and assign the

labels list as an index, as shown in Listing 6-40.

Listing 6-40. Creating a Tabular Data Frame

In [5]: import numpy as np

 import pandas as pd

 import matplotlib as mpl

Chapter 6 Data exploring anD analysis

289

data = { 'Animal': ['cat', 'cat', 'snake', 'dog', 'dog',

 'cat', 'snake', 'cat', 'dog', 'dog'],

'Age': [2.5, 3, 0.5, np.nan, 5, 2, 4.5, np.nan, 7, 3],

'Visits': [1, 3, 2, 3, 2, 3, 1, 1, 2, 1],

'Priority': ['yes', 'yes', 'no', 'yes', 'no', 'no', 'no',

'yes', 'no', 'no']}

labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']

#Create a DataFrame df from this dictionary data which has the

index labels.

df = pd.DataFrame(data, index = labels, columns=['Animal',

'Age', 'Priority', 'Visits'])

print (df)

 B. Display a summary of the data frame’s basic

information.

You can use df.info() and df.describe() to get

a full description of your data set, as shown in

Listing 6-41.

Chapter 6 Data exploring anD analysis

290

Listing 6-41. Data Frame Summary

In [6]: df.info()

In [7]: df.describe()

 C. Return the first three rows of the data frame df.

Listing 6-42 shows the use of df.iloc[:3] and df.

head(3) to retrieve the first n rows of the data frame.

Chapter 6 Data exploring anD analysis

291

Listing 6-42. Selecting a Specific n Rows

In [12]: df.head(3)

In [13]: df.iloc[:3]

 D. Select just the animal and age columns from the

data frame df.

The Python data frame loc() method is used

to retrieve the specific pattern df.loc[: ,

['Animal', 'Age']]. In addition, an array form

retrieval can be used too with df[['Animal',

'Age']] . See Listing 6-43.

Listing 6-43. Slicing Data Frame

In [16]: df.loc[:,['Animal', 'Age']]

 # or

 df [['Animal', 'Age']]

Chapter 6 Data exploring anD analysis

292

 E. Count the visit priority per animal.

In [8]: df.groupby('Priority')['Animal'].count()

 F. Find the mean of the animals’ ages.

In [10]: df.groupby('Animal')['Age'].mean()

 G. Display a summary of the data set. See Listing 6-44.

Listing 6-44. Data Set Summary

In [13]: df.groupby('Animal')['Age'].describe()

Chapter 6 Data exploring anD analysis

293© Dr. Ossama Embarak 2018
O. Embarak, Data Analysis and Visualization Using Python,
https://doi.org/10.1007/978-1-4842-4109-7_7

CHAPTER 7

Data Visualization

Python provides numerous methods for data visualization. Various Python

libraries can be used for data visualization, such as Pandas, Seaborn,

Bokeh, Pygal, and Ploty. Python Pandas is the simplest method for basic

plotting. Python Seaborn is great for creating visually appealing statistical

charts that include color. Python Bokeh works great for more complicated

visualizations, especially for web-based interactive presentations. Python

Pygal works well for generating vector and interactive files. However, it

does not have the flexibility that other methods do. Python Plotly is the

most useful and easiest option for creating highly interactive web-based

visualizations.

Bar charts are an essential visualization tool used to compare values

in a variety of categories. A bar chart can be vertically or horizontally

oriented by adjusting the x- and y-axes, depending on what kind of

information or categories the chart needs to present. This chapter

demonstrates the use and implementation of various visualization tools;

the chapter will use the salaries.csv file shown in Figure 7-1 as the data

set for plotting purposes.

294

 Direct Plotting

Pandas is a Python library with data frame features that supplies built-

in options for plotting visualizations in a two-dimensional tabular style.

In Listing 7-1, you read the Salaries data set and create some vectors of

variables, which are rank, discipline, phd, service, sex, and salary.

Listing 7-1. Reading the Data Set

In [3]: import pandas as pd

 dataset = pd.read_csv("./Data/Salaries.csv")

 rank = dataset['rank']

Figure 7-1. Salaries data set

CHAPTER 7 DATA VISUALIZATION

295

 discipline = dataset['discipline']

 phd = dataset['phd']

 service = dataset['service']

 sex = dataset['sex']

 salary = dataset['salary']

 dataset.head()

 Line Plot

You can use line plotting as shown in Listing 7-2. It’s important to ensure

the data units, such as the phd, service, and salary variables, are used for

plotting. However, only the salaries are visible, while the phd and service

information is not clearly displayed on the plot. This is because the

numerical units in the salaries are in the hundreds of thousands, while the

phd and services information is in very small units.

CHAPTER 7 DATA VISUALIZATION

296

Listing 7-2. Visualizing Patterns with High Differences in Numerical

Units

In [5]: dataset[["rank", "discipline","phd","service", "sex",

"salary"]].plot()

Let’s visualize more comparable units such as the phd and services

information, as shown in Listing 7-3. You can observe the correlation

between phd and services over the years, except from age 55 up to 80,

where services decline, which means that some people left the service at

the age of 55 and older.

Listing 7-3. Visualizing Patterns with Close Numerical Units

 In [6]: dataset[["phd","service"]].plot()

CHAPTER 7 DATA VISUALIZATION

297

In Listing 7-4, you are grouping data by service and summarizing

the salaries per service category. Then you sort the derived data set in

descending order according to the salaries. Finally, you plot the sorted

data set using a bar chart.

Listing 7-4. Visualizing Salaries per Service Category

In [4]: dataset1 = dataset.groupby(['service']).sum()

 dataset1.sort_values("salary", ascending = False,

inplace=True)

 dataset1.head()

CHAPTER 7 DATA VISUALIZATION

298

In [8]: dataset1["salary"].plot.bar()

You can see that most people serve approximately 19 years, which is

why the highest accumulated salary is from this category.

 Bar Plot

Listing 7-5 shows how to plot the first ten records of phd and services,

and you can add a title as well. To add a title to the chart, you need to use

.bar(title="Your title").

Listing 7-5. Bar Plotting

In [9]: dataset[['phd', 'service']].head(10).plot.bar()

CHAPTER 7 DATA VISUALIZATION

299

In [11]: dataset[['phd', 'service']].head(10).plot.bar

(title="Ph.D. Vs Service\n 2018")

CHAPTER 7 DATA VISUALIZATION

300

In [12]: dataset[['phd', 'service']].head(10).plot.bar

(title="Ph.D. Vs Service\n 2018" , color=['g','red'])

 Pie Chart

Pie charts are useful for comparing parts of a whole. They do not show

changes over time. Bar graphs are used to compare different groups or to

track changes over time. However, when trying to measure change over

time, bar graphs are best when the changes are larger. In addition, a pie

chart is useful for comparing small variables, but when it comes to a large

number of variables, it falls short. Listing 7-6 compares the salary package

of ten professionals from the Salaries data set.

CHAPTER 7 DATA VISUALIZATION

301

Listing 7-6. Pie Chart

In [13]: dataset["salary"].head(10).plot.pie(autopct='%.2f')

 Box Plot

Box plotting is used to compare variables using some statistical values.

The comparable variables should be of the same data units; Listing 7-7

shows that when you compare phd and salary, it produces improper

figures and does not provide real comparison information since the

salary numerical units are much higher than the phd numerical values.

Plotting phd and services shows that the median and quantiles of phd

are higher than the median and quantiles of the service information;

in addition, the range of phd is wider than the range of service

information.

CHAPTER 7 DATA VISUALIZATION

302

Listing 7-7. Box Plotting

In [14]: dataset[["phd","salary"]].head(100).plot.box()

In [15]: dataset[["phd","service"]].plot.box()

CHAPTER 7 DATA VISUALIZATION

303

 Histogram Plot

A histogram can be used to represent a specific variable or set of

variables. Listing 7-8 plots 20 records of the salaries variables; it

shows that salary packages of about 135,000 are the most frequent in

this data set.

Listing 7-8. Histogram Plotting

In [16]: dataset["salary"].head(20).plot.hist()

 Scatter Plot

A scatter plot shows the relationship between two factors of an experiment

(e.g. phd and service). A trend line is used to determine positive, negative,

or no correlation. See Listing 7-9.

CHAPTER 7 DATA VISUALIZATION

304

Listing 7-9. Scatter Plotting

In [17]: dataset.plot(kind='scatter', x='phd', y='service',

title='Popuation vs area and density\n 2018', s=0.9)

 Seaborn Plotting System

The Python Seaborn library provides various plotting representations for

visualizing data. A strip plot is a scatter plot where one of the variables

is categorical. Strip plots can be combined with other plots to provide

additional information. For example, a box plot with an overlaid strip plot

is similar to a violin plot because some additional information about how

the underlying data is distributed becomes visible. Seaborn’s swarm plot

is virtually identical to a strip plot except that it prevents data points from

overlapping.

CHAPTER 7 DATA VISUALIZATION

305

 Strip Plot

Listing 7-10 uses strip plotting to display data per salary category.

Listing 7-10. Simple Strip Plot

In [3]: # Simple stripplot sns.stripplot(x =

dataset['salary'])

In [4]: # Stripplot over categories

sns.stripplot(x = dataset['sex'], y= dataset['salary'],

data=dataset);

CHAPTER 7 DATA VISUALIZATION

306

The previous example visualizes the salary variable per gender.

You can visualize the data vertically or horizontally using Listing 7-11,

which presents two disciplines, A and B. Discipline B has a bigger range

and higher packages compared to discipline A.

Listing 7-11. Strip Plot with Vertical and Horizontal Visualizing

In [5]: # Stripplot over categories

sns.stripplot(x = dataset['discipline'], y =

dataset['salary'], data=dataset, jitter=1)

CHAPTER 7 DATA VISUALIZATION

307

In [6]: # Stripplot over categories Horizontal

sns.stripplot(x= dataset['salary'], y = dataset['discipline'],

data=dataset, jitter=True);

CHAPTER 7 DATA VISUALIZATION

308

You can visualize data in a strip plot per category; Listing 7-12 uses

the assistance prof, associate prof, and full professor categories. The hue

attribute is used to determine the legend attribute.

Listing 7-12. Strip Plot per Category

In [7]: # Stripplot over categories

sns.stripplot(x = dataset['rank'], y= dataset['salary'],

data=dataset, jitter=True);

In [8]: # Add hue to the graph

 # Stripplot over categories

 sns.stripplot(x ='sex', y= 'salary', hue='rank',

data=dataset, jitter=True)

CHAPTER 7 DATA VISUALIZATION

309

 Box Plot

You can combine a box plot and strip plot to give more information on the

generated plot (see Listing 7-13). As shown, the Male category has a higher

median salary, maximum salary, and range compared to the Female

category.

Listing 7-13. Combined Box Plot and Strip Plot Visualization

In [10]: # Draw data on top of boxplot

 sns.boxplot(x = 'salary', y ='sex', data=dataset,

whis=np.inf)

 sns.stripplot(x = 'salary', y ='sex', data=dataset,

jitter=True, color='0.02')

CHAPTER 7 DATA VISUALIZATION

310

In [13]: # box plot salaries

 sns.boxplot(x = dataset['salary'])

CHAPTER 7 DATA VISUALIZATION

311

In [14]: # box plot salaries

 sns.boxplot(x = dataset['salary'], notch=True)

In [15]: # box plot salaries

 sns.boxplot(x = dataset['salary'], whis=2)

CHAPTER 7 DATA VISUALIZATION

312

In [16]: # box plot per rank

 sns.boxplot(x = 'rank', y = 'salary', data=dataset)

In [17]: # box plot per rank

sns.boxplot(x = 'rank', y = 'salary', hue='sex', data=dataset,

palette='Set3')

CHAPTER 7 DATA VISUALIZATION

313

In [18]: # box plot per rank

 sns.boxplot(x = 'rank', y = 'salary', data=dataset)

 sns.swarmplot(x = 'rank', y = 'salary', data=dataset,

color='0.25')

Combined Box Plot and Strip Plot Visualization as shown in below figure.

 Swarm Plot

A swarm plot is used to visualize different categories; it gives a clear

picture of a variable distribution against other variables. For instance,

the salary distribution per gender and per profession indicates that the

male professors have the highest salary range. Most of the males are

full professors, then associate, and then assistant professors. There are

more male professors than female professors, but there are more female

associate professors than male associate professors. See Listing 7-14.

Listing 7-14. Swarm ploting of salary against gender

In [11]: # swarmplot

sns.swarmplot(x ='sex', y= 'salary', hue='rank', data=dataset,

palette="Set2", dodge=True)

CHAPTER 7 DATA VISUALIZATION

314

In [12]: # swarmplot

sns.swarmplot(x ='sex', y= 'salary', hue='rank', data=dataset,

palette="Set2", dodge=False)

CHAPTER 7 DATA VISUALIZATION

315

 Joint Plot

A joint plot combines more than one plot to visualize the selected patterns

(see Listing 7-15).

Listing 7-15. Joint Plot Visualization

In [22]: sns.jointplot(x = 'salary', y = 'service',

data=dataset)

CHAPTER 7 DATA VISUALIZATION

316

In [24]: sns.jointplot('salary', 'service', data=dataset,

kind='reg')

CHAPTER 7 DATA VISUALIZATION

317

In [25]: sns.jointplot('salary', 'service', data=dataset,

kind='hex')

CHAPTER 7 DATA VISUALIZATION

318

In [26]: sns.jointplot('salary', 'service', data=dataset,

kind='kde')

CHAPTER 7 DATA VISUALIZATION

319

In [27]: from scipy.stats import spearmanr sns.

jointplot('salary', 'service', data=dataset, stat_func=

spearmanr)

CHAPTER 7 DATA VISUALIZATION

320

In [31]: sns.jointplot('salary', 'service',

 data=dataset).plot_joint(sns.kdeplot, n_levels=6)

CHAPTER 7 DATA VISUALIZATION

321

In [32]: sns.jointplot('salary', 'service',

 data=dataset).plot_joint(sns.kdeplot,n_levels=6).

plot_marginals(sns.rugplot)

 Matplotlib Plot

Matplotlib is a Python 2D plotting library that produces high-quality

figures in a variety of hard-copy formats and interactive environments

across platforms. In Matplotlib, you can add features one by one, such as

adding a title, labels, legends, and more.

 Line Plot

In inline plotting, you should determine the x- and y-axes, and then you

can add more features such as a title, a legend, and more (see Listing 7-16).

CHAPTER 7 DATA VISUALIZATION

322

Listing 7-16. Matplotlib Line Plotting

In [2]: import matplotlib.pyplot as plt

 x =[3,6,8,11,13,14,17,19,21,24,33,37]

 y = [7.5,12,13.2,15,17,22,24,37,34,38.5,42,47]

 x2 =[3,6,8,11,13,14,17,19,21,24,33]

 y2 = [50,45,33,24,21.5,19,14,13,10,6,3]

 plt.plot(x,y, label='First Line')

 plt.plot(x2, y2, label='Second Line')

 plt.xlabel('Plot Number')

 plt.ylabel('Important var')

 plt.title('Interesting Graph\n2018 ')

 plt.yticks([0,5,10,15,20,25,30,35,40,45,50],

 ['0B','5B','10B','15B','20B','25B','30B','35B',

'40B','45B','50

 B'])

 plt.legend()

 plt.show()

CHAPTER 7 DATA VISUALIZATION

323

In [13]: plt.plot(phd, label='Ph.D.')

 plt.plot(service, label='service')

 plt.xlabel('Ph.D./service')

 plt.ylabel('Frequency')

 plt.title('Ph.D./service\nDistribution')

 plt.legend()

 plt.show()

In [15]: plt.plot(phd, service, 'bo', label="Ph.D. Vs

services", lw=10)

 plt.grid()

 plt.legend()

 plt.xlabel('Ph.D')

 plt.ylabel('service')

 plt.title('Ph.D./salary\nDistribution')

 plt.yscale('log')

CHAPTER 7 DATA VISUALIZATION

324

 Bar Chart

Listing 7-17 shows how to create a bar chart to present students registered

for courses; there are two students who are registered for four courses.

Listing 7-17. Matplotlib Bar Chart Plotting

In [3]: Students = [2,4,6,8,10]

 Courses = [4,5,3,2,1]

 plt.bar(Students,Courses, label="Students/Courses")

 plt.xlabel('Students ')

 plt.ylabel('Courses')

 plt.title('Students Courses Data\n 2018')

 plt.legend()

 plt.show()

CHAPTER 7 DATA VISUALIZATION

325

In [4]: Students = [2,4,6,8,10]

 Courses = [4,5,3,2,3]

 stds = [3,5,7,9,11]

 Projects = [1,2,4,3,2]

 plt.bar(Students, Courses, label="Courses", color='r')

 plt.bar(stds, Projects, label="Projects", color='c')

 plt.xlabel('Students')

 plt.ylabel('Courses/Projects')

 plt.title('Students Courses and Projects Data\n 2018')

 plt.legend()

 plt.show()

CHAPTER 7 DATA VISUALIZATION

326

 Histogram Plot

Listing 7-18 shows how to create a histogram showing age frequencies;

most people in the data set are between 30 and 40. In addition, you can

create a histogram of the years of service and the number of PhDs.

Listing 7-18. Matplotlib Histogram Plotting

In [5]: Ages = [22.5, 10, 55, 8, 62, 45, 21, 34, 42, 45, 99,

75, 82,

 77, 55, 43, 66, 66, 78, 89, 101, 34, 65, 56,

25, 34,

 52, 25, 63, 37, 32]

 binsx = [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110]

 plt.hist(Ages, bins=binsx, histtype='bar', rwidth=0.7)

CHAPTER 7 DATA VISUALIZATION

327

 plt.xlabel('Ages')

 plt.ylabel('Frequency')

 plt.title('Ages frequency for sample pouplation\n 2018')

 plt.show()

In [18]: plt.hist(service, bins=30, alpha=0.4, rwidth=0.8,

color='green', label='service')

 plt.hist(phd, bins=30, alpha=0.4, rwidth=0.8,

color='red', label='phd')

 plt.xlabel('Services/phd')

 plt.ylabel('Distribution')

 plt.title('Services/phd\n 2018')

 plt.legend(loc='upper right')

 plt.show()

CHAPTER 7 DATA VISUALIZATION

328

Visualize service years since Ph.D. had attained.

In [19]: plt.hist(service, bins=10, alpha=0.4, rwidth=0.8,

color='green', label='service')

 plt.hist(phd, bins=10, alpha=0.4, rwidth=0.8,

color='red', label='phd')

 plt.xlabel('Services/phd')

 plt.ylabel('Distribution')

 plt.title('Services/phd\n 2018')

 plt.legend(loc='upper right')

 plt.show()

CHAPTER 7 DATA VISUALIZATION

329

In [21]: plt.hist(salary, bins=100)

 plt.show()

CHAPTER 7 DATA VISUALIZATION

330

 Scatter Plot

Listing 7-19 shows how to create a scatter plot to present students

registered for courses, where four students are registered for five courses.

Listing 7-19. Matplotlib Scatter Plot

In [7]: Students = [2,4,6,8,6,10, 6] Courses = [4,5,3,2,4, 3, 4]

 plt.scatter(Students,Courses, label='Students/Courses',

color='green', marker='*', s=75)

 plt.xlabel('Students')

 plt.ylabel('Courses')

 plt.title('Students courses\n Spring 2018')

 plt.legend()

 plt.show()

CHAPTER 7 DATA VISUALIZATION

331

In [16]: plt.scatter(rank,salary, label='salary/rank',

color='g', marker='+', s=50)

 plt.xlabel('rank') plt.ylabel('salary')

 plt.title('salary/rank\n Spring 2018')

 plt.legend() plt.show()

In [20]: plt.scatter(phd,salary, label='Salary/phd', color='g',

marker='+', s=80)

 plt.xlabel('phd') plt.ylabel('salary')

 plt.title('phd/ salary\n Spring 2018')

 plt.legend() plt.show()

CHAPTER 7 DATA VISUALIZATION

332

 Stack Plot

Stack plots present the frequency of every activity, such as the frequency

of sleeping, eating, working, and playing per day (see Listing 7-20). In

this data set, on day 2, a person spent eight hours sleeping, three hours in

eating, eight hours working, and five hours playing.

Listing 7-20. Persons Weekly Spent Time per activities using

Matplotlib Stack Plot

In [9]: days = [1,2,3,4,5]

 sleeping = [7,8,6,11,7]

 eating = [2,3,4,3,2]

 working = [7,8,7,2,2]

 playing = [8,5,7,8,13]

 plt.plot([],[], color='m', label='Sleeping')

 plt.plot([],[], color='c', label='Eating')

 plt.plot([],[], color='r', label='Working')

CHAPTER 7 DATA VISUALIZATION

333

 plt.plot([],[], color='k', label='Playing')

 plt.stackplot(days, sleeping, eating, working ,

playing, colors=['m','c', 'r', 'k'])

 plt.xlabel('days')

 plt.ylabel('Activities')

 plt.title('Persons Weekly Spent Time per activities\n

Spring 2018')

 plt.legend()

 plt.show()

CHAPTER 7 DATA VISUALIZATION

334

 Pie Chart

In Listing 7-21, you are using the explode attribute to slice out a specific

activity. After that, you can add the gender and title to the pie chart.

Listing 7-21. Persons Weekly Spent Time per activities using

Matplotlib Pie Chart

In [10]: days = [1,2,3,4,5]

 sleeping = [7,8,6,11,7]

 eating = [2,3,4,3,2]

 working = [7,8,7,2,2]

 playing = [8,5,7,8,13]

 slices = [39,14,26,41]

 activities = ['sleeping', 'eating', 'working',

'playing']

 cols = ['c','m','r', 'b','g']

 plt.pie(slices,

 labels= activities,

 colors= cols,

 startangle=100,

 shadow=True,

 explode = (0.0,0.0,0.09,0),

 autopct = '%1.1f%%')

 plt.title('Persons Weekly Spent Time per activities\n

Spring 2018')

 plt.legend()

 plt.show()

CHAPTER 7 DATA VISUALIZATION

335

 Summary

This chapter covered how to plot data from different collection structures.

You learned the following:

 – How to directly plot data from a series, data frame, or panel

using Python plotting tools such as line plots, bar plots, pie

charts, box plots, histogram plots, and scatter plots

 – How to implement the Seaborn plotting system using

strip plotting, box plotting, swarm plotting, and joint

plotting

 – How to implement Matplotlib plotting using line plots,

bar charts, histogram plots, scatter plots, stack plots, and

pie charts

The next chapter will cover the techniques you’ve studied in this book via

two different case studies; it will make recommendations, and much more.

CHAPTER 7 DATA VISUALIZATION

336

 Exercises and Answers

 1. Create 500 random temperature readings for six

cities over a season and then plot the generated data

using Matplotlib.

Answer:

See Listing 7-22.

Listing 7-22. Plotting the Temperature Data of Six Cities

In [4]: import matplotlib.pyplot as plt

 plt.style.use('classic')

 %matplotlib inline

 import numpy as np

 import pandas as pd

In [30]: # Create temperature data

 rng = np.random.RandomState(0)

 season1 = np.cumsum(rng.randn(500, 6), 0)

In [32]: # Plot the data with Matplotlib defaults

 plt.plot(season1)

 plt.legend('ABCDEF', ncol=2, loc='upper left');

CHAPTER 7 DATA VISUALIZATION

337

 2. Load the well-known Iris data set, which lists

measurements of petals and sepals of three iris

species. Then plot the correlations between each

pair using the .pairplot() method.

Answer:

See Listing 7-23.

Listing 7-23. Pair Correlations

In [33]: import seaborn as sns

 iris = sns.load_dataset("iris")

 iris.head()

 sns.pairplot(iris, hue='species', size=2.5);

CHAPTER 7 DATA VISUALIZATION

338

 3. Load the well-known Tips data set, which shows the

number of tips received by restaurant staff based on

various indicator data; then plot the percentage of

tips per bill according to staff gender.

CHAPTER 7 DATA VISUALIZATION

339

Answer:

See Listing 7-24.

Listing 7-24. First five records in the Tips dataset

In [36]: import seaborn as sns

 tips = sns.load_dataset('tips')

 tips.head()

In [37]: tips['Tips Percentage'] = 100 * tips['tip'] /

tips['total_bill']

 grid = sns.FacetGrid(tips, row="sex", col="time",

margin_titles=True)

 grid.map(plt.hist, "Tips Percentage", bins=np.

linspace(0, 40, 15));

CHAPTER 7 DATA VISUALIZATION

340

 4. Load the well-known Tips data set, which shows the

number of tips received by restaurant staff based on

various indicator data; then implement the factor

plots to visualize the total bill per day according to

staff gender.

CHAPTER 7 DATA VISUALIZATION

341

Answer:

See Listing 7-25.

Listing 7-25. Implementing Factor Plotting

In [39]: import seaborn as sns

 tips = sns.load_dataset('tips')

 with sns.axes_style(style='ticks'):

 g = sns.factorplot("day", "total_bill",

"sex", data=tips, kind="box")

 g.set_axis_labels("Bill Day", "Total Bill Amount")

CHAPTER 7 DATA VISUALIZATION

342

 5. Reimplement the previous exercise using the

Seaborn joint plot distributions.

Answer:

See Listing 7-26.

Listing 7-26. Implementing Joint Plot Distributions

In [43]: import seaborn as sns

 tips = sns.load_dataset('tips')

 with sns.axes_style('white'):

 sns.jointplot("total_bill", "tip",

data=tips, kind='hex')

CHAPTER 7 DATA VISUALIZATION

343© Dr. Ossama Embarak 2018
O. Embarak, Data Analysis and Visualization Using Python,
https://doi.org/10.1007/978-1-4842-4109-7_8

CHAPTER 8

Case Studies

This chapter covers two case studies. I will provide some brief

information about each case and then show how to gather the data

needed for analysis, how to analyze the data, and how to visualize the

data related to specific patterns.

 Case Study 1: Cause of Deaths in the United
States (1999–2015)

This study analyses the leading causes of death in the United States of

America between 1999 and 2015.

 Data Gathering

It’s important to gather a study’s data set from a reliable source;

it’s also important to use an updated and accurate data set to get

unbiased findings. The data set in this case study comes from open

data from the U.S. government, which can be accessed through

https://data.gov.

You can download it from here:

https://catalog.data.gov/dataset/age-adjusted-death-rates-

for- the-top-10-leading-causes-of-death-united-states-2013

https://data.gov
https://catalog.data.gov/dataset/age-adjusted-death-rates-for-the-top-10-leading-causes-of-death-united-states-2013
https://catalog.data.gov/dataset/age-adjusted-death-rates-for-the-top-10-leading-causes-of-death-united-states-2013

344

This case study will try to answer the following questions:

• What is the total number of records in the dataset?

• What were the causes of death in this data set?

• What was the total number of deaths in the United

States from 1999 to 2015?

• What is the number of deaths per each year from 1999

to 2015?

• Which ten states had the highest number of deaths

overall?

• What were the top causes of deaths in the United States

during this period?

 Data Analysis

Let’s first read and clean the data set.

• What is the total number of recorded death cases?

See Listing 8-1.

Listing 8-1. Cleaned Records of Death Causes in the United States

In [2]: import pandas as pd

 data = pd.read_csv("NCHS.csv")

 data.head(3)

CHAPTER 8 CASE STUDIES

345

In [3]: data.shape # 15028 rows and 6 columns

Out[3]: (15028, 6)

Remove all rows with na cases.

In [4]: data = data.dropna()

 data.shape

Out[4]: (14917, 6)

Approximately 14,917 death cases were recorded in different U.S. states.

Now let’s clean the data to find the number of death causes in the

data set.

• What were the causes of death in this dataset?

See Listing 8-2.

Listing 8-2. Unique Death Causes in the United States

In [7]: causes = data["Cause Name"].unique()

 causes

Remove All Causes from the Cause Name column.

CHAPTER 8 CASE STUDIES

346

In [8]: data = data[data["Cause Name"] !="All Causes"]

 causes = data["Cause Name"].unique()

 causes

In [9]: len(causes)

Out[9]: 16

As shown, there are 16 death causes according to the loaded data set.

Clean the data to find the unique states included in the study.

See Listing 8-3.

Listing 8-3. Unique States in the Study

In [11]: state = data["State"].unique()

 state

CHAPTER 8 CASE STUDIES

347

In [12]: data1 = data[data["State"] !="United States"]

 state = data1["State"].unique()

 state

In [13]: len(state)

Out[13]: 51

There are 51 states included in the study.

• What was the total number of deaths in the United

States from 1999 to 2015?

In [15]: data["Deaths"].sum()

Out[15]: 69279057.0

The total number of deaths during the given period

is 69,279,057.

• What is the number of deaths for each year from 1999

to 2015?

See Listing 8-4.

CHAPTER 8 CASE STUDIES

348

Listing 8-4. Study’s Death Trends per Year

In [16]: dyear= data.groupby(["Year"]).sum()

 dyear

CHAPTER 8 CASE STUDIES

349

In [18]: dyear["Deaths"].plot(title="Death per year \n

 1999- 2015")

The number of deaths declined between 2002 and 2009. Then there

was a continuous growth in the number of deaths from 2010 to 2013.

Finally, there was a sharp increase in the number of deaths in 2013

and 2014.

 Data Visualization

Plotting data gives a clear idea about patterns behind the data and helps to

make the right decisions in business.

• Which ten states had the highest number of deaths

overall?

See Listing 8-5.

CHAPTER 8 CASE STUDIES

350

Listing 8-5. Top Ten States with the Highest Number of Deaths in

the United States

In [19]: data1 = data[data["State"] !="United States"]

 dataset2 = data1.groupby("State").sum()

 dataset2.sort_values("Deaths", ascending=False ,

inplace = True)

 dataset2.head(10)

CHAPTER 8 CASE STUDIES

351

In [20]: dataset2["Deaths"].head(10).plot.bar(title= "Top ten

states with highest death number \n 1999-2015 ")

California had the highest number of deaths in the United States, with

Florida coming in second.

• What were the top causes of deaths in the United States

during this period?

See Listing 8-6.

CHAPTER 8 CASE STUDIES

352

Listing 8-6. Top Ten Causes of Death in the United States

In [21]: dataset1 = data[data["Cause Name"] !="All Causes"]

 dataset2 = dataset1.groupby("Cause Name").sum()

 dataset2.sort_values("Deaths", ascending=False ,

inplace = True)

 dataset2.head(10)

CHAPTER 8 CASE STUDIES

353

In [22]: dataset2["Deaths"].head(10).plot.bar(title="Top ten

causes of death in USA \n 1999-2015 ")

Diseases of the heart represent the biggest cause of death followed

by cancer.

 Findings

Table 8-1 summarizes the study findings.

CHAPTER 8 CASE STUDIES

354

 Case Study 2: Analyzing Gun Deaths
in the United States (2012–2014)

This study analyzes gun deaths in the United States of America between

2012 and 2014.

This case study will try to answer the following questions:

• What is the number of annual suicide gun deaths in the

United States from 2012 to 2014, by gender?

Table 8-1. Case Study 1: Findings

Investigation Question Findings

 1. What is the total number of

records in the dataset?

There were approximately 14,917 deaths

recorded in the United States.

 2. What were the causes

of death in this data set?

There are 16 causes of death according to

the study data set.

 3. What was the total number

of deaths in the United States

from 1999 to 2015?

The total number of deaths during the

given period is 69,279,057.

 4. What is the number of

deaths per year from

1999 to 2015?

From 2002 to 2009 the number of deaths

declined, then there an increase from 2010

to 2013. In 2013 and 2014, there was a

sharp increase in the number of deaths.

 5. Which ten states had the highest

number of deaths overall?

California had the most deaths in the

United States, with Florida in second place.

 6. What were the top causes of

deaths in the United States

during this period?

Diseases of the heart represent the highest

causes of death followed by cancer.

CHAPTER 8 CASE STUDIES

355

• What is the number of gun deaths by race in the United

States per 100,000 people from 2012 to 2014?

• What is the annual number of gun deaths in the United

States on average from 2012 to 2014, by cause?

• What is the percentage per 100,000 people of annual

gun deaths in the United States from 2012 to 2014, by

cause?

• What is the percentage of annual suicide gun deaths in

the United States from 2012 to 2014, by year?

 Data Gathering

The data set for this study comes from GitHub and can be accessed

here:

https://github.com/fivethirtyeight/guns-data.git

Load and clean the dataset and prepare it for processing.

See Listing 8-7.

Listing 8-7. Reading Gun Deaths in the United States (2012–2014)

Data Set

In [25]: import pandas as pd

 import numpy as np

 import matplotlib.pyplot as plt

 import seaborn as sns

 sns.set(style='white', color_codes=True)

 %matplotlib inline

CHAPTER 8 CASE STUDIES

https://github.com/fivethirtyeight/guns-data.git

356

In [26]: dataset = pd.read_csv('Death data.csv', index_col=0)

print(dataset.shape)

 dataset.index.name = 'Index'

 dataset.columns = map(str.capitalize, dataset.columns)

 dataset.head(5)

 (100798, 10)

Organize the data set by year and then by month.

In [27]: dataset_Gun = dataset

 dataset_Gun.sort_values(['Year', 'Month'],

inplace=True)

 Data Analysis

Now let’s look at the data and make some analysis.

• How many males and females are included in this

study?

CHAPTER 8 CASE STUDIES

357

 In [28]: dataset_Gun.Sex.value_counts(normalize=False)

 Out[28]: M 86349

 F 14449

 Name: Sex, dtype: int64

• How many educated females are included in this

study?

As shown here, there are 14,243 educated females

involved in this study.

Group the data set by gender.

 In [8]: dataset_byGender = dataset_Gun.groupby('Sex').

count()

 dataset_byGender

 Data Visualization

In this case study, we will try to find the answers to the numerous

questions posed earlier. Let’s get started.

• What is the number of suicide gun deaths in the United

States from 2012 to 2014, by gender?

See Listing 8-8.

CHAPTER 8 CASE STUDIES

358

Listing 8-8. Gun Death by Gender

In [29]: dataset_suicide_Gender =dataset_Gun[

 dataset_Gun["Intent"] =="Suicide"]

 dataset_suicide_Gender.Sex.value_counts

(normalize=False).plot.bar(title='Annual U.S.\\suicide

gun deaths \n 2012-2014, by gender')

It’s clear that there are huge differences between males and females.

The number of male suicides by gun is above 50,000, while the female

death rate is below 10,000, which shows how males are more likely to

commit suicide using a gun.

In [31]: dataset_byGender.plot.bar(title='Annual U.S. suicide

gun deaths \n 2012-2014, by gender')

CHAPTER 8 CASE STUDIES

359

• What is the number of gun deaths by race in the United

States per 100,000 people from 2012 to 2014?

See Listing 8-9.

Listing 8-9. Analyzing and Visualizing Gun Death Percentage by

Race

In [32]: dataset_byRace = dataset (dataset_byRace.Race.value_

counts(ascending=False)*100/100000)

CHAPTER 8 CASE STUDIES

360

The highest death rate was for white people, then black, and then

Hispanic. There are a few other races listed, but the rates are small

comparatively.

In [33]:(dataset_byRace.Race.value_counts(ascending=False)

*100/100000).plot.bar(title='Percent death toll from guns in

the United States \nfrom 2012 to 2014, by race')

• What is the number of gun deaths in the United States

on average from 2012 to 2014, by cause?

See Listing 8-10.

CHAPTER 8 CASE STUDIES

361

Listing 8-10. Visualizing Gun Death by Cause

In [14]: dataset_byRace.Intent.value_counts(sort =True,

ascending=False)

In [17]: dataset_byRace.Intent.value_counts(sort=True).plot.

bar(title='Annual number of gun deaths in the United States on

average \n from 2012 to 2014, by cause')

CHAPTER 8 CASE STUDIES

362

The figure shows a high number of suicide and homicide deaths

compared to a low number of deaths due to accidents.

• What is the percentage per 100,000 people of annual

gun deaths in the United States from 2012 to 2014, by

cause?

See Listing 8-11.

Listing 8-11. Visualizing Gun Death per 100,000 by Cause

In [40]: dataset_byRace.Intent.value_counts(ascending=False)

*100/100000

Out[40]: Suicide 63.175

 Homicide 35.176

 Accidental 1.639

 Undetermined 0.807

 Name: Intent, dtype: float64

In [41]: (dataset_byRace.Intent.value_counts(ascending=False)

*100/100000).plot.bar(title='Rate gun deaths in the U.S. per

100,000 population \n2012-2014, by race')

CHAPTER 8 CASE STUDIES

363

This shows that there are 60 suicide cases for every 100,000 people. In

addition, there are 30 homicide cases for every 100,000.

• What is the percentage of suicide gun deaths in the

United States from 2012 to 2014, by year?

See Listing 8-12.

Listing 8-12. Visualizing Gun Death by Year

In [42]: dataset_suicide=dataset[dataset["Intent"]

=="Suicide"]

datasetSuicide= dataset_suicide.Year.value_

counts(ascending=False) *100/100000

datasetSuicide.sort_values(ascending=True)

CHAPTER 8 CASE STUDIES

364

Out[42]:

2012 20.666

2013 21.175

2014 21.334

Name: Year, dtype: float64

In [43]:datasetSuicide.sort_values(ascending=True).plot.

bar(title='Percentage of annual suicide gun deaths in the

United States \nfrom 2012 to 2014, by year')

The figure shows almost the same number of suicides each year over

three years, which means that this is a regular pattern.

 Findings

Table 8-2 shows the findings.

CHAPTER 8 CASE STUDIES

365

Table 8-2. Case Study 2: Findings

Investigation Question Findings

 1. What is the number of U.S.

suicide gun deaths from 2012

to 2014, by gender?

Male suicide gun deaths is over

50,000, while females suicide gun

deaths is below 10,000, which shows

how males are more likely to commit

suicide with a gun.

 2. What is the number of gun deaths

in the United States per a 100,000

population from 2012 to 2014?

The highest number of deaths is for while

people, then black, and then Hispanic.

 3. What are the annual number of

gun deaths in the United States on

average from 2012 to 2014,

by cause?

There is a high number of suicide and

homicide deaths compared to a low

number of deaths due to accidents.

 4. What is the 100,000 percentage

of annual guns death tolls in the

United States from 2012 to 2014,

by cause?

The 100,000 percentages shows that

there are 60 suicide cases for every

100,000 people, which somehow is

not a high rate. In addition, there are

30 homicide cases for every 100,000

people.

 5. What is the percentage of

annual suicide gun deaths in

the United States from 2012

to 2014, by year?

The analysis shows almost the same

number of suicides each year over a

period of three years, which means that

this is a regular pattern in society.

CHAPTER 8 CASE STUDIES

366

 Summary

This chapter covered how to apply Python techniques on two different

case studies. Here’s what you learned:

• How to determine the problem under investigation

• How to determine the main questions to answer

• How to find a reliable data source

• How to explore the collected data to remove anomalies

• How to analyze and visualize cleaned data

• How to discuss findings

CHAPTER 8 CASE STUDIES

367© Dr. Ossama Embarak 2018
O. Embarak, Data Analysis and Visualization Using Python,
https://doi.org/10.1007/978-1-4842-4109-7

Index

A

Anaconda, 7

Anaconda Navigator, 7

Analysis model, 206

Azure Jupyter Notebooks, 6

folder creation, 10

new library, creation, 9

registering and logging, 8

B

Bar chart, 293

Beautiful Soup package, 228

Business intelligence (BI), 86

C

Case study, 354

causes of death (United States)

cleaned records, 344

data gathering, 343

death trends, 348

findings, 353

top ten causes, 353

top ten states, 351

unique death, 345–346

gun death (United States)

annual suicide, 354

by cause, 361

data analysis, 357

data gathering, 355–356

by gender, 357

by race, 359

by year, 363

Comma-separated

values (CSV), 212

conda command, 93

Correlation coefficient, 279

D

Data acquisition, 205

Data aggregation, 284

Data analysis, 205

aggregation, 284

correlation coefficient, 279

data frame

creation, 277–278

filtration, 286

get_group() method, 283, 284

grouping, 282

iterating, group, 283

statistical methods, 277

https://doi.org/10.1007/978-1-4842-4109-7

368

transformation, 285–286

variables, statistics, 279–281

Data cleaning, 205

CSV file

CleanData_REGION()

function, 217

CleanData_Sales()

function, 217

NaN cases, 216

na_values attribute, 217

nrows attribute, 214

pd.read_csv(), 214

.rename() method, 215

sales data, 212–213

tail() method, 214

unique values, 216

usecols attribute, 214

missing data, 207

missing values

bfill/backfill

methods, 210

boolean value, 208

data frame, NaN, 207

dropna() function, 211

filling forward, 210

NaN rows dropping, 211

NaN, scalar value, 209

null cases checking, 208

Python methods, 207

replace()

method, 211

noisy data (NA or NaN), 207

Data collection, 125

Data frame, 277

analyzing

creating, attributes, 268

.describe() method, 267,

269–270

measure, optimal, 272

NaN values, 267

numerical patterns, 271

string patterns, 271

assign() method, 165–166

column addition, 260

column deletion

copy() method, 261, 263–264

del method, 260, 262–263

pop method, 260

column selection, 258–259

creation

dictionary, 256

list, 255

Pandas, 255

series, 257

defined, 243

dictionary of Ndarray, 160

dictionary of series, 158–159

dictionary of tuples, 162

indexing and selection, 167–170

list of dicts, 161–162

Numpy functions, 171

operations, 163–165, 168–170

record array, creation, 161

row

addition, 266

deletion, 267

selection, 264–265

Data analysis (cont.)

INDEX

369

transposing, 170

Data integration

columns dropping, 220

.concat() method, 221

export files, 219

loading data sets, 219

merge() method, 218, 221

row union, 222

Data visualization, 206

BI, 86

decision making, 89

dynamic graphs, 105–106

easier approaches, 90

Geoplotlib, 108

goals, 86–87

histogram graph, 103–104

install/update Python

packages, 93–94

joint distribution graph, 102–103

kernel density

estimation, 100–102

libraries, 94–95

matplotlib, plotting

formats, 96–98

needs, 87–88

numpy attributes, 97

pandas, 108

plotly.offline, 106–107

plotting formats, 109–116

Python packages

Geoplotlib, 108

Matplotlib, 95–98

Pandas, 108

Plotly, 105–108

Seaborn, 99–102

quick response, 89

real-time data, 90

R language vs. Python, 91–92

seaborn, plotting formats,

100–105

simplicity, 90

sns.jointplot, 102–103

sns.kdeplot, 100

sns.pairplot, 104–105

team involvement, 90

technologies, 88–89

types, 92

unify interpretation, 90–92

df.drop() method, 267

Dictionary, 139, 141

accessing, 139–140

creation, 138–139

deletion, 141

functions, 141–143

methods, 143–145

sorting, 145

updation, 139–140

Direct plotting

bar plot, 298

box plot, 301–302

histogram plot, 303

line plot

bar chart, 297

data units, 295

visualizing, 296–298

Pandas, 294

pie charts, 300

scatter plot, 303–304

INDEX

370

E, F

ElementTree (ET) module, 233

Explanation, data visualization, 92

Exploration, data visualization, 92

Exploratory analysis, 205

G

GitHub, 355

H

HTML file

Beautiful Soup, 228–229

data extraction, 231–232

html variable, 228

parsing tags, 228

reading and parsing, 227

URLs extraction, 232

I

Integrated development

environments (IDEs), 6

I/O processing

accessing directories, 187–188

close() method, 186

file attributes, 185–186

file.read() method, 186

File.write() method, 186–187

getcwd() method, 187

input() function, 183

modes description, 185

open() function, 184

remove() method, 187

rename() method, 187

screen data, 183–184

isnull() function, 208

Iteration statements, Python

break statement, 37, 39

continue statement, 37, 39

control statement, 37

pass statement, 37, 39

range() method, 38

J, K

JSON file

accessing data, 226

data manipulation, 223

online resource, 224–225

read_json function, 223

L

Lambda function, 286

Lambdas and Numpy library

anonymous functions, 60

creating arrays, 63

filter() function, 62

map() function, 61

operations, 63

reduce() function, 62–63

Lists

accessing, 126–127

addition, 127–128

aliasing, 136–137

INDEX

371

append() method, 128

creation, 126

deletion, 128–129

functions, 131–132

indexing, 130

join() method, 135

methods, 132

operations, 129

parsing lines, 135–136

remove() method, 128

slicing, 130

sorting, 133

and strings, 134–135

traversing, 133

updation, 127–128

M

Matplotlib plotting, 206

bar chart, 324

histogram plot, 326

line plot, 321

pie chart, 334

scatter plot, 330

stack plot, 332

N, O

notnull() functions, 208

NumPy, 206–208, 255

P, Q

Pandas, 206, 208, 211, 223, 244, 255,

257, 267, 273, 277

pandas.Panel constructor, 273

pandas.Series, 244

Panel

accessing, position, 274–275

analysis, 275–276

creation, 273

defined, 243, 273

dictionary of data frame,

173–174

3D Ndarray, 172

selection and slicing, 175–176

panel.major_axis(index)

method, 274

panel.minor_axis(index)

method, 274

pip command, 93

plotting formats

area plot graph, 114–115

bar plot graph, 110–111

box plot graph, 113–114

direct plot graph, 109

histograms plot graph, 112–113

scatter plot graph, 115–116

pop method, 260

Python

argument, 27

basic syntax, 14–15

break, continue, and pass

statements, 40

calendar module, 30

comments, 25

conversion, 26

correlation analysis, 71–72

data cleaning techniques, 64

data frame

INDEX

372

central tendency, 73

two-dimensional series, 68

virtual structure, 68

date and time, 28

definition, 2

describe() method, 72

editors, 6–7

features, 3–4

formatted strings, 25

getting help, 14

iteration statements

(see Iteration statements,

Python)

learning resources, 4–6

line indentation, 15–16

manipulation techniques, 64

multiline statements, 16–17

multiple statements, 18

operators

arithmetic, 22

assign, 23–24

bitwise, 22

logical, 24

pandas, 293–294

data frame, 55, 57–59

features, 55

library, 55–56

panels, 59

series, 56–57

quotation marks, 17

regression analysis, 70

replacement field ({}), 27–28

reserved keywords, 15

Seaborn Python library, 69–70

selection statements

if-else statement, 34

if statement, 32

nested if statement, 34–35

series

iloc() and loc() attributes, 65

lock() attribute, 66

ilock() attribute, 66

Numpy operation, 66–67

structure and query, 65

Spyder IDE, 13

statistical data analysis, 69

tabular data and data

formats, 54–55

time module methods, 30

try and except statements, 41–42

variables

assign operator, 20

data types, 19

equal (=) operator, 19

multiple assigns, 20

names and keywords, 21

statements and

expressions, 21

versions, 3

PythonAnywhere, 7

R

Reading and writing files, 186

Regular expression

alternatives, 198

anchors, 199

Python (cont.)

INDEX

373

e-mails extraction, 192–193

extracting lines, 191–192

extracting

Nonwhitespace, 194–195

finall() method, 201

greedy/nongreedy extraction, 196

implementations, 196–197

vs. method, 199–200

numerical values, 195–196

processing text file, 191

repetition characters, 198

special characters, 195–197

syntax, 188–190

S

SciPy, 206

Seaborn plotting

box plot, 309

joint plot, 315

strip plot

category visualization, 308

display data, 305

vertical and horizontal

visualizing, 306

swarm plot, 313–314

Series, data structure

analyzing

calculation, 248–249

copying, 249–251

.describe() method, 248

creation

data series, 245–246

default index, 244–245

scalar, 246

series() method, 244

data accessing, 246–247

defined, 243

dictionary, creation, 154–155

name attribute, 157–158

Ndarray

creation, 151–154

operations, 153

slicing, 152

operations

line visualization, 253

math operations, 251–252

multiplots, 254

plotting systems, 253

scalar value, creation, 155–156

vectorizing

operations, 156–157

Slicing methods, 264

String

backward indexing, 42

conversions and formatting

symbols, 45–46

definition, 42

find operator, 53

format symbols, 43

forward indexing, 42

iterating and slicing, 48–49

iteration statements, 46–48

methods/functions, 49–52

operators, 43, 52

parsing and extracting, 53–54

slicing and concatenation, 45

traversal, 46

INDEX

374

T, U, V

Tuples, 148

accessing, 148–150

concatenation, 148, 150

creation, 146–147

deletion, 149

operations, 150

slicing, 149

sorting, 147

W

WinPython, 7

X, Y, Z

XML file

data extraction, 235

Element class, 233

ElementTree class, 233

find()method, 233

get() method, 233

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewers
	Introduction
	Chapter 1: Introduction to Data Science with Python
	The Stages of Data Science
	Why Python?
	Basic Features of Python
	Python Learning Resources

	Python Environment and Editors
	Portable Python Editors (No Installation Required)
	Azure Notebooks
	Offline and Desktop Python Editors

	The Basics of Python Programming
	Basic Syntax
	Lines and Indentation
	Multiline Statements
	Quotation Marks in Python
	Multiple Statements on a Single Line
	Read Data from Users

	Declaring Variables and Assigning Values
	Multiple Assigns
	Variable Names and Keywords
	Statements and Expressions

	Basic Operators in Python
	Arithmetic Operators
	Relational Operators
	Assign Operators
	Logical Operators

	Python Comments
	Formatting Strings
	Conversion Types
	The Replacement Field, {}
	The Date and Time Module
	Time Module Methods
	Python Calendar Module

	Fundamental Python Programming Techniques
	Selection Statements
	Iteration Statements
	The Use of Break, Continues, and Pass Statements
	try and except
	String Processing
	String Special Operators
	String Slicing and Concatenation
	String Conversions and Formatting Symbols
	Loop Through String
	Python String Functions and Methods
	The in Operator
	Parsing and Extracting Strings

	Tabular Data and Data Formats
	Python Pandas Data Science Library
	A Pandas Series
	A Pandas Data Frame
	A Pandas Panels

	Python Lambdas and the Numpy Library
	The map() Function
	The filter() Function
	The reduce () Function
	Python Numpy Package

	Data Cleaning and Manipulation Techniques
	Abstraction of the Series and Data Frame
	Running Basic Inferential Analyses
	Summary
	Exercises and Answers

	Chapter 2: The Importance of Data Visualization in Business Intelligence
	Shifting from Input to Output
	Why Is Data Visualization Important?
	Why Do Modern Businesses Need Data Visualization?
	The Future of Data Visualization
	How Data Visualization Is Used for Business Decision-Making
	Faster Responses
	Simplicity
	Easier Pattern Visualization
	Team Involvement
	Unify Interpretation

	Introducing Data Visualization Techniques
	Loading Libraries
	Popular Libraries for Data Visualization in Python
	Matplotlib
	Seaborn
	Plotly
	Geoplotlib
	Pandas

	Introducing Plots in Python

	Summary
	Exercises and Answers

	Chapter 3: Data Collection Structures
	Lists
	Creating Lists
	Accessing Values in Lists
	Adding and Updating Lists
	Deleting List Elements
	Basic List Operations
	Indexing, Slicing, and Matrices
	Built-in List Functions and Methods
	List Functions
	List Methods

	List Sorting and Traversing
	Lists and Strings
	Parsing Lines
	Aliasing

	Dictionaries
	Creating Dictionaries
	Updating and Accessing Values in Dictionaries
	Deleting Dictionary Elements
	Built-in Dictionary Functions
	Built-in Dictionary Methods

	Tuples
	Creating Tuples
	Concatenating Tuples
	Accessing Values in Tuples
	Basic Tuples Operations

	Series
	Creating a Series with index
	Creating a Series from a Dictionary
	Creating a Series from a Scalar Value
	Vectorized Operations and Label Alignment with Series
	Name Attribute

	Data Frames
	Creating Data Frames from a Dict of Series or Dicts
	Creating Data Frames from a Dict of Ndarrays/Lists
	Creating Data Frames from a Structured or Record Array
	Creating Data Frames from a List of Dicts
	Creating Data Frames from a Dict of Tuples
	Selecting, Adding, and Deleting Data Frame Columns
	Assigning New Columns in Method Chains
	Indexing and Selecting Data Frames
	Transposing a Data Frame
	Data Frame Interoperability with Numpy Functions

	Panels
	Creating a Panel from a 3D Ndarray
	Creating a Panel from a Dict of Data Frame Objects
	Selecting, Adding, and Deleting Items

	Summary
	Exercises and Answers

	Chapter 4: File I/O Processing and Regular Expressions
	File I/O Processing
	Data Input and Output
	Opening and Closing Files
	File Object Attributes
	Reading and Writing to Files
	Directories in Python

	Regular Expressions
	Regular Expression Patterns
	Special Character Classes
	Repetition Classes
	Alternatives
	Anchors

	Summary
	Exercises and Answer

	Chapter 5: Data Gathering and Cleaning
	Cleaning Data
	Checking for Missing Values
	Handling the Missing Values

	Reading and Cleaning CSV Data
	Merging and Integrating Data
	Reading Data from the JSON Format
	Reading Data from the HTML Format
	Reading Data from the XML Format
	Summary
	Exercises and Answers

	Chapter 6: Data Exploring and Analysis
	Series Data Structures
	Creating a Series
	Accessing Data from a Series with a Position
	Exploring and Analyzing a Series
	Operations on a Series

	Data Frame Data Structures
	Creating a Data Frame
	Updating and Accessing a Data Frame’s Column Selection
	Column Addition
	Column Deletion
	Row Selection
	Row Addition
	Row Deletion
	Exploring and Analyzing a Data Frame
	Panel Data Structures
	Creating a Panel
	Accessing Data from a Panel with a Position
	Exploring and Analyzing a Panel

	Data Analysis
	Statistical Analysis
	Data Grouping
	Iterating Through Groups
	Aggregations
	Transformations
	Filtration

	Summary
	Exercises and Answers

	Chapter 7: Data Visualization
	Direct Plotting
	Line Plot
	Bar Plot
	Pie Chart
	Box Plot
	Histogram Plot
	Scatter Plot

	Seaborn Plotting System
	Strip Plot
	Box Plot
	Swarm Plot
	Joint Plot

	Matplotlib Plot
	Line Plot
	Bar Chart
	Histogram Plot
	Scatter Plot
	Stack Plot
	Pie Chart

	Summary
	Exercises and Answers

	Chapter 8: Case Studies
	Case Study 1: Cause of Deaths in the United States (1999–2015)
	Data Gathering
	Data Analysis
	Data Visualization
	Findings

	Case Study 2: Analyzing Gun Deaths in the United States (2012–2014)
	Data Gathering
	Data Analysis
	Data Visualization
	Findings

	Summary

	Index

