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Preface

New for the Second Edition

The first edition of this book was published in 2012, during a time when open source
data analysis libraries for Python (such as pandas) were very new and developing rap-
idly. In this updated and expanded second edition, I have overhauled the chapters to
account both for incompatible changes and deprecations as well as new features that
have occurred in the last five years. I've also added fresh content to introduce tools
that either did not exist in 2012 or had not matured enough to make the first cut.
Finally, I have tried to avoid writing about new or cutting-edge open source projects
that may not have had a chance to mature. I would like readers of this edition to find
that the content is still almost as relevant in 2020 or 2021 as it is in 2017.

The major updates in this second edition include:

o All code, including the Python tutorial, updated for Python 3.6 (the first edition
used Python 2.7)

« Updated Python installation instructions for the Anaconda Python Distribution
and other needed Python packages

« Updates for the latest versions of the pandas library in 2017
« A new chapter on some more advanced pandas tools, and some other usage tips

o A brief introduction to using statsmodels and scikit-learn

I also reorganized a significant portion of the content from the first edition to make
the book more accessible to newcomers.

Xi



Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLSs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

\

Using Code Examples

You can find data files and related material for each chapter is available in this book’s
GitHub repository at http://github.com/wesm/pydata-book.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless youre reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
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book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi-
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Python for Data Analysis by Wes
McKinney (O’Reilly). Copyright 2017 Wes McKinney, 978-1-491-95766-0”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

0'Reilly Safari

Safari (formerly Safari Books Online) is a membership-based
4 training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac-
tive tutorials, and curated playlists from over 250 publishers, including O'Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes-
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/python_data_analysis_2e.
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To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER1
Preliminaries

1.1 What Is This Book About?

This book is concerned with the nuts and bolts of manipulating, processing, cleaning,
and crunching data in Python. My goal is to offer a guide to the parts of the Python
programming language and its data-oriented library ecosystem and tools that will
equip you to become an effective data analyst. While “data analysis” is in the title of
the book, the focus is specifically on Python programming, libraries, and tools as
opposed to data analysis methodology. This is the Python programming you need for
data analysis.

What Kinds of Data?

When I say “data,” what am I referring to exactly? The primary focus is on structured
data, a deliberately vague term that encompasses many different common forms of
data, such as:

o Tabular or spreadsheet-like data in which each column may be a different type
(string, numeric, date, or otherwise). This includes most kinds of data commonly
stored in relational databases or tab- or comma-delimited text files.

« Multidimensional arrays (matrices).

+ Multiple tables of data interrelated by key columns (what would be primary or
foreign keys for a SQL user).

« Evenly or unevenly spaced time series.
This is by no means a complete list. Even though it may not always be obvious, a large

percentage of datasets can be transformed into a structured form that is more suitable
for analysis and modeling. If not, it may be possible to extract features from a dataset




into a structured form. As an example, a collection of news articles could be pro-
cessed into a word frequency table, which could then be used to perform sentiment
analysis.

Most users of spreadsheet programs like Microsoft Excel, perhaps the most widely
used data analysis tool in the world, will not be strangers to these kinds of data.

1.2 Why Python for Data Analysis?

For many people, the Python programming language has strong appeal. Since its first
appearance in 1991, Python has become one of the most popular interpreted pro-
gramming languages, along with Perl, Ruby, and others. Python and Ruby have
become especially popular since 2005 or so for building websites using their numer-
ous web frameworks, like Rails (Ruby) and Django (Python). Such languages are
often called scripting languages, as they can be used to quickly write small programs,
or scripts to automate other tasks. I don't like the term “scripting language,” as it car-
ries a connotation that they cannot be used for building serious software. Among

interpreted languages, for various historical and cultural reasons, Python has devel-
oped a large and active scientific computing and data analysis community. In the last
10 years, Python has gone from a bleeding-edge or “at your own risk” scientific com-
puting language to one of the most important languages for data science, machine
learning, and general software development in academia and industry.

For data analysis and interactive computing and data visualization, Python will inevi-
tably draw comparisons with other open source and commercial programming lan-
guages and tools in wide use, such as R, MATLAB, SAS, Stata, and others. In recent
years, Python’s improved support for libraries (such as pandas and scikit-learn) has
made it a popular choice for data analysis tasks. Combined with Pythons overall
strength for general-purpose software engineering, it is an excellent option as a pri-
mary language for building data applications.

Python as Glue

Part of Python’s success in scientific computing is the ease of integrating C, C++, and
FORTRAN code. Most modern computing environments share a similar set of legacy
FORTRAN and C libraries for doing linear algebra, optimization, integration, fast
Fourier transforms, and other such algorithms. The same story has held true for
many companies and national labs that have used Python to glue together decades’
worth of legacy software.

Many programs consist of small portions of code where most of the time is spent,
with large amounts of “glue code” that doesn’t run often. In many cases, the execution
time of the glue code is insignificant; effort is most fruitfully invested in optimizing
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the computational bottlenecks, sometimes by moving the code to a lower-level lan-
guage like C.

Solving the “Two-Language” Problem

In many organizations, it is common to research, prototype, and test new ideas using
a more specialized computing language like SAS or R and then later port those ideas
to be part of a larger production system written in, say, Java, C#, or C++. What people
are increasingly finding is that Python is a suitable language not only for doing
research and prototyping but also for building the production systems. Why main-
tain two development environments when one will suffice? I believe that more and
more companies will go down this path, as there are often significant organizational
benefits to having both researchers and software engineers using the same set of pro-
gramming tools.

Why Not Python?

While Python is an excellent environment for building many kinds of analytical
applications and general-purpose systems, there are a number of uses for which
Python may be less suitable.

As Python is an interpreted programming language, in general most Python code will
run substantially slower than code written in a compiled language like Java or C++.
As programmer time is often more valuable than CPU time, many are happy to make
this trade-off. However, in an application with very low latency or demanding
resource utilization requirements (e.g., a high-frequency trading system), the time
spent programming in a lower-level (but also lower-productivity) language like C++
to achieve the maximum possible performance might be time well spent.

Python can be a challenging language for building highly concurrent, multithreaded
applications, particularly applications with many CPU-bound threads. The reason for
this is that it has what is known as the global interpreter lock (GIL), a mechanism that
prevents the interpreter from executing more than one Python instruction at a time.
The technical reasons for why the GIL exists are beyond the scope of this book. While
it is true that in many big data processing applications, a cluster of computers may be
required to process a dataset in a reasonable amount of time, there are still situations
where a single-process, multithreaded system is desirable.

This is not to say that Python cannot execute truly multithreaded, parallel code.
Python C extensions that use native multithreading (in C or C++) can run code in
parallel without being impacted by the GIL, so long as they do not need to regularly
interact with Python objects.
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1.3 Essential Python Libraries

For those who are less familiar with the Python data ecosystem and the libraries used
throughout the book, I will give a brief overview of some of them.

NumPy

NumPy, short for Numerical Python, has long been a cornerstone of numerical com-
puting in Python. It provides the data structures, algorithms, and library glue needed
for most scientific applications involving numerical data in Python. NumPy contains,
among other things:

o A fast and efficient multidimensional array object ndarray

« Functions for performing element-wise computations with arrays or mathemati-
cal operations between arrays

« Tools for reading and writing array-based datasets to disk
« Linear algebra operations, Fourier transform, and random number generation

o A mature C API to enable Python extensions and native C or C++ code to access
NumPy’s data structures and computational facilities

Beyond the fast array-processing capabilities that NumPy adds to Python, one of its
primary uses in data analysis is as a container for data to be passed between algo-
rithms and libraries. For numerical data, NumPy arrays are more efficient for storing
and manipulating data than the other built-in Python data structures. Also, libraries
written in a lower-level language, such as C or Fortran, can operate on the data stored
in a NumPy array without copying data into some other memory representation.
Thus, many numerical computing tools for Python either assume NumPy arrays as a
primary data structure or else target seamless interoperability with NumPy.

pandas

pandas provides high-level data structures and functions designed to make working
with structured or tabular data fast, easy, and expressive. Since its emergence in 2010,
it has helped enable Python to be a powerful and productive data analysis environ-
ment. The primary objects in pandas that will be used in this book are the DataFrame,
a tabular, column-oriented data structure with both row and column labels, and the
Series, a one-dimensional labeled array object.

pandas blends the high-performance, array-computing ideas of NumPy with the flex-
ible data manipulation capabilities of spreadsheets and relational databases (such as
SQL). It provides sophisticated indexing functionality to make it easy to reshape, slice
and dice, perform aggregations, and select subsets of data. Since data manipulation,
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preparation, and cleaning is such an important skill in data analysis, pandas is one of
the primary focuses of this book.

As a bit of background, I started building pandas in early 2008 during my tenure at
AQR Capital Management, a quantitative investment management firm. At the time,
I had a distinct set of requirements that were not well addressed by any single tool at
my disposal:

o Data structures with labeled axes supporting automatic or explicit data alignment
—this prevents common errors resulting from misaligned data and working with
differently indexed data coming from different sources

« Integrated time series functionality

o The same data structures handle both time series data and non-time series data
o Arithmetic operations and reductions that preserve metadata

o Flexible handling of missing data

o Merge and other relational operations found in popular databases (SQL-based,
for example)

I wanted to be able to do all of these things in one place, preferably in a language well
suited to general-purpose software development. Python was a good candidate lan-
guage for this, but at that time there was not an integrated set of data structures and
tools providing this functionality. As a result of having been built initially to solve
finance and business analytics problems, pandas features especially deep time series
functionality and tools well suited for working with time-indexed data generated by
business processes.

For users of the R language for statistical computing, the DataFrame name will be
familiar, as the object was named after the similar R data.frame object. Unlike
Python, data frames are built into the R programming language and its standard
library. As a result, many features found in pandas are typically either part of the R
core implementation or provided by add-on packages.

The pandas name itself is derived from panel data, an econometrics term for multidi-
mensional structured datasets, and a play on the phrase Python data analysis itself.

matplotlib

matplotlib is the most popular Python library for producing plots and other two-
dimensional data visualizations. It was originally created by John D. Hunter and is
now maintained by a large team of developers. It is designed for creating plots suit-
able for publication. While there are other visualization libraries available to Python
programmers, matplotlib is the most widely used and as such has generally good inte-
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gration with the rest of the ecosystem. I think it is a safe choice as a default visualiza-
tion tool.

IPython and Jupyter

The IPython project began in 2001 as Fernando Pérez’s side project to make a better
interactive Python interpreter. In the subsequent 16 years it has become one of the
most important tools in the modern Python data stack. While it does not provide any
computational or data analytical tools by itself, IPython is designed from the ground
up to maximize your productivity in both interactive computing and software devel-
opment. It encourages an execute-explore workflow instead of the typical edit-compile-
run workflow of many other programming languages. It also provides easy access to
your operating systems shell and filesystem. Since much of data analysis coding
involves exploration, trial and error, and iteration, IPython can help you get the job
done faster.

In 2014, Fernando and the IPython team announced the Jupyter project, a broader
initiative to design language-agnostic interactive computing tools. The IPython web
notebook became the Jupyter notebook, with support now for over 40 programming
languages. The IPython system can now be used as a kernel (a programming language
mode) for using Python with Jupyter.

IPython itself has become a component of the much broader Jupyter open source
project, which provides a productive environment for interactive and exploratory
computing. Its oldest and simplest “mode” is as an enhanced Python shell designed to
accelerate the writing, testing, and debugging of Python code. You can also use the
IPython system through the Jupyter Notebook, an interactive web-based code “note-
book” offering support for dozens of programming languages. The IPython shell and
Jupyter notebooks are especially useful for data exploration and visualization.

The Jupyter notebook system also allows you to author content in Markdown and
HTML, providing you a means to create rich documents with code and text. Other
programming languages have also implemented kernels for Jupyter to enable you to
use languages other than Python in Jupyter.

For me personally, IPython is usually involved with the majority of my Python work,
including running, debugging, and testing code.

In the accompanying book materials, you will find Jupyter notebooks containing all
the code examples from each chapter.

SciPy

SciPy is a collection of packages addressing a number of different standard problem
domains in scientific computing. Here is a sampling of the packages included:
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scipy.integrate
Numerical integration routines and differential equation solvers

scipy.linalg
Linear algebra routines and matrix decompositions extending beyond those pro-
vided in numpy.linalg

scipy.optimize
Function optimizers (minimizers) and root finding algorithms

scipy.signal
Signal processing tools

scipy.sparse
Sparse matrices and sparse linear system solvers

scipy.special
Wrapper around SPECFUN, a Fortran library implementing many common
mathematical functions, such as the gamma function

scipy.stats
Standard continuous and discrete probability distributions (density functions,
samplers, continuous distribution functions), various statistical tests, and more
descriptive statistics

Together NumPy and SciPy form a reasonably complete and mature computational
foundation for many traditional scientific computing applications.

scikit-learn

Since the project’s inception in 2010, scikit-learn has become the premier general-
purpose machine learning toolkit for Python programmers. In just seven years, it has
had over 1,500 contributors from around the world. It includes submodules for such
models as:

o Classification: SVM, nearest neighbors, random forest, logistic regression, etc.
» Regression: Lasso, ridge regression, etc.

o Clustering: k-means, spectral clustering, etc.

 Dimensionality reduction: PCA, feature selection, matrix factorization, etc.

o Model selection: Grid search, cross-validation, metrics

» Preprocessing: Feature extraction, normalization

Along with pandas, statsmodels, and IPython, scikit-learn has been critical for ena-
bling Python to be a productive data science programming language. While I won't

1.3 Essential Python Libraries | 7



be able to include a comprehensive guide to scikit-learn in this book, I will give a
brief introduction to some of its models and how to use them with the other tools
presented in the book.

statsmodels

statsmodels is a statistical analysis package that was seeded by work from Stanford
University statistics professor Jonathan Taylor, who implemented a number of regres-
sion analysis models popular in the R programming language. Skipper Seabold and
Josef Perktold formally created the new statsmodels project in 2010 and since then
have grown the project to a critical mass of engaged users and contributors. Nathaniel
Smith developed the Patsy project, which provides a formula or model specification
framework for statsmodels inspired by R’s formula system.

Compared with scikit-learn, statsmodels contains algorithms for classical (primarily
frequentist) statistics and econometrics. This includes such submodules as:

o Regression models: Linear regression, generalized linear models, robust linear
models, linear mixed effects models, etc.

o Analysis of variance (ANOVA)
« Time series analysis: AR, ARMA, ARIMA, VAR, and other models
« Nonparametric methods: Kernel density estimation, kernel regression

o Visualization of statistical model results

statsmodels is more focused on statistical inference, providing uncertainty estimates
and p-values for parameters. scikit-learn, by contrast, is more prediction-focused.

As with scikit-learn, I will give a brief introduction to statsmodels and how to use it
with NumPy and pandas.

1.4 Installation and Setup

Since everyone uses Python for different applications, there is no single solution for
setting up Python and required add-on packages. Many readers will not have a com-
plete Python development environment suitable for following along with this book,
so here I will give detailed instructions to get set up on each operating system. I rec-
ommend using the free Anaconda distribution. At the time of this writing, Anaconda
is offered in both Python 2.7 and 3.6 forms, though this might change at some point
in the future. This book uses Python 3.6, and I encourage you to use Python 3.6 or
higher.
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Windows

To get started on Windows, download the Anaconda installer. I recommend follow-
ing the installation instructions for Windows available on the Anaconda download
page, which may have changed between the time this book was published and when
you are reading this.

Now, let’s verify that things are configured correctly. To open the Command Prompt
application (also known as cmd.exe), right-click the Start menu and select Command
Prompt. Try starting the Python interpreter by typing python. You should see a mes-
sage that matches the version of Anaconda you installed:

C:\Users\wesm>python

Python 3.5.2 |Anaconda 4.1.1 (64-bit)| (default, Jul 5 2016, 11:41:13)

[MSC v.1900 64 bit (AMD64)] on win32

>>>
To exit the shell, press Ctrl-D (on Linux or macOS), Ctrl-Z (on Windows), or type
the command exit() and press Enter.

Apple (0S X, mac0S)

Download the OS X Anaconda installer, which should be named something like
Anaconda3-4.1.0-MacOSX-x86_64.pkg. Double-click the .pkg file to run the installer.
When the installer runs, it automatically appends the Anaconda executable path to
your .bash_profile file. This is located at /Users/$USER/.bash_profile.

To verify everything is working, try launching IPython in the system shell (open the
Terminal application to get a command prompt):

$ ipython

To exit the shell, press Ctrl-D or type exit() and press Enter.

GNU/Linux

Linux details will vary a bit depending on your Linux flavor, but here I give details for
such distributions as Debian, Ubuntu, CentOS, and Fedora. Setup is similar to OS X
with the exception of how Anaconda is installed. The installer is a shell script that
must be executed in the terminal. Depending on whether you have a 32-bit or 64-bit
system, you will either need to install the x86 (32-bit) or x86_64 (64-bit) installer. You
will then have a file named something similar to Anaconda3-4.1.0-Linux-x86_64.sh.
To install it, execute this script with bash:

$ bash Anaconda3-4.1.0-Linux-x86_64.sh
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Some Linux distributions have versions of all the required Python
packages in their package managers and can be installed using a
tool like apt. The setup described here uses Anaconda, as it’s both
easily reproducible across distributions and simpler to upgrade
packages to their latest versions.

After accepting the license, you will be presented with a choice of where to put the
Anaconda files. I recommend installing the files in the default location in your home
directory—for example, /home/$USER/anaconda (with your username, naturally).

The Anaconda installer may ask if you wish to prepend its bin/ directory to your
$PATH variable. If you have any problems after installation, you can do this yourself by
modifying your .bashrc (or .zshr, if you are using the zsh shell) with something akin
to:

export PATH=/home/$USER/anaconda/bin:$PATH

After doing this you can either start a new terminal process or execute your .bashrc
again with source ~/.bashrc.

Installing or Updating Python Packages

At some point while reading, you may wish to install additional Python packages that
are not included in the Anaconda distribution. In general, these can be installed with
the following command:

conda install package_name

If this does not work, you may also be able to install the package using the pip pack-
age management tool:

pip install package_name

You can update packages by using the conda update command:
conda update package_name

pip also supports upgrades using the - -upgrade flag:
pip install --upgrade package_name

You will have several opportunities to try out these commands throughout the book.

While you can use both conda and pip to install packages, you

should not attempt to update conda packages with pip, as doing so

can lead to environment problems. When using Anaconda or Min-
\ iconda, it’s best to first try updating with conda.
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Python 2 and Python 3

The first version of the Python 3.x line of interpreters was released at the end of 2008.
It included a number of changes that made some previously written Python 2.x code
incompatible. Because 17 years had passed since the very first release of Python in
1991, creating a “breaking” release of Python 3 was viewed to be for the greater good
given the lessons learned during that time.

In 2012, much of the scientific and data analysis community was still using Python
2.x because many packages had not been made fully Python 3 compatible. Thus, the
first edition of this book used Python 2.7. Now, users are free to choose between
Python 2.x and 3.x and in general have full library support with either flavor.

However, Python 2.x will reach its development end of life in 2020 (including critical
security patches), and so it is no longer a good idea to start new projects in Python
2.7. Therefore, this book uses Python 3.6, a widely deployed, well-supported stable
release. We have begun to call Python 2.x “Legacy Python” and Python 3.x simply
“Python?” I encourage you to do the same.

This book uses Python 3.6 as its basis. Your version of Python may be newer than 3.6,
but the code examples should be forward compatible. Some code examples may work
differently or not at all in Python 2.7.

Integrated Development Environments (IDEs) and Text Editors

When asked about my standard development environment, I almost always say “IPy-
thon plus a text editor” I typically write a program and iteratively test and debug each
piece of it in IPython or Jupyter notebooks. It is also useful to be able to play around
with data interactively and visually verify that a particular set of data manipulations is
doing the right thing. Libraries like pandas and NumPy are designed to be easy to use
in the shell.

When building software, however, some users may prefer to use a more richly fea-
tured IDE rather than a comparatively primitive text editor like Emacs or Vim. Here
are some that you can explore:

o PyDev (free), an IDE built on the Eclipse platform

« PyCharm from JetBrains (subscription-based for commercial users, free for open
source developers)

« Python Tools for Visual Studio (for Windows users)
o Spyder (free), an IDE currently shipped with Anaconda

o Komodo IDE (commercial)
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Due to the popularity of Python, most text editors, like Atom and Sublime Text 2,
have excellent Python support.

1.5 Community and Conferences

Outside of an internet search, the various scientific and data-related Python mailing
lists are generally helpful and responsive to questions. Some to take a look at include:

« pydata: A Google Group list for questions related to Python for data analysis and
pandas

« pystatsmodels: For statsmodels or pandas-related questions

 Mailing list for scikit-learn (scikit-learn@python.org) and machine learning in
Python, generally

 numpy-discussion: For NumPy-related questions

o scipy-user: For general SciPy or scientific Python questions

I deliberately did not post URLs for these in case they change. They can be easily
located via an internet search.

Each year many conferences are held all over the world for Python programmers. If
you would like to connect with other Python programmers who share your interests,
I encourage you to explore attending one, if possible. Many conferences have finan-
cial support available for those who cannot afford admission or travel to the confer-
ence. Here are some to consider:

o PyCon and EuroPython: The two main general Python conferences in North
America and Europe, respectively

« SciPy and EuroSciPy: Scientific-computing-oriented conferences in North Amer-
ica and Europe, respectively

o PyData: A worldwide series of regional conferences targeted at data science and
data analysis use cases

o International and regional PyCon conferences (see http://pycon.org for a com-
plete listing)

1.6 Navigating This Book

If you have never programmed in Python before, you will want to spend some time in
Chapters 2 and 3, where I have placed a condensed tutorial on Python language fea-
tures and the IPython shell and Jupyter notebooks. These things are prerequisite

12 | Chapter 1: Preliminaries

www.allitebooks.com



knowledge for the remainder of the book. If you have Python experience already, you
may instead choose to skim or skip these chapters.

Next, I give a short introduction to the key features of NumPy, leaving more
advanced NumPy use for Appendix A. Then, I introduce pandas and devote the rest
of the book to data analysis topics applying pandas, NumPy, and matplotlib (for visu-
alization). I have structured the material in the most incremental way possible,
though there is occasionally some minor cross-over between chapters, with a few iso-
lated cases where concepts are used that haven’t necessarily been introduced yet.

While readers may have many different end goals for their work, the tasks required
generally fall into a number of different broad groups:

Interacting with the outside world
Reading and writing with a variety of file formats and data stores

Preparation
Cleaning, munging, combining, normalizing, reshaping, slicing and dicing, and
transforming data for analysis

Transformation
Applying mathematical and statistical operations to groups of datasets to derive
new datasets (e.g., aggregating a large table by group variables)

Modeling and computation
Connecting your data to statistical models, machine learning algorithms, or other
computational tools

Presentation
Creating interactive or static graphical visualizations or textual summaries

Code Examples

Most of the code examples in the book are shown with input and output as it would
appear executed in the IPython shell or in Jupyter notebooks:

In [5]: CODE EXAMPLE

Out[5]: OUTPUT
When you see a code example like this, the intent is for you to type in the example
code in the In block in your coding environment and execute it by pressing the Enter
key (or Shift-Enter in Jupyter). You should see output similar to what is shown in the
Out block.

Data for Examples

Datasets for the examples in each chapter are hosted in a GitHub repository. You can
download this data either by using the Git version control system on the command
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line or by downloading a zip file of the repository from the website. If you run into
problems, navigate to my website for up-to-date instructions about obtaining the
book materials.

I have made every effort to ensure that it contains everything necessary to reproduce
the examples, but I may have made some mistakes or omissions. If so, please send me
an email: book@wesmckinney.com. The best way to report errors in the book is on the
errata page on the O’Reilly website.

Import Conventions

The Python community has adopted a number of naming conventions for commonly
used modules:

import numpy as np

import matplotlib.pyplot as plt
import pandas as pd

import seaborn as sns

import statsmodels as sm

This means that when you see np.arange, this is a reference to the arange function in
NumPy. This is done because it’s considered bad practice in Python software develop-
ment to import everything (from numpy import *) from a large package like NumPy.

Jargon

I’ll use some terms common both to programming and data science that you may not
be familiar with. Thus, here are some brief definitions:

Munge/munging/wrangling
Describes the overall process of manipulating unstructured and/or messy data
into a structured or clean form. The word has snuck its way into the jargon of
many modern-day data hackers. “Munge” rhymes with “grunge”

Pseudocode
A description of an algorithm or process that takes a code-like form while likely
not being actual valid source code.

Syntactic sugar
Programming syntax that does not add new features, but makes something more
convenient or easier to type.
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CHAPTER 2

Python Language Basics, IPython, and
Jupyter Notebooks

When I wrote the first edition of this book in 2011 and 2012, there were fewer resour-
ces available for learning about doing data analysis in Python. This was partially a
chicken-and-egg problem; many libraries that we now take for granted, like pandas,
scikit-learn, and statsmodels, were comparatively immature back then. In 2017, there
is now a growing literature on data science, data analysis, and machine learning, sup-
plementing the prior works on general-purpose scientific computing geared toward
computational scientists, physicists, and professionals in other research fields. There
are also excellent books about learning the Python programming language itself and
becoming an effective software engineer.

As this book is intended as an introductory text in working with data in Python, I feel
it is valuable to have a self-contained overview of some of the most important fea-
tures of Python’s built-in data structures and libraries from the perspective of data
manipulation. So, I will only present roughly enough information in this chapter and
Chapter 3 to enable you to follow along with the rest of the book.

In my opinion, it is not necessary to become proficient at building good software in
Python to be able to productively do data analysis. I encourage you to use the IPy-
thon shell and Jupyter notebooks to experiment with the code examples and to
explore the documentation for the various types, functions, and methods. While I've
made best efforts to present the book material in an incremental form, you may occa-
sionally encounter things that have not yet been fully introduced.

Much of this book focuses on table-based analytics and data preparation tools for
working with large datasets. In order to use those tools you must often first do some
munging to corral messy data into a more nicely tabular (or structured) form. Fortu-
nately, Python is an ideal language for rapidly whipping your data into shape. The
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greater your facility with Python the language, the easier it will be for you to prepare
new datasets for analysis.

Some of the tools in this book are best explored from a live IPython or Jupyter ses-
sion. Once you learn how to start up IPython and Jupyter, I recommend that you fol-
low along with the examples so you can experiment and try different things. As with
any keyboard-driven console-like environment, developing muscle-memory for the
common commands is also part of the learning curve.

There are introductory Python concepts that this chapter does not
cover, like classes and object-oriented programming, which you
may find useful in your foray into data analysis in Python.

To deepen your Python language knowledge, I recommend that
you supplement this chapter with the official Python tutorial and
potentially one of the many excellent books on general-purpose
Python programming. Some recommendations to get you started
include:

o Python Cookbook, Third Edition, by David Beazley and Brian
K. Jones (O’Reilly)

o Fluent Python by Luciano Ramalho (O’Reilly)
o Effective Python by Brett Slatkin (Pearson)

2.1 The Python Interpreter

Python is an interpreted language. The Python interpreter runs a program by execut-
ing one statement at a time. The standard interactive Python interpreter can be
invoked on the command line with the python command:

$ python

Python 3.6.0 | packaged by conda-forge | (default, Jan 13 2017, 23:17:12)
[GCC 4.8.2 20140120 (Red Hat 4.8.2-15)] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>> 3 =75

>>> print(a)

5

The >>> you see is the prompt where you'll type code expressions. To exit the Python

interpreter and return to the command prompt, you can either type exit() or press
Ctrl-D.

Running Python programs is as simple as calling python with a .py file as its first
argument. Suppose we had created hello_world.py with these contents:

print('Hello world")
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You can run it by executing the following command (the hello_world.py file must be
in your current working terminal directory):

$ python hello_world.py
Hello world

While some Python programmers execute all of their Python code in this way, those
doing data analysis or scientific computing make use of IPython, an enhanced Python
interpreter, or Jupyter notebooks, web-based code notebooks originally created
within the IPython project. I give an introduction to using IPython and Jupyter in
this chapter and have included a deeper look at IPython functionality in Appendix A.
When you use the %run command, IPython executes the code in the specified file in
the same process, enabling you to explore the results interactively when it’s done:

$ ipython
Python 3.6.0 | packaged by conda-forge | (default, Jan 13 2017, 23:17:12)
Type "copyright", "credits" or "license" for more information.

IPython 5.1.0 -- An enhanced Interactive Python.

? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.

help -> Python's own help system.

object?  -> Details about 'object', use 'object??' for extra details.

In [1]: %run hello_world.py
Hello world

In [2]:

The default IPython prompt adopts the numbered In [2]: style compared with the
standard >>> prompt.

2.2 IPython Basics

In this section, we'll get you up and running with the IPython shell and Jupyter note-
book, and introduce you to some of the essential concepts.

Running the IPython Shell

You can launch the IPython shell on the command line just like launching the regular
Python interpreter except with the ipython command:

$ ipython
Python 3.6.0 | packaged by conda-forge | (default, Jan 13 2017, 23:17:12)
Type "copyright", "credits" or "license" for more information.

IPython 5.1.0 -- An enhanced Interactive Python.

? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
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object? -> Details about 'object', use 'object??' for extra details.

In [1]: a =5
In [2]: a
Out[2]: 5

You can execute arbitrary Python statements by typing them in and pressing Return
(or Enter). When you type just a variable into IPython, it renders a string representa-
tion of the object:

In [5]: import numpy as np
In [6]: data = {1 : np.random.randn() for i1 in range(7)}

In [7]: data

Out[7]:

{0: -0.20470765948471295,
1: 0.47894333805754824,
2: -0.5194387150567381,
3: -0.55573030434749,

4: 1.9657805725027142,
5: 1.3934058329729904,
6: 0.09290787674371767}

The first two lines are Python code statements; the second statement creates a vari-
able named data that refers to a newly created Python dictionary. The last line prints
the value of data in the console.

Many kinds of Python objects are formatted to be more readable, or pretty-printed,
which is distinct from normal printing with print. If you printed the above data
variable in the standard Python interpreter, it would be much less readable:

>>> from numpy.random import randn

>>> data = {1 : randn() for i1 in range(7)}

>>> print(data)

{0: -1.5948255432744511, 1: 0.10569006472787983, 2: 1.972367135977295,
3: 0.15455217573074576, 4: -0.24058577449429575, 5: -1.2904897053651216,
6: 0.3308507317325902}

IPython also provides facilities to execute arbitrary blocks of code (via a somewhat
glorified copy-and-paste approach) and whole Python scripts. You can also use the
Jupyter notebook to work with larger blocks of code, as we'll soon see.

Running the Jupyter Notebook

One of the major components of the Jupyter project is the notebook, a type of interac-
tive document for code, text (with or without markup), data visualizations, and other
output. The Jupyter notebook interacts with kernels, which are implementations of

18 | Chapter2: Python Language Basics, IPython, and Jupyter Notebooks



the Jupyter interactive computing protocol in any number of programming lan-
guages. Python’s Jupyter kernel uses the IPython system for its underlying behavior.

To start up Jupyter, run the command jupyter notebook in a terminal:

$ jupyter notebook

[I 15:20:52.739 NotebookApp] Serving notebooks from local directory:

/home /wesm/code/pydata-book

[I 15:20:52.739 NotebookApp] 0 active kernels

[I 15:20:52.739 NotebookApp] The Jupyter Notebook is running at:
http://localhost:8888/

[I 15:20:52.740 NotebookApp] Use Control-C to stop this server and shut down
all kernels (twice to skip confirmation).

Created new window in existing browser session.

On many platforms, Jupyter will automatically open up in your default web browser
(unless you start it with --no-browser). Otherwise, you can navigate to the HTTP

address printed when you started the notebook, here http://localhost:8888/. See
Figure 2-1 for what this looks like in Google Chrome.

Many people use Jupyter as a local computing environment, but it
can also be deployed on servers and accessed remotely. I won't
cover those details here, but encourage you to explore this topic on
the internet if it’s relevant to your needs.

C (| & localhost: | O o £ 0
ZJupyter

Files  Running  Clusters
Selectitems to perform actions on them. Upload  New~ | &
- &
© choz
0 chos
0 chos
© chor
© chos
© choo
0 chi1
0 chi3
& appendix_python.ipynb

& chozipynb

ipynb
& cho7.ipynb

& chos.ipynb

Figure 2-1. Jupyter notebook landing page
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To create a new notebook, click the New button and select the “Python 3” or “conda
[default]” option. You should see something like Figure 2-2. If this is your first time,
try clicking on the empty code “cell” and entering a line of Python code. Then press
Shift-Enter to execute it.

(1 | O localhost a0 o :
= J u pyte I Untitled (unsaved changes) A
File Edit View Insert Cell Kernel Help rd ‘ Python 3 O
+ x @A B 4+ ¥ M B C codk v CellToolbar

In [1]: print('Hello, world!")
Hello, world!

In[1: |

Figure 2-2. Jupyter new notebook view

When you save the notebook (see “Save and Checkpoint” under the notebook File
menu), it creates a file with the extension .ipynb. This is a self-contained file format
that contains all of the content (including any evaluated code output) currently in the
notebook. These can be loaded and edited by other Jupyter users. To load an existing
notebook, put the file in the same directory where you started the notebook process
(or in a subfolder within it), then double-click the name from the landing page. You
can try it out with the notebooks from my wesm/pydata-book repository on GitHub.
See Figure 2-3.

While the Jupyter notebook can feel like a distinct experience from the IPython shell,
nearly all of the commands and tools in this chapter can be used in either environ-
ment.
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Introductory examples

l.usa.gov data from bit.ly
In [ 1: %pwd
In [ 1: path = 'ch@2/usagov_bitly data2012-03-16-1331923249.txt"
In [ 1: open(path).readline()

In [ 1: import json
path = 'ch02/usagov_bitly data2012-03-16-1331923249.txt"’
records = [json.loads(line) for line in open(path)]

In [ 1: records[0]
In [ 1: records[0]['tz"]

In [ 1: print(records[0]1['tz'])

Counting time zones in pure Python

Figure 2-3. Jupyter example view for an existing notebook

Tab Completion

On the surface, the IPython shell looks like a cosmetically different version of the
standard terminal Python interpreter (invoked with python). One of the major
improvements over the standard Python shell is tab completion, found in many IDEs
or other interactive computing analysis environments. While entering expressions in
the shell, pressing the Tab key will search the namespace for any variables (objects,
functions, etc.) matching the characters you have typed so far:

In [1]: an_apple = 27

In [2]: an_example = 42

In [3]: an<Tab>

an_apple and an_example any

In this example, note that IPython displayed both the two variables I defined as well
as the Python keyword and and built-in function any. Naturally, you can also com-
plete methods and attributes on any object after typing a period:
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In [3]: b = [1, 2, 3]

In [4]: b.<Tab>

b.append b.count b.insert b.reverse
b.clear b.extend b.pop b.sort
b.copy b.index b.remove

The same goes for modules:

In [1]: import datetime

In [2]: datetime.<Tab>

datetime.date datetime.MAXYEAR datetime.timedelta
datetime.datetime datetime.MINYEAR datetime.timezone
datetime.datetime_CAPI datetime.time datetime.tzinfo

In the Jupyter notebook and newer versions of IPython (5.0 and higher), the auto-
completions show up in a drop-down box rather than as text output.

Note that IPython by default hides methods and attributes starting
with underscores, such as magic methods and internal “private”
methods and attributes, in order to avoid cluttering the display
(and confusing novice users!). These, too, can be tab-completed,
but you must first type an underscore to see them. If you prefer to
always see such methods in tab completion, you can change this
setting in the IPython configuration. See the IPython documenta-
tion to find out how to do this.

Tab completion works in many contexts outside of searching the interactive name-
space and completing object or module attributes. When typing anything that looks
like a file path (even in a Python string), pressing the Tab key will complete anything
on your computer’s filesystem matching what you've typed:

In [7]: datasets/movielens/<Tab>

datasets/movielens/movies.dat datasets/movielens/README
datasets/movielens/ratings.dat datasets/movielens/users.dat

In [7]: path = 'datasets/movielens/<Tab>
datasets/movielens/movies.dat datasets/movielens/README
datasets/movielens/ratings.dat datasets/movielens/users.dat
Combined with the %run command (see “The %run Command” on page 25), this
functionality can save you many keystrokes.

Another area where tab completion saves time is in the completion of function key-
word arguments (and including the = sign!). See Figure 2-4.
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In [12]: def func_with keywords(abra=1, abbra=2, abbbra=3):
return abra, abbra, abbbra

In [ 1: func with keywordsab|
abbbra=
abbra=
abra=
abs

Figure 2-4. Autocomplete function keywords in Jupyter notebook

WEe'll have a closer look at functions in a little bit.

Introspection

Using a question mark (?) before or after a variable will display some general infor-

mation about the object:

In [8]: b = [1, 2, 3]

In [9]: b?

Type: list

String Form:[1, 2, 3]

Length: 3

Docstring:

1ist() -> new empty list

list(iterable) -> new list initialized from 's items

In [10]: print?
Docstring:
print(value, ..., sep=' ', end='\n', file=sys.stdout, flush=False)

Prints the values to a stream, or to sys.stdout by default.
Optional keyword arguments:
file: a file-like object (stream); defaults to the current sys.stdout.

sep: string inserted between values, default a space.

end: string appended after the last value, default a newline.
flush: whether to forcibly flush the stream.

Type: builtin_function_or_method

This is referred to as object introspection. If the object is a function or instance
method, the docstring, if defined, will also be shown. Suppose wed written the follow-

ing function (which you can reproduce in IPython or Jupyter):
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def add_numbers(a, b):

mwnn

Add two numbers together

Returns

the_sum : type of arguments

mwnn

return a + b
Then using ? shows us the docstring:

In [11]: add_numbers?
Signature: add_numbers(a, b)
Docstring:

Add two numbers together

Returns

the_sum : type of arguments
File: <ipython-input-9-6a548a216e27>
Type: function

Using ?? will also show the function’s source code if possible:

In [12]: add_numbers??
Signature: add_numbers(a, b)
Source:

def add_numbers(a, b):

mwun

Add two numbers together

Returns

the_sum : type of arguments

mwun

return a + b
File: <ipython-input-9-6a548a216e27>
Type: function

? has a final usage, which is for searching the IPython namespace in a manner similar
to the standard Unix or Windows command line. A number of characters combined
with the wildcard (*) will show all names matching the wildcard expression. For
example, we could get a list of all functions in the top-level NumPy namespace con-
taining load:

In [13]: np.*load*?
np.__loader__
np.load

np.loads

np.loadtxt
np.pkgload
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The %run Command

You can run any file as a Python program inside the environment of your IPython
session using the %run command. Suppose you had the following simple script stored
in ipython_script_test.py:

def f(x, y, z):
return (x +vy) / z

a=
b =
C =

~N O n

.5

result = f(a, b, c)
You can execute this by passing the filename to %run:
In [14]: %run ipython_script_test.py

The script is run in an empty namespace (with no imports or other variables defined)
so that the behavior should be identical to running the program on the command line
using python script.py. All of the variables (imports, functions, and globals)
defined in the file (up until an exception, if any, is raised) will then be accessible in
the IPython shell:

In [15]: ¢
out [15]: 7.5

In [16]: result
Out[16]: 1.4666666666666666

If a Python script expects command-line arguments (to be found in sys.argv), these
can be passed after the file path as though run on the command line.

Should you wish to give a script access to variables already defined
in the interactive IPython namespace, use %run -1 instead of plain
%run.

In the Jupyter notebook, you may also use the related %load magic function, which
imports a script into a code cell:

>>> %load ipython_script_test.py

def f(x, vy, z):
return (x +vy) / z

Nn oo
i n

~N O n
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result = f(a, b, c)

Interrupting running code

Pressing Ctrl-C while any code is running, whether a script through %run or a long-
running command, will cause a KeyboardInterrupt to be raised. This will cause
nearly all Python programs to stop immediately except in certain unusual cases.

When a piece of Python code has called into some compiled exten-
sion modules, pressing Ctrl-C will not always cause the program
execution to stop immediately. In such cases, you will have to
\ either wait until control is returned to the Python interpreter, or in
more dire circumstances, forcibly terminate the Python process.

Executing Code from the Clipboard

If you are using the Jupyter notebook, you can copy and paste code into any code cell
and execute it. It is also possible to run code from the clipboard in the IPython shell.
Suppose you had the following code in some other application:

5
7
f x > 5:

X += 1

X
y
i

y =28
The most foolproof methods are the %paste and %cpaste magic functions. %paste
takes whatever text is in the clipboard and executes it as a single block in the shell:

In [17]: %paste

X =5

y =7

if x > 5:
X += 1
y=28

## -- End pasted text --
%cpaste is similar, except that it gives you a special prompt for pasting code into:

In [18]: %cpaste
Pasting code; enter '--' alone on the line to stop or use Ctrl-D.
X =5
y =7
if x > 5
X += 1
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y=8

With the %cpaste block, you have the freedom to paste as much code as you like
before executing it. You might decide to use %cpaste in order to look at the pasted
code before executing it. If you accidentally paste the wrong code, you can break out
of the %cpaste prompt by pressing Ctrl-C.

Terminal Keyboard Shortcuts

IPython has many keyboard shortcuts for navigating the prompt (which will be famil-
iar to users of the Emacs text editor or the Unix bash shell) and interacting with the
shell's command history. Table 2-1 summarizes some of the most commonly used
shortcuts. See Figure 2-5 for an illustration of a few of these, such as cursor
movement.

Cb f
“—
In [27]: a variable In [27]: a vari  Ck
Ca Ce In [27]: Cu

Figure 2-5. Illustration of some keyboard shortcuts in the IPython shell

Table 2-1. Standard IPython keyboard shortcuts

Keyboard shortcut  Description
Ctrl-P or up-arrow Search backward in command history for commands starting with currently entered text
Ctrl-N or down-arrow  Search forward in command history for commands starting with currently entered text

Ctrl-R Readline-style reverse history search (partial matching)
Ctrl-Shift-V Paste text from clipboard

(trl-C Interrupt currently executing code

Ctrl-A Move cursor to beginning of line

Ctrl-E Move cursor to end of line

(trl-K Delete text from cursor until end of line

(trl-U Discard all text on current line

Ctrl-F Move cursor forward one character

(trl-B Move cursor back one character

Ctrl-L (lear screen

Note that Jupyter notebooks have a largely separate set of keyboard shortcuts for nav-
igation and editing. Since these shortcuts have evolved more rapidly than IPython’s, I
encourage you to explore the integrated help system in the Jupyter notebook’s menus.
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About Magic Commands

IPython’s special commands (which are not built into Python itself) are known as
“magic” commands. These are designed to facilitate common tasks and enable you to
easily control the behavior of the IPython system. A magic command is any com-
mand prefixed by the percent symbol %. For example, you can check the execution
time of any Python statement, such as a matrix multiplication, using the %timeit
magic function (which will be discussed in more detail later):

In [20]: a = np.random.randn(100, 100)

In [20]: %timeit np.dot(a, a)
10000 loops, best of 3: 20.9 ps per loop

Magic commands can be viewed as command-line programs to be run within the
IPython system. Many of them have additional “command-line” options, which can
all be viewed (as you might expect) using ?:

In [21]: %debug?
Docstring:

%debug [--breakpoint FILE:LINE] [statement [statement ...]]
Activate the interactive debugger.

This magic command support two ways of activating debugger.

One is to activate debugger before executing code. This way, you
can set a break point, to step through the code from

You can use this mode by giving statements to execute and optionally
a breakpoint.

The other one is to activate debugger in post-mortem mode. You can
activate this mode simply running %debug without any argument.

If an exception has just occurred, this lets you inspect its stack
frames interactively. Note that this will always work only on the last
traceback that occurred, so you must call this quickly after an
exception that you wish to inspect has fired, because if another one
occurs, it clobbers the previous one.

If you want IPython to automatically do this on every exception, see
the %pdb magic for more details.

positional arguments:
statement Code to run in debugger. You can omit this in cell
magic mode.

optional arguments:
--breakpoint <FILE:LINE>, -b <FILE:LINE>
Set break point at LINE in FILE.
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Magic functions can be used by default without the percent sign, as long as no vari-
able is defined with the same name as the magic function in question. This feature is
called automagic and can be enabled or disabled with %automagic.

Some magic functions behave like Python functions and their output can be assigned
to a variable:

In [22]: %pwd
Out[22]: '/home/wesm/code/pydata-book

In [23]: foo = %pwd

In [24]: foo

Out[24]: '/home/wesm/code/pydata-book'
Since IPython’s documentation is accessible from within the system, I encourage you
to explore all of the special commands available by typing %quickref or %magic.
Table 2-2 highlights some of the most critical ones for being productive in interactive
computing and Python development in IPython.

Table 2-2. Some frequently used IPython magic commands

%quickref Display the IPython Quick Reference Card

%magic Display detailed documentation for all of the available magic commands
%debug Enter the interactive debugger at the bottom of the last exception traceback
%hist Print command input (and optionally output) history

%pdb Automatically enter debugger after any exception

%paste Execute preformatted Python code from clipboard

%cpaste Open a special prompt for manually pasting Python code to be executed
%reset Delete all variables/names defined in interactive namespace

%page OBJECT Pretty-print the object and display it through a pager

%run script.py Run a Python script inside IPython

%prun statement Execute statement with cProfile and report the profiler output
%time statement Report the execution time of a single statement

%timeit statement Run a statement multiple times to compute an ensemble average execution time; useful for

timing code with very short execution time

%who, %who_ls, %whos Display variables defined in interactive namespace, with varying levels of information/
verhosity

%xdel variable Delete a variable and attempt to clear any references to the object in the IPython internals

Matplotlib Integration

One reason for IPython’s popularity in analytical computing is that it integrates well
with data visualization and other user interface libraries like matplotlib. Don’t worry
if you have never used matplotlib before; it will be discussed in more detail later in
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this book. The %matplotlib magic function configures its integration with the IPy-
thon shell or Jupyter notebook. This is important, as otherwise plots you create will
either not appear (notebook) or take control of the session until closed (shell).

In the IPython shell, running %matplotlib sets up the integration so you can create
multiple plot windows without interfering with the console session:

In [26]: %matplotlib
Using matplotlib backend: Qt4Agg

In Jupyter, the command is a little different (Figure 2-6):

In [26]: %matplotlib inline

In [14]: =%=matplotlib inline

In [15]: import matplotlib.pyplot as plt
plt.plot(np.random.randn(5@).cumsum( )}

out[15]: [<matplotlib.lines.Line2D at ©x7f828T0497f0>]

Lo o |

Figure 2-6. Jupyter inline matplotlib plotting

2.3 Python Language Basics

In this section, I will give you an overview of essential Python programming concepts
and language mechanics. In the next chapter, I will go into more detail about Python’s
data structures, functions, and other built-in tools.

Language Semantics

The Python language design is distinguished by its emphasis on readability, simplic-
ity, and explicitness. Some people go so far as to liken it to “executable pseudocode”

Indentation, not braces

Python uses whitespace (tabs or spaces) to structure code instead of using braces as in
many other languages like R, C++, Java, and Perl. Consider a for loop from a sorting
algorithm:
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for x in array:
if x < pivot:
less.append(x)
else:
greater.append(x)

A colon denotes the start of an indented code block after which all of the code must
be indented by the same amount until the end of the block.

Love it or hate it, significant whitespace is a fact of life for Python programmers, and
in my experience it can make Python code more readable than other languages I've
used. While it may seem foreign at first, you will hopefully grow accustomed in time.

I strongly recommend using four spaces as your default indentation
and replacing tabs with four spaces. Many text editors have a set-
ting that will replace tab stops with spaces automatically (do this!).
Some people use tabs or a different number of spaces, with two
spaces not being terribly uncommon. By and large, four spaces is
the standard adopted by the vast majority of Python programmers,
so I recommend doing that in the absence of a compelling reason
otherwise.

As you can see by now, Python statements also do not need to be terminated by semi-
colons. Semicolons can be used, however, to separate multiple statements on a single
line:

a=5Db=6;c=7

Putting multiple statements on one line is generally discouraged in Python as it often
makes code less readable.

Everything is an object

An important characteristic of the Python language is the consistency of its object
model. Every number, string, data structure, function, class, module, and so on exists
in the Python interpreter in its own “box,” which is referred to as a Python object.
Each object has an associated type (e.g., string or function) and internal data. In prac-
tice this makes the language very flexible, as even functions can be treated like any
other object.

Comments

Any text preceded by the hash mark (pound sign) # is ignored by the Python inter-
preter. This is often used to add comments to code. At times you may also want to
exclude certain blocks of code without deleting them. An easy solution is to comment
out the code:
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results = []
for line in file_handle:
# keep the empty lines for now
# if len(line) == 0:
# continue
results.append(line.replace('foo', 'bar'))

Comments can also occur after a line of executed code. While some programmers
prefer comments to be placed in the line preceding a particular line of code, this can
be useful at times:

print("Reached this line") # Simple status report

Function and object method calls

You call functions using parentheses and passing zero or more arguments, optionally
assigning the returned value to a variable:

result = f(x, vy, z)
a()

Almost every object in Python has attached functions, known as methods, that have
access to the object’s internal contents. You can call them using the following syntax:

obj.some_method(x, y, z)
Functions can take both positional and keyword arguments:
result = f(a, b, ¢, d=5, e="'foo"')

More on this later.

Variables and argument passing

When assigning a variable (or name) in Python, you are creating a reference to the
object on the righthand side of the equals sign. In practical terms, consider a list of
integers:

In [8]: a = [1, 2, 3]
Suppose we assign a to a new variable b:
In [9]: b =a

In some languages, this assignment would cause the data [1, 2, 3] to be copied. In
Python, a and b actually now refer to the same object, the original list [1, 2, 3] (see
Figure 2-7 for a mockup). You can prove this to yourself by appending an element to
a and then examining b:

In [10]: a.append(4)

In [11]: b
Out[11]: [1, 2, 3, 4]
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list
[1, 2, 3]

bh——

Figure 2-7. Two references for the same object

Understanding the semantics of references in Python and when, how, and why data is
copied is especially critical when you are working with larger datasets in Python.

Assignment is also referred to as binding, as we are binding a name
to an object. Variable names that have been assigned may occasion-
ally be referred to as bound variables.

When you pass objects as arguments to a function, new local variables are created ref-
erencing the original objects without any copying. If you bind a new object to a vari-
able inside a function, that change will not be reflected in the parent scope. It is
therefore possible to alter the internals of a mutable argument. Suppose we had the
following function:

def append_element(some_list, element):
some_list.append(element)

Then we have:
In [27]: data = [1, 2, 3]
In [28]: append_element(data, 4)
In [29]: data
Out[29]: [1, 2, 3, 4]
Dynamic references, strong types

In contrast with many compiled languages, such as Java and C++, object references in
Python have no type associated with them. There is no problem with the following:

In [12]: a =5

In [13]: type(a)
Out[13]: int

In [14]: a = 'foo'
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In [15]: type(a)
Out[15]: str

Variables are names for objects within a particular namespace; the type information is
stored in the object itself. Some observers might hastily conclude that Python is not a
“typed language.” This is not true; consider this example:

TypeError Traceback (most recent call last)
<ipython-input-16-f9dbf5f0b234> in <module>()
-<--> 1 '5' + 5

TypeError: must be str, not int

In some languages, such as Visual Basic, the string '5"' might get implicitly converted
(or casted) to an integer, thus yielding 10. Yet in other languages, such as JavaScript,
the integer 5 might be casted to a string, yielding the concatenated string '55'. In this
regard Python is considered a strongly typed language, which means that every object
has a specific type (or class), and implicit conversions will occur only in certain obvi-
ous circumstances, such as the following:

In [17]: a = 4.5

In [18]: b =2

# String formatting, to be visited later
In [19]: print('a is {0}, b is {1}'.format(type(a), type(b)))
a is <class 'float'>, b is <class 'int'>

In [20]: a / b
out[20]: 2.25

Knowing the type of an object is important, and it’s useful to be able to write func-
tions that can handle many different kinds of input. You can check that an object is an
instance of a particular type using the isinstance function:

In [21]: a =5

In [22]: isinstance(a, int)
Out[22]: True

isinstance can accept a tuple of types if you want to check that an object’s type is
among those present in the tuple:

In [23]: a=5; b=14.5

In [24]: isinstance(a, (int, float))
Out[24]: True

In [25]: isinstance(b, (int, float))
Out[25]: True
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Attributes and methods

Objects in Python typically have both attributes (other Python objects stored “inside”
the object) and methods (functions associated with an object that can have access to
the object’s internal data). Both of them are accessed via the syntax
obj.attribute_name:

In [1]: a = 'foo'

In [2]: a.<Press Tab>

a.capitalize a.format a.isupper a.rindex a.strip
a.center a.index a.join a.rjust a.swapcase
a.count a.isalnum a.ljust a.rpartition a.title
a.decode a.isalpha a.lower a.rsplit a.translate
a.encode a.isdigit a.lstrip a.rstrip a.upper
a.endswith a.islower a.partition a.split a.zfill
a.expandtabs a.isspace a.replace a.splitlines

a.find a.istitle a.rfind a.startswith

Attributes and methods can also be accessed by name via the getattr function:

In [27]: getattr(a, 'split')

Out[27]: <function str.split>
In other languages, accessing objects by name is often referred to as “reflection”
While we will not extensively use the functions getattr and related functions
hasattr and setattr in this book, they can be used very effectively to write generic,
reusable code.

Duck typing

Often you may not care about the type of an object but rather only whether it has
certain methods or behavior. This is sometimes called “duck typing,” after the saying
“If it walks like a duck and quacks like a duck, then it’s a duck” For example, you can
verify that an object is iterable if it implemented the iterator protocol. For many
objects, this means it has a __iter__ “magic method,” though an alternative and bet-
ter way to check is to try using the iter function:

def isiterable(obj):
try:
iter(obj)
return True
except TypeError: # not iterable
return False

This function would return True for strings as well as most Python collection types:

In [29]: isiterable('a string')
Out[29]: True

In [30]: isiterable([1, 2, 3])
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Out[30]: True
In [31]: isiterable(5)
Out[31]: False

A place where I use this functionality all the time is to write functions that can accept
multiple kinds of input. A common case is writing a function that can accept any
kind of sequence (list, tuple, ndarray) or even an iterator. You can first check if the
object is a list (or a NumPy array) and, if it is not, convert it to be one:

if not isinstance(x, list) and isiterable(x):
x = list(x)
Imports

In Python a module is simply a file with the .py extension containing Python code.
Suppose that we had the following module:

# some_module.py
PI = 3.14159

def f(x):
return x + 2

def g(a, b):
return a + b

If we wanted to access the variables and functions defined in some_module.py, from
another file in the same directory we could do:

import
result = some_module.f(5)
pil = some_module.PI

Or equivalently:

from import f, g, PI
result = g(5, PI)

By using the as keyword you can give imports different variable names:

import as

from import PI as pi, g as gf
ri = sm.f(pi)

r2 = gf (6, pi)

Binary operators and comparisons
Most of the binary math operations and comparisons are as you might expect:

In [32]: 5 -7
out[32]: -2
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In [33]: 12 + 21.5
Out[33]: 33.5

In [34]: 5 <= 2
Out[34]: False

See Table 2-3 for all of the available binary operators.

To check if two references refer to the same object, use the is keyword. is not is also
perfectly valid if you want to check that two objects are not the same:

In [35]: a = [1, 2, 3]

In [36]: b =a

In [37]: c = list(a)

In [38]: ais b
Out[38]: True

In [39]: a is not c
Out[39]: True

Since 1ist always creates a new Python list (i.e., a copy), we can be sure that c is dis-
tinct from a. Comparing with is is not the same as the == operator, because in this
case we have:

In [40]: a == ¢
Out[40]: True

A very common use of is and is not is to check if a variable is None, since there is
only one instance of None:

In [41]: a = None

In [42]: a is None
Out[42]: True

Table 2-3. Binary operators

Operation Description

a+b Add aand b

a-b Subtract b from a

a*b Multiply a by b

a/b Divide a by b

al/lb Floor-divide a by b, dropping any fractional remainder

a ** b Raise a to the b power

a&b True if both a and b are True; for integers, take the bitwise AND

al|b True if either a or b is True; for integers, take the bitwise OR

a*b For booleans, True if a or b is True, but not both; for integers, take the bitwise EXCLUSIVE-OR
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a == Trueif a equals b

al=b True if ais not equal to b

a <= b, a < b Trueifaisless than (less than or equal) to b

a > b, a >= b Trueif ais greater than (greater than or equal) to b
atisb True if a and b reference the same Python object

a is not b True if a and b reference different Python objects

Mutable and immutable objects

Most objects in Python, such as lists, dicts, NumPy arrays, and most user-defined
types (classes), are mutable. This means that the object or values that they contain can
be modified:

In [43]: a_list = ['foo', 2, [4, 5]]
In [44]: a_list[2] = (3, 4)

In [45]: a_list
out[45]: ['foo', 2, (3, 4)]

Others, like strings and tuples, are immutable:

In [46]: a_tuple = (3, 5, (4, 5))

In [47]: a_tuple[1] = 'four'

TypeError Traceback (most recent call last)

<ipython-input-47-b7966a9ae0f1> in <module>()

----> 1 a_tuple[1] = 'four'

TypeError: 'tuple' object does not support item assignment
Remember that just because you can mutate an object does not mean that you always
should. Such actions are known as side effects. For example, when writing a function,
any side effects should be explicitly communicated to the user in the function’s docu-
mentation or comments. If possible, I recommend trying to avoid side effects and
favor immutability, even though there may be mutable objects involved.

Scalar Types

Python along with its standard library has a small set of built-in types for handling
numerical data, strings, boolean (True or False) values, and dates and time. These
“single value” types are sometimes called scalar types and we refer to them in this
book as scalars. See Table 2-4 for a list of the main scalar types. Date and time han-
dling will be discussed separately, as these are provided by the datetime module in
the standard library.
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Table 2-4. Standard Python scalar types

Type  Description

None  The Python “null” value (only one instance of the None object exists)

str String type; holds Unicode (UTF-8 encoded) strings

bytes Raw ASCIl bytes (or Unicode encoded as bytes)

float Double-precision (64-bit) floating-point number (note there is no separate double type)
bool ATrueorFalse value

int  Arbitrary precision signed integer

Numeric types

The primary Python types for numbers are int and float. An int can store arbitrar-
ily large numbers:

In [48]: ival = 17239871

In [49]: ival ** 6
Out[49]: 26254519291092456596965462913230729701102721

Floating-point numbers are represented with the Python float type. Under the hood
each one is a double-precision (64-bit) value. They can also be expressed with scien-
tific notation:

In [50]: fval = 7.243

In [51]: fval2 = 6.78e-5
Integer division not resulting in a whole number will always yield a floating-point
number:

In [52]: 3 / 2

Out[52]: 1.5
To get C-style integer division (which drops the fractional part if the result is not a
whole number), use the floor division operator //:

In [53]: 3 /] 2
Out[53]: 1

Strings
Many people use Python for its powerful and flexible built-in string processing capa-
bilities. You can write string literals using either single quotes ' or double quotes ":

a = 'one way of writing a string'

b = "another way"

For multiline strings with line breaks, you can use triple quotes, either ''' or
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nun

C =
This is a longer string that
spans multiple lines

It may surprise you that this string c actually contains four lines of text; the line
breaks after """ and after 1ines are included in the string. We can count the new line
characters with the count method on c:

In [55]: c.count('\n')
Out[55]: 3

Python strings are immutable; you cannot modify a string:

In [56]: a = '"this is a string'

In [57]: a[10] = 'f'

TypeError Traceback (most recent call last)
<ipython-input-57-5ca625d1e504> in <module>()

----> 1 a[10] = 'f!

TypeError: 'str' object does not support item assignment

In [58]: b = a.replace('string', 'longer string')

In [59]: b
Out[59]: 'this is a longer string'

Afer this operation, the variable a is unmodified:

In [60]: a
Out[60]: 'this is a string'

Many Python objects can be converted to a string using the str function:
In [61]: a = 5.6
In [62]: s = str(a)

In [63]: print(s)
5.6

Strings are a sequence of Unicode characters and therefore can be treated like other
sequences, such as lists and tuples (which we will explore in more detail in the next
chapter):

In [64]: s = 'python'

In [65]: list(s)
Out[ss]: [|pl’ ly|’ |tl’ lh|’ Iol’ ln|]

In [66]: s[:3]
Out[66]: 'pyt'
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The syntax s[:3] is called slicing and is implemented for many kinds of Python
sequences. This will be explained in more detail later on, as it is used extensively in
this book.

The backslash character \ is an escape character, meaning that it is used to specify
special characters like newline \n or Unicode characters. To write a string literal with
backslashes, you need to escape them:

In [67]: s = '12\\34'

In [68]: print(s)
12\34

If you have a string with a lot of backslashes and no special characters, you might find
this a bit annoying. Fortunately you can preface the leading quote of the string with r,
which means that the characters should be interpreted as is:

In [69]: s = r'this\has\no\special\characters'

In [70]: s
Out[70]: 'this\\has\\no\\special\\characters'

The r stands for raw.
Adding two strings together concatenates them and produces a new string:

In [71]: a = 'this is the first half '
In [72]: b = 'and this is the second half'

In [73]: a + b
Out[73]: 'this is the first half and this is the second half'

String templating or formatting is another important topic. The number of ways to
do so has expanded with the advent of Python 3, and here I will briefly describe the
mechanics of one of the main interfaces. String objects have a format method that
can be used to substitute formatted arguments into the string, producing a new
string:
In [74]: template = '{0:.2f} {1:s} are worth US${2:d}'
In this string,
 {0:.2f} means to format the first argument as a floating-point number with two
decimal places.
o {1:s} means to format the second argument as a string.
o {2:d} means to format the third argument as an exact integer.

To substitute arguments for these format parameters, we pass a sequence of argu-
ments to the format method:
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In [75]: template.format(4.5560, 'Argentine Pesos', 1)

Out[75]: '4.56 Argentine Pesos are worth USS$1'
String formatting is a deep topic; there are multiple methods and numerous options
and tweaks available to control how values are formatted in the resulting string. To
learn more, I recommend consulting the official Python documentation.

I discuss general string processing as it relates to data analysis in more detail in Chap-
ter 8.

Bytes and Unicode

In modern Python (i.e., Python 3.0 and up), Unicode has become the first-class string
type to enable more consistent handling of ASCII and non-ASCII text. In older ver-
sions of Python, strings were all bytes without any explicit Unicode encoding. You
could convert to Unicode assuming you knew the character encoding. Let’s look at an
example:

In [76]: val = "espanol"

In [77]: val
Out[77]: 'espanol'

We can convert this Unicode string to its UTF-8 bytes representation using the
encode method:

In [78]: val_utf8 = val.encode('utf-8")

In [79]: val_utf8
Out[79]: b'espa\xc3\xbiol'

In [80]: type(val_utf8)

Out[80]: bytes
Assuming you know the Unicode encoding of a bytes object, you can go back using
the decode method:

In [81]: val_utf8.decode('utf-8")
Out[81]: 'espanol'

While it's become preferred to use UTF-8 for any encoding, for historical reasons you
may encounter data in any number of different encodings:

In [82]: val.encode('latinl')
Out[82]: b'espa\xfiol'

In [83]: val.encode('utf-16")
0ut[83]: b'\xff\xfee\x00s\x00p\x00a\x00\xf1\x000\x001\x00'

In [84]: val.encode('utf-16le")
Out[84]: b'e\x00s\x00p\x00a\x00\xf1\x000\x001\x00'
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It is most common to encounter bytes objects in the context of working with files,
where implicitly decoding all data to Unicode strings may not be desired.

Though you may seldom need to do so, you can define your own byte literals by pre-
fixing a string with b:

In [85]:

In [86]:
out[86]:

In [87]:

In [88]:
Out[88]:

Booleans

bytes_val = b'this is bytes'

bytes_val
b'this is bytes'

decoded = bytes_val.decode('utf8")

decoded # this is str (Unicode) now
"this is bytes'

The two boolean values in Python are written as True and False. Comparisons and
other conditional expressions evaluate to either True or False. Boolean values are
combined with the and and or keywords:

In [89]:
Out[89]:

In [90]:
Out[90]:

Type casting

True and True
True

False or True
True

The str, bool, int, and float types are also functions that can be used to cast values
to those types:

In [91]:
In [92]:

In [93]:
Out[93]:

In [94]:
out[94]:

In [95]:
Out[95]:

In [96]:
Out[96]:

s = '3.14159'
fval = float(s)

type(fval)
float

int(fval)
3

bool(fval)
True

bool(0)
False
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None

None is the Python null value type. If a function does not explicitly return a value, it
implicitly returns None:

In [97]: a = None

In [98]: a is None
Out[98]: True

In [99]: b =5

In [100]: b is not None
Out[100]: True

None is also a common default value for function arguments:

def add_and_maybe_multiply(a, b, c=None):
result =a +b

if ¢ is not None:
result = result * c

return result

While a technical point, it's worth bearing in mind that None is not only a reserved
keyword but also a unique instance of NoneType:

In [101]: type(None)
Out[101]: NoneType
Dates and times

The built-in Python datetime module provides datetime, date, and time types. The
datetime type, as you may imagine, combines the information stored in date and
time and is the most commonly used:

In [102]: from import datetime, date, time
In [103]: dt = datetime(2011, 10, 29, 20, 30, 21)

In [104]: dt.day
out[104]: 29

In [165]: dt.minute

Out[105]: 30
Given a datetime instance, you can extract the equivalent date and time objects by
calling methods on the datetime of the same name:

In [106]: dt.date()
Out[106]: datetime.date(2011, 10, 29)
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In [107]: dt.time()
Out[107]: datetime.time(20, 30, 21)

The strftime method formats a datetime as a string:

In [108]: dt.strftime('%m/%d/%Y %H:%M')
Out[108]: '10/29/2011 20:30'

Strings can be converted (parsed) into datetime objects with the strptime function:

In [109]: datetime.strptime('20091031', '%Y%m%d')
Out[109]: datetime.datetime(2009, 10, 31, 0, 0)

See Table 2-5 for a full list of format specifications.

When you are aggregating or otherwise grouping time series data, it will occasionally
be useful to replace time fields of a series of datetimes—for example, replacing the
minute and second fields with zero:

In [110]: dt.replace(minute=0, second=0)
Out[110]: datetime.datetime(2011, 10, 29, 20, 0)

Since datetime.datetime is an immutable type, methods like these always produce
new objects.

The difference of two datetime objects produces a datetime.timedelta type:
In [111]: dt2 = datetime(2011, 11, 15, 22, 30)
In [112]: delta = dt2 - dt

In [113]: delta
Out[113]: datetime.timedelta(17, 7179)

In [114]: type(delta)
Out[114]: datetime.timedelta

The output timedelta(17, 7179) indicates that the timedelta encodes an offset of 17
days and 7,179 seconds.

Adding a timedelta to a datetime produces a new shifted datetime:

In [115]: dt
Out[115]: datetime.datetime(2011, 10, 29, 20, 30, 21)

In [116]: dt + delta
Out[116]: datetime.datetime(2011, 11, 15, 22, 30)

Table 2-5. Datetime format specification (ISO C89 compatible)

Type Description

%Y  Four-digit year
%y  Two-digit year
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Type Description

%m  Two-digit month [01, 12]

%  Two-digit day [01, 31]

%H  Hour (24-hour clock) [00, 23]

%I Hour (12-hour clock) [01, 12]

%M Two-digit minute [00, 59]

%S Second [00, 61] (seconds 60, 61 account for leap seconds)
%w  Weekday as integer [0 (Sunday), 6]

%U  Week number of the year [00, 53]; Sunday is considered the first day of the week, and days before the first Sunday of
the year are “week 0”

%W  Week number of the year [00, 53]; Monday is considered the first day of the week, and days before the first Monday of
the year are “week 0"

%z UTCtime zone offset as +HHMM or -HHMM; empty if time zone naive
%F  Shortcut for %Y -%m-%d (e.g., 2012-4-18)
%D Shortcut for %m/%d /%y (e.g., 04/18/12)

Control Flow

Python has several built-in keywords for conditional logic, loops, and other standard
control flow concepts found in other programming languages.

if, elif, and else

The if statement is one of the most well-known control flow statement types. It
checks a condition that, if True, evaluates the code in the block that follows:

if x < 0:
print('It's negative')

An if statement can be optionally followed by one or more elif blocks and a catch-
all else block if all of the conditions are False:

if x < 0:
print('It's negative')
elif x == 0:
print('Equal to zero')
elif 0 < x < 5:
print('Positive but smaller than 5')
else:
print('Positive and larger than or equal to 5')

If any of the conditions is True, no further elif or else blocks will be reached. With
a compound condition using and or or, conditions are evaluated left to right and will
short-circuit:

In [117]: a

1]
~

5; b

In [118]: c =8; d

I
IN
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In [119]: if a < b or c > d:
et print('Made it')
Made it
In this example, the comparison ¢ > d never gets evaluated because the first compar-
ison was True.

It is also possible to chain comparisons:

In [120]: 4 >3 > 2 > 1
Out[120]: True

for loops

for loops are for iterating over a collection (like a list or tuple) or an iterater. The
standard syntax for a for loop is:

for value in collection:
# do something with value

You can advance a for loop to the next iteration, skipping the remainder of the block,
using the continue keyword. Consider this code, which sums up integers in a list and
skips None values:

sequence = [1, 2, None, 4, None, 5]
total = 0
for value in sequence:
if value is None:
continue
total += value

A for loop can be exited altogether with the break keyword. This code sums ele-
ments of the list until a 5 is reached:

sequence = [1, 2, 0, 4, 6, 5, 2, 1]
total_until 5 = 0
for value in sequence:
if value ==
break
total_until_5 += value

The break keyword only terminates the innermost for loop; any outer for loops will
continue to run:

In [121]: for 1 in range(4):
P for j in range(4):
et if j > i:
et break
et print((i, 3))
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(1, 1)
(2, 0)
(2, 1)
(2, 2)
(3, 0)
(3, 1)
(3, 2)
(3, 3)

As we will see in more detail, if the elements in the collection or iterator are sequen-
ces (tuples or lists, say), they can be conveniently unpacked into variables in the for
loop statement:

for a, b, c in iterator:
# do something

while loops

A while loop specifies a condition and a block of code that is to be executed until the
condition evaluates to False or the loop is explicitly ended with break:

X = 256
total = 0
while x > 0:
if total > 500:

break
total += x
X =x//] 2

pass

pass is the “no-op” statement in Python. It can be used in blocks where no action is to
be taken (or as a placeholder for code not yet implemented); it is only required
because Python uses whitespace to delimit blocks:

if x < 0:
print('negative!")
elif x ==
# TODO: put something smart here
pass
else:
print('positive!")

range

The range function returns an iterator that yields a sequence of evenly spaced
integers:

In [122]: range(10)
Out[122]: range(0, 10)

48 | Chapter 2: Python Language Basics, IPython, and Jupyter Notebooks



In [123]: list(range(10))
Out[123]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Both a start, end, and step (which may be negative) can be given:

In [124]: list(range(0, 20, 2))
out[124]: [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

In [125]: list(range(5, 0, -1))
out[125]: [5, 4, 3, 2, 1]

As you can see, range produces integers up to but not including the endpoint. A
common use of range is for iterating through sequences by index:
seq = [1, 2, 3, 4]
for 1 in range(len(seq)):
val = seq[i]
While you can use functions like 1ist to store all the integers generated by range in

some other data structure, often the default iterator form will be what you want. This
snippet sums all numbers from 0 to 99,999 that are multiples of 3 or 5:

=0

i1 in range(100000):

# % is the modulo operator

ifi1%3==00ri1%5==0:
sum += 1

sum
for

While the range generated can be arbitrarily large, the memory use at any given time
may be very small.

Ternary expressions

A ternary expression in Python allows you to combine an if-else block that pro-
duces a value into a single line or expression. The syntax for this in Python is:

value = true-expr if condition else false-expr

Here, true-expr and false-expr can be any Python expressions. It has the identical
effect as the more verbose:

if condition:

value = true-expr
else:

value = false-expr

This is a more concrete example:

In [126]: x = 5

In [127]: 'Non-negative' if x >= 0 else 'Negative'
Out[127]: 'Non-negative'
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As with 1f-else blocks, only one of the expressions will be executed. Thus, the “if”
and “else” sides of the ternary expression could contain costly computations, but only
the true branch is ever evaluated.

While it may be tempting to always use ternary expressions to condense your code,
realize that you may sacrifice readability if the condition as well as the true and false
expressions are very complex.
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CHAPTER 3

Built-in Data Structures, Functions,
and Files

This chapter discusses capabilities built into the Python language that will be used
ubiquitously throughout the book. While add-on libraries like pandas and NumPy
add advanced computational functionality for larger datasets, they are designed to be
used together with Python’s built-in data manipulation tools.

We'll start with Python’s workhorse data structures: tuples, lists, dicts, and sets. Then,
we'll discuss creating your own reusable Python functions. Finally, we'll look at the
mechanics of Python file objects and interacting with your local hard drive.

3.1 Data Structures and Sequences

Python’s data structures are simple but powerful. Mastering their use is a critical part
of becoming a proficient Python programmer.

Tuple

A tuple is a fixed-length, immutable sequence of Python objects. The easiest way to
create one is with a comma-separated sequence of values:

In [1]: tup = 4, 5, 6

In [2]: tup
Out[2]: (4, 5, 6)

When you're defining tuples in more complicated expressions, it’s often necessary to
enclose the values in parentheses, as in this example of creating a tuple of tuples:
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In [3]: nested_tup = (4, 5, 6), (7, 8)

In [4]: nested_tup
out[4]: ((4, 5, 6), (7, 8))

You can convert any sequence or iterator to a tuple by invoking tuple:

In [5]: tuple([4, 0, 2])
Out[5]: (4, 0, 2)

In [6]: tup = tuple('string')

In [7]: tup

Out[7]: (ISI’ ‘tI, II_|, |_LI, ln|, |gl)
Elements can be accessed with square brackets [ ] as with most other sequence types.
Asin C, C++, Java, and many other languages, sequences are 0-indexed in Python:

In [8]: tup[0]
Oout[8]: 's'

While the objects stored in a tuple may be mutable themselves, once the tuple is cre-
ated it’s not possible to modify which object is stored in each slot:

In [9]: tup = tuple(['foo', [1, 2], Truel])

In [10]: tup[2] = False

TypeError Traceback (most recent call last)
<ipython-input-10-c7308343b841> in <module>()

----> 1 tup[2] = False

TypeError: 'tuple' object does not support item assignment

If an object inside a tuple is mutable, such as a list, you can modify it in-place:

In [11]: tup[1].append(3)

In [12]: tup
out[12]: ('foo', [1, 2, 3], True)

You can concatenate tuples using the + operator to produce longer tuples:

In [13]: (4, None, 'foo') + (6, 0) + ('bar',)
Out[13]: (4, None, 'foo', 6, 0, 'bar')

Multiplying a tuple by an integer, as with lists, has the effect of concatenating together
that many copies of the tuple:

In [14]: ('foo', 'bar') * 4
Out[14]: ('foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'bar')

Note that the objects themselves are not copied, only the references to them.
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Unpacking tuples

If you try to assign to a tuple-like expression of variables, Python will attempt to

unpack the value on the righthand side of the equals sign:
In [15]: tup = (4, 5, 6)
In [16]: a, b, c = tup

In [17]: b
Out[17]: 5

Even sequences with nested tuples can be unpacked:
In [18]: tup = 4, 5, (6, 7)
In [19]: a, b, (c, d) = tup

In [20]: d
Out[20]: 7

Using this functionality you can easily swap variable names, a task which in many

languages might look like:

tmp = a
a =
b = tmp

But, in Python, the swap can be done like this:

In [21]: a, b =1, 2

In [22]: a
Out[22]: 1
In [23]: b
Out[23]: 2

In [24]: b, a=a, b

In [25]: a
out[25]: 2
In [26]: b
Out[26]: 1

A common use of variable unpacking is iterating over sequences of tuples or lists:

In [27]: seq = [(1, 2, 3), (4, 5, 6), (7, 8, 9)]

In [28]: for a, b, c in seq:
el print('a={0}, b={1}, c={2}'.format(a, b, c))

3.1 Data Structures and Sequences
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Another common use is returning multiple values from a function. I'll cover this in
more detail later.

The Python language recently acquired some more advanced tuple unpacking to help
with situations where you may want to “pluck” a few elements from the beginning of
a tuple. This uses the special syntax *rest, which is also used in function signatures
to capture an arbitrarily long list of positional arguments:

In [29]: values = 1, 2, 3, 4, 5
In [30]: a, b, *rest = values

In [31]: a, b
out[31]: (1, 2)

In [32]: rest
Out[32]: [3, 4, 5]

This rest bit is sometimes something you want to discard; there is nothing special
about the rest name. As a matter of convention, many Python programmers will use
the underscore (_) for unwanted variables:

In [33]: a, b, *_ = values

Tuple methods

Since the size and contents of a tuple cannot be modified, it is very light on instance
methods. A particularly useful one (also available on lists) is count, which counts the
number of occurrences of a value:

In [34]: a = (1, 2, 2, 2, 3, 4, 2)

In [35]: a.count(2)
Out[35]: 4

List
In contrast with tuples, lists are variable-length and their contents can be modified

in-place. You can define them using square brackets [] or using the list type func-
tion:

In [36]: a_list = [2, 3, 7, None]
In [37]: tup = ('foo', 'bar', 'baz')
In [38]: b_list = list(tup)

In [39]: b_list
Out[39]: ['foo', 'bar', 'baz']

In [40]: b_list[1] = 'peekaboo'
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In [41]: b_list
Out[41]: ['foo', 'peekaboo', 'baz']

Lists and tuples are semantically similar (though tuples cannot be modified) and can
be used interchangeably in many functions.

The list function is frequently used in data processing as a way to materialize an
iterator or generator expression:

In [42]: gen = range(10)

In [43]: gen
Out[43]: range(0, 10)

In [44]: list(gen)
out[44]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Adding and removing elements
Elements can be appended to the end of the list with the append method:

In [45]: b_list.append('dwarf')

In [46]: b_list
Out[46]: ['foo', 'peekaboo', 'baz', 'dwarf']

Using insert you can insert an element at a specific location in the list:

In [47]: b_list.insert(1, 'red")

In [48]: b_list
Out[48]: ['foo', 'red', 'peekaboo', 'baz', 'dwarf']

The insertion index must be between 0 and the length of the list, inclusive.

insert is computationally expensive compared with append,
because references to subsequent elements have to be shifted inter-
nally to make room for the new element. If you need to insert ele-
ments at both the beginning and end of a sequence, you may wish
to explore collections.deque, a double-ended queue, for this pur-
pose.

The inverse operation to insert is pop, which removes and returns an element at a
particular index:

In [49]: b_list.pop(2)
Out[49]: 'peekaboo'

In [50]: b_list
Out[50]: ['foo', 'red', 'baz', 'dwarf']
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Elements can be removed by value with remove, which locates the first such value and
removes it from the last:

In [51]: b_list.append('foo')

In [52]: b_list
Out[52]: ['foo', 'red', 'baz', 'dwarf', 'foo']

In [53]: b_list.remove('foo')

In [54]: b_list
Out[54]: ['red', 'baz', 'dwarf', 'foo']

If performance is not a concern, by using append and remove, you can use a Python
list as a perfectly suitable “multiset” data structure.

Check if a list contains a value using the in keyword:

In [55]: 'dwarf' in b_list
Out[55]: True

The keyword not can be used to negate in:

In [56]: 'dwarf' not inm b_list
Out[56]: False

Checking whether a list contains a value is a lot slower than doing so with dicts and
sets (to be introduced shortly), as Python makes a linear scan across the values of the
list, whereas it can check the others (based on hash tables) in constant time.

Concatenating and combining lists
Similar to tuples, adding two lists together with + concatenates them:

In [57]: [4, None, 'foo']l + [7, 8, (2, 3)]

Out[57]: [4, None, 'foo', 7, 8, (2, 3)]
If you have a list already defined, you can append multiple elements to it using the
extend method:

In [58]: x = [4, None, 'foo']

In [59]: x.extend([7, 8, (2, 3)])

In [60]: x

Out[60]: [4, None, 'foo', 7, 8, (2, 3)]

Note that list concatenation by addition is a comparatively expensive operation since
a new list must be created and the objects copied over. Using extend to append ele-
ments to an existing list, especially if you are building up a large list, is usually pref-
erable. Thus,
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everything = []
for chunk in list_of_lists:
everything.extend(chunk)

is faster than the concatenative alternative:

everything = []
for chunk in list_of_lists:
everything = everything + chunk

Sorting

You can sort a list in-place (without creating a new object) by calling its sort
function:

In [61]: a =[7, 2, 5, 1, 3]
In [62]: a.sort()

In [63]: a
Out[63]: [1, 2, 3, 5, 7]

sort has a few options that will occasionally come in handy. One is the ability to pass
a secondary sort key—that is, a function that produces a value to use to sort the
objects. For example, we could sort a collection of strings by their lengths:

In [64]: b = ['saw', 'small', 'He', 'foxes', 'six']
In [65]: b.sort(key=len)

In [66]: b
Out[66]: ['He', 'saw', 'six', 'small', 'foxes']

Soon, we'll look at the sorted function, which can produce a sorted copy of a general
sequence.

Binary search and maintaining a sorted list

The built-in bisect module implements binary search and insertion into a sorted list.
bisect.bisect finds the location where an element should be inserted to keep it sor-
ted, while bisect.insort actually inserts the element into that location:

In [67]: import
In [68]: ¢ =[1, 2, 2, 2, 3, 4, 7]

In [69]: bisect.bisect(c, 2)
Out[69]: 4

In [70]: bisect.bisect(c, 5)
Out[70]: 6
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In [71]: bisect.insort(c, 6)

In [72]: c
out[72]: [1, 2, 2, 2, 3, 4, 6, 7]

The bisect module functions do not check whether the list is sor-
ted, as doing so would be computationally expensive. Thus, using
them with an unsorted list will succeed without error but may lead
to incorrect results.

Slicing
You can select sections of most sequence types by using slice notation, which in its

basic form consists of start:stop passed to the indexing operator [ ]:

In [73]: seq = [7, 2, 3, 7, 5, 6, 0, 1]

In [74]: seq[1:5]
out[74]: [2, 3, 7, 5]

Slices can also be assigned to with a sequence:

In [75]: seq[3:4] = [6, 3]

In [76]: seq

out[76]: [7, 2, 3, 6, 3, 5, 6, 0, 1]
While the element at the start index is included, the stop index is not included, so
that the number of elements in the result is stop - start.

Either the start or stop can be omitted, in which case they default to the start of the
sequence and the end of the sequence, respectively:

In [77]: seq[:5]
Out[77]: [7, 2, 3, 6, 3]

In [78]: seq[3:]
out[78]: [6, 3, 5, 6, 0, 1]
Negative indices slice the sequence relative to the end:

In [79]: seq[-4:]
Out[79]: [5, 6, 0, 1]

In [80]: seq[-6:-2]

Oout[80]: [6, 3, 5, 6]
Slicing semantics takes a bit of getting used to, especially if youre coming from R or
MATLAB. See Figure 3-1 for a helpful illustration of slicing with positive and nega-
tive integers. In the figure, the indices are shown at the “bin edges” to help show
where the slice selections start and stop using positive or negative indices.
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A step can also be used after a second colon to, say, take every other element:

In [81]: seq[::2]
out[81]: [7, 3, 3, 6, 1]

A clever use of this is to pass -1, which has the useful effect of reversing a list or tuple:

In [82]: seq[::-1]
Oout[82]: [1, 0, 6, 5, 3, 6, 3, 2, 7]

0 1 2 3 4 5

H E L L |O

0 1 2 3 4 6
-6 - -4 -3 -2 -
W TE L PL o P i "W TEPFLIL o It
string[2:4] string[-5:-2]

Figure 3-1. Illustration of Python slicing conventions

Built-in Sequence Functions

Python has a handful of useful sequence functions that you should familiarize your-
self with and use at any opportunity.

enumerate

It's common when iterating over a sequence to want to keep track of the index of the
current item. A do-it-yourself approach would look like:
i=0
for value in collection:
# do something with value
i+=1
Since this is so common, Python has a built-in function, enumerate, which returns a
sequence of (1, value) tuples:
for 1, value in enumerate(collection):
# do something with value
When you are indexing data, a helpful pattern that uses enumerate is computing a
dict mapping the values of a sequence (which are assumed to be unique) to their
locations in the sequence:

In [83]: some_list = ['foo', 'bar', 'baz']

In [84]: mapping = {}
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In [85]: for 1, v in enumerate(some_list):
et mapping[v] = 1

In [86]: mapping
out[86]: {'bar': 1, 'baz': 2, 'foo': 0}
sorted
The sorted function returns a new sorted list from the elements of any sequence:

In [87]: sorted([7, 1, 2, 6, 0, 3, 2])
Out[87]: [0, 1, 2, 2, 3, 6, 7]

In [88]: sorted('horse race')
0Ut[88]: [| l’ la|, |Cl’ le|’ Iel’ lh|’ Iol’ |rl’ Ir.V’ |SI]

The sorted function accepts the same arguments as the sort method on lists.
zip
zip “pairs” up the elements of a number of lists, tuples, or other sequences to create a
list of tuples:

In [89]: seql = ['foo', 'bar', 'baz']

In [90]: seq2 = ['one', 'two', 'three']

In [91]: zipped = zip(seql, seq2)

In [92]: list(zipped)

Out[92]: [('foo', 'one"), ('bar', 'two'), ('baz', 'three')]
zip can take an arbitrary number of sequences, and the number of elements it pro-
duces is determined by the shortest sequence:

In [93]: seq3 = [False, True]

In [94]: list(zip(seql, seq2, seq3))
Out[94]: [('foo', 'one', False), ('bar', 'two', True)]

A very common use of zip is simultaneously iterating over multiple sequences, possi-
bly also combined with enumerate:

In [95]: for 1, (a, b) in enumerate(zip(seql, seq2)):
P print('{0}: {1}, {2}'.format(i, a, b))

0: foo, one

: bar, two

2: baz, three

=
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Given a “zipped” sequence, zip can be applied in a clever way to “unzip” the
sequence. Another way to think about this is converting a list of rows into a list of
columns. The syntax, which looks a bit magical, is:

In [96]: pitchers = [('Nolan', 'Ryan'), ('Roger', 'Clemens'),
cealt ('Schilling', 'Curt')]

In [97]: first_names, last_names = zip(*pitchers)

In [98]: first_names
Out[98]: ('Nolan', 'Roger', 'Schilling')

In [99]: last_names
Out[99]: ('Ryan', 'Clemens', 'Curt')
reversed
reversed iterates over the elements of a sequence in reverse order:

In [100]: list(reversed(range(10)))
Out[1007: [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

Keep in mind that reversed is a generator (to be discussed in some more detail later),
so it does not create the reversed sequence until materialized (e.g., with list or a for
loop).

dict

dict is likely the most important built-in Python data structure. A more common
name for it is hash map or associative array. It is a flexibly sized collection of key-value
pairs, where key and value are Python objects. One approach for creating one is to use
curly braces {} and colons to separate keys and values:

In [101]: empty_dict = {}
In [162]: d1 = {'a' : 'some value', 'b' : [1, 2, 3, 4]}

In [103]: d1
Out[103]: {'a': 'some value', 'b': [1, 2, 3, 4]}

You can access, insert, or set elements using the same syntax as for accessing elements
of a list or tuple:

In [104]: d1[7] = 'an integer'

In [105]: d1
Out[105]: {'a': 'some value', 'b': [1, 2, 3, 4], 7: 'an integer'}

In [106]: d1['b']
out[106]: [1, 2, 3, 4]
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You can check if a dict contains a key using the same syntax used for checking
whether a list or tuple contains a value:

In [167]: 'b" in d1
Out[107]: True

You can delete values either using the del keyword or the pop method (which simul-
taneously returns the value and deletes the key):

In [168]: d1[5] = 'some value'

In [109]: d1

Out[109]:

{'a': 'some value',
b': [1, 2, 3, 4],
7: 'an integer',
5: 'some value'}

In [110]: d1['dummy'] = 'another value'

In [111]: d1
Out[111]:
{'a': 'some value',
'b': [1, 2, 3, 4],
7: 'an integer',
5: 'some value',
"dummy': 'another value'}

In [112]: del di[5]

In [113]: d1
Out[113]:
{'a': 'some value',
'b': [1, 2, 3, 4],
7: 'an integer',
"dummy': 'another value'}

In [114]: ret = d1.pop('dummy')

In [115]: ret
Out[115]: 'another value'

In [116]: d1
Out[116]: {'a': 'some value', 'b': [1, 2, 3, 4], 7: 'an integer'}

The keys and values method give you iterators of the dict’s keys and values, respec-
tively. While the key-value pairs are not in any particular order, these functions out-
put the keys and values in the same order:

In [117]: list(di.keys())
out[117]: ['a', 'b', 7]
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In [118]: list(di.values())
Out[118]: ['some value', [1, 2, 3, 4], 'an integer']

You can merge one dict into another using the update method:
In [119]: dl.update({'b"' : 'foo', 'c' : 12})

In [120]: d1
Out[120]: {'a': 'some value', 'b': 'foo', 7: 'an integer',

c': 12}

The update method changes dicts in-place, so any existing keys in the data passed to
update will have their old values discarded.

Creating dicts from sequences

Its common to occasionally end up with two sequences that you want to pair up
element-wise in a dict. As a first cut, you might write code like this:

mapping = {}
for key, value in zip(key_list, value_list):
mapping[key] = value

Since a dict is essentially a collection of 2-tuples, the dict function accepts a list of
2-tuples:

In [121]: mapping = dict(zip(range(5), reversed(range(5))))

In [122]: mapping
Out[122]: {0: 4, 1: 3, 2: 2, 3: 1, 4: 0}

Later we'll talk about dict comprehensions, another elegant way to construct dicts.

Default values
It’s very common to have logic like:

if key in some_dict:
value = some_dict[key]
else:
value = default_value
Thus, the dict methods get and pop can take a default value to be returned, so that
the above if-else block can be written simply as:

value = some_dict.get(key, default_value)

get by default will return None if the key is not present, while pop will raise an excep-
tion. With setting values, a common case is for the values in a dict to be other collec-
tions, like lists. For example, you could imagine categorizing a list of words by their
first letters as a dict of lists:

In [123]: words = ['apple', 'bat', 'bar', 'atom', 'book']

In [124]: by_letter = {}
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In [125]: for word in words:
..... : letter = word[0]
P if letter not in by_letter:
et by_letter[letter] = [word]
ceeat else:
et by_letter[letter].append(word)

In [126]: by_letter

Out[126]: {'a': ['apple', 'atom'], 'b': ['bat', 'bar', 'book']}
The setdefault dict method is for precisely this purpose. The preceding for loop
can be rewritten as:

for word in words:
letter = word[0]
by_letter.setdefault(letter, []).append(word)

The built-in collections module has a useful class, defaultdict, which makes this
even easier. To create one, you pass a type or function for generating the default value
for each slot in the dict:

from collections import defaultdict

by_letter = defaultdict(list)

for word in words:
by_letter[word[0]].append(word)

Valid dict key types

While the values of a dict can be any Python object, the keys generally have to be
immutable objects like scalar types (int, float, string) or tuples (all the objects in the
tuple need to be immutable, too). The technical term here is hashability. You can
check whether an object is hashable (can be used as a key in a dict) with the hash
function:

In [127]: hash('string')
Out[127]: 5023931463650008331

In [128]: hash((1, 2, (2, 3)))
Out[128]: 1097636502276347782

In [129]: hash((1, 2, [2, 3])) # fails because lists are mutable

TypeError Traceback (most recent call last)
<ipython-input-129-800cd14ba8be> in <module>()

----> 1 hash((1, 2, [2, 3])) # fails because lists are mutable

TypeError: unhashable type: 'list'
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To use a list as a key, one option is to convert it to a tuple, which can be hashed as
long as its elements also can:

In [130]: d = {}
In [131]: d[tuple([1, 2, 3])] =5

In [132]: d
out[132]: {(1, 2, 3): 5}

set

A set is an unordered collection of unique elements. You can think of them like dicts,
but keys only, no values. A set can be created in two ways: via the set function or via
a set literal with curly braces:

In [133]: set([2, 2, 2, 1, 3, 3])
Out[133]: {1, 2, 3}

In [134]: {2, 2, 2, 1, 3, 3}
Out[134]: {1, 2, 3}

Sets support mathematical set operations like union, intersection, difference, and
symmetric difference. Consider these two example sets:

In [135]: a = {1, 2, 3, 4, 5}
In [136]: b = {3, 4, 5, 6, 7, 8}

The union of these two sets is the set of distinct elements occurring in either set. This
can be computed with either the union method or the | binary operator:

In [137]: a.union(b)
Out[137]: {1, 2, 3, 4, 5, 6, 7, 8}

In [138]: a | b
out[138]: {1, 2, 3, 4, 5, 6, 7, 8}

The intersection contains the elements occurring in both sets. The & operator or the
intersection method can be used:

In [139]: a.intersection(b)
Out[139]: {3, 4, 5}

In [140]: a & b
Out[140]: {3, 4, 5}

See Table 3-1 for a list of commonly used set methods.
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Table 3-1. Python set operations

Function Alternative Description
syntax

a.add(x) N/A Add element x to the set a

a.clear() N/A Reset the set a to an empty state, discarding all of
its elements

a.remove(x) N/A Remove element x from the set a

a.pop() N/A Remove an arbitrary element from the set a, raising
KeyError if the set is empty

a.union(b) al|b All of the unique elements in a and b

a.update(b) al=b Set the contents of a to be the union of the

elementsin aand b

a.intersection(b) a&b All of the elements in both a and b

a.intersection_update(b) a& b Set the contents of a to be the intersection of the
elements in a and b

a.difference(b) a-b The elements in a that are notin b

a.difference_update(b) a-=b Set a to the elements in a that are not in b

a.symmetric_difference(b) arb All of the elements in either a or b but not both

a.symmetric_difference_update(b) a ~= b Set a to contain the elements in either a or b but
not both

a.issubset(b) N/A True if the elements of a are all contained in b

a.issuperset(b) N/A True if the elements of b are all contained in a

a.isdisjoint(b) N/A True if a and b have no elements in common

All of the logical set operations have in-place counterparts, which enable you to
replace the contents of the set on the left side of the operation with the result. For
very large sets, this may be more efficient:

In [141]: ¢ = a.copy()
In [142]: c |= b

In [143]: c
Out[143]: {1, 2, 3, 4, 5, 6, 7, 8}

In [144]: d = a.copy()
In [145]: d &= b

In [146]: d
out[146]: {3, 4, 5}

Like dicts, set elements generally must be immutable. To have list-like elements, you
must convert it to a tuple:
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In [147]: my_data = [1, 2, 3, 4]

In [148]: my_set = {tuple(my_data)}
In [149]: my_set

out[149]: {(1, 2, 3, 4)}

You can also check if a set is a subset of (is contained in) or a superset of (contains all
elements of) another set:

In [150]: a_set = {1, 2, 3, 4, 5}

In [151]: {1, 2, 3}.issubset(a_set)
Out[151]: True

In [152]: a_set.issuperset({1, 2, 3})
Out[152]: True

Sets are equal if and only if their contents are equal:

In [153]: {1, 2, 3} == {3, 2, 1}
Out[153]: True

List, Set, and Dict Comprehensions

List comprehensions are one of the most-loved Python language features. They allow
you to concisely form a new list by filtering the elements of a collection, transforming
the elements passing the filter in one concise expression. They take the basic form:

[expr for val in collection if condition]
This is equivalent to the following for loop:

result = []
for val in collection:
if condition:
result.append(expr)

The filter condition can be omitted, leaving only the expression. For example, given a

list of strings, we could filter out strings with length 2 or less and also convert them to
uppercase like this:

In [154]: strings = ['a', 'as', 'bat', 'car', 'dove', 'python']

In [155]: [x.upper() for x in strings if len(x) > 2]

Out[155]: ['BAT', 'CAR', 'DOVE', 'PYTHON']
Set and dict comprehensions are a natural extension, producing sets and dicts in an
idiomatically similar way instead of lists. A dict comprehension looks like this:

dict_comp = {key-expr : value-expr for value in collection
if condition}
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A set comprehension looks like the equivalent list comprehension except with curly
braces instead of square brackets:

set_comp = {expr for value in collection if condition}

Like list comprehensions, set and dict comprehensions are mostly conveniences, but
they similarly can make code both easier to write and read. Consider the list of strings
from before. Suppose we wanted a set containing just the lengths of the strings con-
tained in the collection; we could easily compute this using a set comprehension:

In [156]: unique_lengths = {len(x) for x in strings}

In [157]: unique_lengths
Out[157]: {1, 2, 3, 4, 6}

We could also express this more functionally using the map function, introduced
shortly:

In [158]: set(map(len, strings))

out[158]: {1, 2, 3, 4, 6}
As a simple dict comprehension example, we could create a lookup map of these
strings to their locations in the list:

In [159]: loc_mapping = {val : index for index, val in enumerate(strings)}

In [160]: loc_mapping
Out[160]: {'a': 0, 'as': 1, 'bat': 2, 'car': 3, 'dove': 4, 'python': 5}

Nested list comprehensions
Suppose we have a list of lists containing some English and Spanish names:

In [161]: all_data = [['John', "Emily', 'Michael', 'Mary', 'Steven'],

et ['Maria', 'Juan', 'Javier', 'Natalia', 'Pilar']]

You might have gotten these names from a couple of files and decided to organize
them by language. Now, suppose we wanted to get a single list containing all names
with two or more €’s in them. We could certainly do this with a simple for loop:

names_of_interest = []

for names in all_data:

enough_es = [name for name in names if name.count('e') >= 2]
names_of_interest.extend(enough_es)

You can actually wrap this whole operation up in a single nested list comprehension,
which will look like:

In [162]: result = [name for names in all_data for name in names
..... : if name.count('e') >= 2]

In [163]: result
Out[163]: ['Steven']
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At first, nested list comprehensions are a bit hard to wrap your head around. The for
parts of the list comprehension are arranged according to the order of nesting, and
any filter condition is put at the end as before. Here is another example where we
“flatten” a list of tuples of integers into a simple list of integers:

In [164]: some_tuples = [(1, 2, 3), (4, 5, 6), (7, 8, 9)]
In [165]: flattened = [x for tup in some_tuples for x in tup]

In [166]: flattened
Out[166]: [1, 2, 3, 4, 5, 6, 7, 8, 9]

Keep in mind that the order of the for expressions would be the same if you wrote a
nested for loop instead of a list comprehension:

flattened = []

for tup in some_tuples:
for x in tup:
flattened.append(x)

You can have arbitrarily many levels of nesting, though if you have more than two or
three levels of nesting you should probably start to question whether this makes sense
from a code readability standpoint. It's important to distinguish the syntax just shown
from a list comprehension inside a list comprehension, which is also perfectly valid:

In [167]: [[x for x in tup] for tup in some_tuples]
Out[167]: [[1, 2, 31, [4, 5, 61, [7, 8, 9]]

This produces a list of lists, rather than a flattened list of all of the inner elements.

3.2 Functions

Functions are the primary and most important method of code organization and
reuse in Python. As a rule of thumb, if you anticipate needing to repeat the same or
very similar code more than once, it may be worth writing a reusable function. Func-
tions can also help make your code more readable by giving a name to a group of
Python statements.

Functions are declared with the def keyword and returned from with the return key-
word:

def my_function(x, y, z=1.5):
if z > 1:
return z * (x +vy)
else:
return z / (x +y)
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There is no issue with having multiple return statements. If Python reaches the end
of a function without encountering a return statement, None is returned automati-
cally.

Each function can have positional arguments and keyword arguments. Keyword argu-
ments are most commonly used to specify default values or optional arguments. In
the preceding function, x and y are positional arguments while z is a keyword argu-
ment. This means that the function can be called in any of these ways:

my_function(5, 6, z=0.7)

my_function(3.14, 7, 3.5)

my_function(10, 20)
The main restriction on function arguments is that the keyword arguments must fol-
low the positional arguments (if any). You can specify keyword arguments in any
order; this frees you from having to remember which order the function arguments
were specified in and only what their names are.

It is possible to use keywords for passing positional arguments as
well. In the preceding example, we could also have written:

my_function(x=5, y=6, z=7)
my_function(y=6, x=5, z=7)

In some cases this can help with readability.

Namespaces, Scope, and Local Functions

Functions can access variables in two different scopes: global and local. An alternative
and more descriptive name describing a variable scope in Python is a namespace. Any
variables that are assigned within a function by default are assigned to the local
namespace. The local namespace is created when the function is called and immedi-
ately populated by the functions arguments. After the function is finished, the local
namespace is destroyed (with some exceptions that are outside the purview of this
chapter). Consider the following function:

def func():
a =[]
for 1 in range(5):
a.append(i)

When func() is called, the empty list a is created, five elements are appended, and
then a is destroyed when the function exits. Suppose instead we had declared a as
follows:

a=1[l]

def func():

for 1 in range(5):
a.append(i)
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Assigning variables outside of the functions scope is possible, but those variables
must be declared as global via the global keyword:

In [168]: a = None

In [169]: def bind_a_variable():
P global a
P a =[]

.....: bind_a_variable()

In [170]: print(a)
[]

I generally discourage use of the global keyword. Typically global

variables are used to store some kind of state in a system. If you

find yourself using a lot of them, it may indicate a need for object-
\ oriented programming (using classes).

Returning Multiple Values

When I first programmed in Python after having programmed in Java and C++, one
of my favorite features was the ability to return multiple values from a function with
simple syntax. Here’s an example:

def f():
a=>5
b==¢6
c=17

return a3, b, ¢

a, b, c=f(0)

In data analysis and other scientific applications, you may find yourself doing this
often. What’s happening here is that the function is actually just returning one object,
namely a tuple, which is then being unpacked into the result variables. In the preced-
ing example, we could have done this instead:

return_value = f()

In this case, return_value would be a 3-tuple with the three returned variables. A
potentially attractive alternative to returning multiple values like before might be to
return a dict instead:

def f():
a=>5
b==¢6
c=17

return {'a' : a, 'b' : b, 'c¢'" : c}
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This alternative technique can be useful depending on what you are trying to do.

Functions Are Objects

Since Python functions are objects, many constructs can be easily expressed that are
difficult to do in other languages. Suppose we were doing some data cleaning and
needed to apply a bunch of transformations to the following list of strings:

In [171]: states = [ Alabama ', 'Georgia!', 'Georgia', 'georgia', 'FlOrIda',
..... : 'south  carolina##', 'West virginia?']

Anyone who has ever worked with user-submitted survey data has seen messy results
like these. Lots of things need to happen to make this list of strings uniform and
ready for analysis: stripping whitespace, removing punctuation symbols, and stand-
ardizing on proper capitalization. One way to do this is to use built-in string methods
along with the re standard library module for regular expressions:

import

def clean_strings(strings):

result = []

for value in strings:
value = value.strip()
value = re.sub('[!#7]', '", value)
value = value.title()
result.append(value)

return result

The result looks like this:

In [173]: clean_strings(states)
Out[173]:
['Alabama’,
'Georgia’,
'Georgia',
'Georgia’,
'Florida’,
'South  Carolina',
'"West Virginia']
An alternative approach that you may find useful is to make a list of the operations
you want to apply to a particular set of strings:

def remove_punctuation(value):
return re.sub('[!#?]', '', value)

clean_ops = [str.strip, remove_punctuation, str.title]

def clean_strings(strings, ops):
result = []
for value in strings:
for function in ops:
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value = function(value)
result.append(value)
return result

Then we have the following:

In [175]: clean_strings(states, clean_ops)
Out[175]:
['Alabama’,
'Georgia’,
'Georgia',
'Georgia’,
'Florida’,
'South  Carolina',
'"West Virginia']
A more functional pattern like this enables you to easily modify how the strings are
transformed at a very high level. The clean_strings function is also now more reus-

able and generic.

You can use functions as arguments to other functions like the built-in map function,
which applies a function to a sequence of some kind:

In [176]: for x in map(remove_punctuation, states):
et print(x)

Alabama

Georgia

Georgia

georgia

FlOrIda

south  carolina

West virginia

Anonymous (Lambda) Functions

Python has support for so-called anonymous or lambda functions, which are a way of
writing functions consisting of a single statement, the result of which is the return
value. They are defined with the lambda keyword, which has no meaning other than
“we are declaring an anonymous function”:

def short_function(x):
return x * 2

equiv_anon = lambda x: x * 2

I usually refer to these as lambda functions in the rest of the book. They are especially
convenient in data analysis because, as you’ll see, there are many cases where data
transformation functions will take functions as arguments. It’s often less typing (and
clearer) to pass a lambda function as opposed to writing a full-out function declara-
tion or even assigning the lambda function to a local variable. For example, consider
this silly example:
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def apply_to_list(some_list, f):
return [f(x) for x in some_list]

ints = [4, 0, 1, 5, 6]
apply_to_list(ints, lambda x: x * 2)

You could also have written [x * 2 for x in ints], but here we were able to suc-
cinctly pass a custom operator to the apply_to_list function.

As another example, suppose you wanted to sort a collection of strings by the number
of distinct letters in each string:

In [177]: strings = ['foo', 'card', 'bar', 'aaaa', 'abab']
Here we could pass a lambda function to the list’s sort method:

In [178]: strings.sort(key=lambda x: len(set(list(x))))

In [179]: strings
Out[179]: ['aaaa', 'foo', 'abab', 'bar', 'card']

One reason lambda functions are called anonymous functions is
that , unlike functions declared with the def keyword, the function
object itself is never given an explicit __name__ attribute.

Currying: Partial Argument Application

Currying is computer science jargon (named after the mathematician Haskell Curry)
that means deriving new functions from existing ones by partial argument applica-
tion. For example, suppose we had a trivial function that adds two numbers together:
def add_numbers(x, y):
return x +y

Using this function, we could derive a new function of one variable, add_f1ive, that
adds 5 to its argument:

add_five = lambda y: add_numbers(5, y)

The second argument to add_numbers is said to be curried. There’s nothing very fancy
here, as all we've really done is define a new function that calls an existing function.
The built-in functools module can simplify this process using the partial function:

from import partial
add_five = partial(add_numbers, 5)
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Generators

Having a consistent way to iterate over sequences, like objects in a list or lines in a
file, is an important Python feature. This is accomplished by means of the iterator
protocol, a generic way to make objects iterable. For example, iterating over a dict
yields the dict keys:

In [180]: some_dict = {'a': 1, 'b': 2, 'c': 3}

In [181]: for key in some_dict:
et print(key)

7]

When you write for key in some_dict, the Python interpreter first attempts to cre-
ate an iterator out of some_dict:

In [182]: dict_iterator = iter(some_dict)

In [183]: dict_iterator

Out[183]: <dict_keyiterator at 0x7fbbd5a9f908>
An iterator is any object that will yield objects to the Python interpreter when used in
a context like a for loop. Most methods expecting a list or list-like object will also
accept any iterable object. This includes built-in methods such as min, max, and sum,
and type constructors like list and tuple:

In [184]: list(dict_1iterator)

Out[184]: ['a', 'b', 'c']
A generator is a concise way to construct a new iterable object. Whereas normal func-
tions execute and return a single result at a time, generators return a sequence of
multiple results lazily, pausing after each one until the next one is requested. To create
a generator, use the yield keyword instead of return in a function:

def squares(n=10):

print('Cenerating squares from 1 to {0}'.format(n ** 2))

for 1 in range(l, n + 1):
yield i1 ** 2

When you actually call the generator, no code is immediately executed:

In [186]: gen = squares()

In [187]: gen
Out[187]: <generator object squares at Ox7fbbd5ab4570>

It is not until you request elements from the generator that it begins executing its
code:
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In [188]: for x in gen:

P print(x, end=' ")
Generating squares from 1 to 100
149 16 25 36 49 64 81 100

Generator expresssions

Another even more concise way to make a generator is by using a generator expres-
sion. This is a generator analogue to list, dict, and set comprehensions; to create one,
enclose what would otherwise be a list comprehension within parentheses instead of
brackets:

In [189]: gen = (x ** 2 for x in range(100))

In [190]: gen
Out[190]: <generator object <genexpr> at 0x7fbbd5ab29e8>

This is completely equivalent to the following more verbose generator:

def _make_gen():
for x in range(100):
yield x ** 2
gen = _make_gen()
Generator expressions can be used instead of list comprehensions as function argu-
ments in many cases:

In [191]: sum(x ** 2 for x in range(100))
Out[191]: 328350

In [192]: dict((i, 1 **2) for i in range(5))
Out[192]: {0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

itertools module

The standard library itertools module has a collection of generators for many com-
mon data algorithms. For example, groupby takes any sequence and a function,
grouping consecutive elements in the sequence by return value of the function. Here’s
an example:

In [193]: import itertools
In [194]: first_letter = lambda x: x[0]
In [195]: names = ['Alan', 'Adam', 'Wes', 'Will', 'Albert', 'Steven']

In [196]: for letter, names in itertools.groupby(names, first_letter):
et print(letter, list(names)) # names is a generator
'Alan', 'Adam']

"Wes', 'Will']

'Albert']
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See Table 3-2 for a list of a few other itertools functions I've frequently found help-
ful. You may like to check out the official Python documentation for more on this
useful built-in utility module.

Table 3-2. Some useful itertools functions

Function Description

combinations(iterable, k) Generates a sequence of all possible k-tuples of elements in the iterable,
ignoring order and without replacement (see also the companion function
combinations_with_replacement)

permutations(iterable, k) Generates a sequence of all possible k-tuples of elements in the iterable,
respecting order

groupby(iterable[, keyfunc]) Generates (key, sub-iterator) foreach unique key

product(*iterables, repeat=1) Generates the Cartesian product of the input iterables as tuples, similar to a
nested for loop

Errors and Exception Handling

Handling Python errors or exceptions gracefully is an important part of building
robust programs. In data analysis applications, many functions only work on certain
kinds of input. As an example, Python’s float function is capable of casting a string
to a floating-point number, but fails with ValueError on improper inputs:

In [197]: float('1.2345")
Out[197]: 1.2345

In [198]: float('something')

ValueError Traceback (most recent call last)
<ipython-input-198-439904410854> in <module>()

----> 1 float('something')

ValueError: could not convert string to float: 'something'

Suppose we wanted a version of float that fails gracefully, returning the input argu-
ment. We can do this by writing a function that encloses the call to float in a try/
except block:
def attempt_float(x):
try:
return float(x)
except:
return X
The code in the except part of the block will only be executed if float(x) raises an
exception:

In [200]: attempt_float('1.2345")
Out[200]: 1.2345
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In [201]: attempt_float('something')
Out[201]: 'something'

You might notice that float can raise exceptions other than ValueError:

In [202]: float((1l, 2))

TypeError Traceback (most recent call last)
<ipython-input-202-842079ebb635> in <module>()

----> 1 float((1, 2))

TypeError: float() argument must be a string or a number, not 'tuple'

You might want to only suppress ValueError, since a TypeError (the input was not a
string or numeric value) might indicate a legitimate bug in your program. To do that,
write the exception type after except:

def attempt_float(x):
try:
return float(x)
except ValueError:
return x

We have then:

In [204]: attempt_float((1l, 2))
TypeError Traceback (most recent call last)
<ipython-input-204-9bdfd730cead> in <module>()
----> 1 attempt_float((1, 2))
<ipython-input-203-3e06b8379b6b> in attempt_float(x)
1 def attempt_float(x):

2 try:

----> 3 return float(x)
4 except ValueError:
5 return x

TypeError: float() argument must be a string or a number, not 'tuple'

You can catch multiple exception types by writing a tuple of exception types instead
(the parentheses are required):
def attempt_float(x):
try:
return float(x)
except (TypeError, ValueError):
return x
In some cases, you may not want to suppress an exception, but you want some code
to be executed regardless of whether the code in the try block succeeds or not. To do
this, use finally:

f = open(path, 'w'")

try:
write_to_file(f)
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finally:
f.close()

Here, the file handle f will always get closed. Similarly, you can have code that exe-
cutes only if the try: block succeeds using else:

f = open(path, 'w')

try:
write_to_file(f)
except:
print('Failed')
else:
print('Succeeded')
finally:
f.close()

Exceptions in IPython

If an exception is raised while you are %run-ing a script or executing any statement,
IPython will by default print a full call stack trace (traceback) with a few lines of con-
text around the position at each point in the stack:

In [10]: %run examples/ipython_bug.py

AssertionError Traceback (most recent call last)
/home /wesm/code/pydata-book/examples/ipython_bug.py in <module>()

13 throws_an_exception()

14

---> 15 calling_things()

/home /wesm/code/pydata-book/examples/ipython_bug.py in calling_things()
11 def calling_things():

12 works_fine()
---> 13 throws_an_exception()
14

15 calling_things()

/home /wesm/code/pydata-book/examples/ipython_bug.py in throws_an_exception()

7 a=>5
8 b=2¢6

----> 9 assert(a + b == 10)
10

11 def calling_things():

AssertionError:

Having additional context by itself is a big advantage over the standard Python inter-
preter (which does not provide any additional context). You can control the amount
of context shown using the %xmode magic command, from Plain (same as the stan-
dard Python interpreter) to Verbose (which inlines function argument values and
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more). As you will see later in the chapter, you can step into the stack (using the
%debug or %pdb magics) after an error has occurred for interactive post-mortem
debugging.

3.3 Files and the Operating System

Most of this book uses high-level tools like pandas.read_csv to read data files from
disk into Python data structures. However, it’s important to understand the basics of
how to work with files in Python. Fortunately, it’s very simple, which is one reason
why Python is so popular for text and file munging.

To open a file for reading or writing, use the built-in open function with either a rela-
tive or absolute file path:

In [207]: path = 'examples/segismundo.txt'

In [208]: f = open(path)

By default, the file is opened in read-only mode 'r'. We can then treat the file handle
f like a list and iterate over the lines like so:

for line in f:
pass

The lines come out of the file with the end-of-line (EOL) markers intact, so you'll
often see code to get an EOL-free list of lines in a file like:

In [209]: lines = [x.rstrip() for x in open(path)]

In [210]: lines

Out[210]:

['Suena el rico en su riqueza,',
'que mas cuidados le ofrece;’,

[
s

'suefia el pobre que padece',
'su miseria y su pobreza;',

[
s

'suefia el que a medrar empieza,',
'sueiia el que afana y pretende,’',
'suefia el que agravia y ofende,’',

[
s

'y en el mundo, en conclusién,',
'todos suenan lo que son,',
'aunque ninguno lo entiende.',

L) ]
When you use open to create file objects, it is important to explicitly close the file

when you are finished with it. Closing the file releases its resources back to the oper-
ating system:

In [211]: f.close()
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One of the ways to make it easier to clean up open files is to use the with statement:

In [212]: with open(path) as f:
P lines = [x.rstrip() for x in f]

This will automatically close the file f when exiting the with block.
If we had typed f = open(path, 'w'), a new file at examples/segismundo.txt would
have been created (be careful!), overwriting any one in its place. There is also the 'x'

file mode, which creates a writable file but fails if the file path already exists. See
Table 3-3 for a list of all valid file read/write modes.

For readable files, some of the most commonly used methods are read, seek, and
tell. read returns a certain number of characters from the file. What constitutes a
“character” is determined by the file’s encoding (e.g., UTF-8) or simply raw bytes if
the file is opened in binary mode:

In [213]: f = open(path)

In [214]: f.read(10)
Out[214]: 'Suena el r'

In [215]: f2 = open(path, 'rb') # Binary mode

In [216]: f2.read(10)
Out[216]: b'Sue\xc3\xbia el '

The read method advances the file handle’s position by the number of bytes read.
tell gives you the current position:

In [217]: f.tell()
out[217]: 11

In [218]: f2.tell()
Out[218]: 10

Even though we read 10 characters from the file, the position is 11 because it took
that many bytes to decode 10 characters using the default encoding. You can check
the default encoding in the sys module:

In [219]: import

In [220]: sys.getdefaultencoding()
Out[220]: 'utf-8'

seek changes the file position to the indicated byte in the file:

In [221]: f.seek(3)
Out[221]: 3

In [222]: f.read(1)
out[222]: 'A'
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Lastly, we remember to close the files:

In [223]: f.close()

In [224]: f2.close()

Table 3-3. Python file modes

Mode Description

r Read-only mode
W Write-only mode; creates a new file (erasing the data for any file with the same name)
X Write-only mode; creates a new file, but fails if the file path already exists

a Append to existing file (create the file if it does not already exist)
r+ Read and write
Add to mode for binary files (i.e., 'rb" or 'wb")

t Text mode for files (automatically decoding bytes to Unicode). This is the default if not specified. Add t to other
modes to use this (i.e., 'rt' or 'xt"')

To write text to a file, you can use the file’s write or writelines methods. For exam-
ple, we could create a version of prof_mod.py with no blank lines like so:

In [225]: with open('tmp.txt', 'w') as handle:
el handle.writelines(x for x in open(path) if len(x) > 1)

In [226]: with open('tmp.txt') as f:
et lines = f.readlines()

In [227]: lines

Out[227]:

['Suena el rico en su riqueza,\n',
'que mas cuidados le ofrece;\n',
'sueiia el pobre que padece\n',

'su miseria y su pobreza;\n',
'suefia el que a medrar empieza,\n',
'suefa el que afana y pretende,\n',
'suefia el que agravia y ofende,\n',
'y en el mundo, en conclusién,\n',
'todos suenan lo que son,\n',
'aunque ninguno lo entiende.\n']

See Table 3-4 for many of the most commonly used file methods.

Table 3-4. Important Python file methods or attributes

Method Description

read([size]) Return data from file as a string, with optional size argument indicating the number of
bytes to read

readlines([size]) Return list of lines in the file, with optional size argument

write(str) Write passed string to file
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writelines(strings) Write passed sequence of strings to the file
close() (lose the handle

flush() Flush the internal I/0 buffer to disk
seek(pos) Move to indicated file position (integer)
tell() Return current file position as integer
closed True if the file is closed

Bytes and Unicode with Files

The default behavior for Python files (whether readable or writable) is text mode,
which means that you intend to work with Python strings (i.e., Unicode). This con-
trasts with binary mode, which you can obtain by appending b onto the file mode.
Let’s look at the file (which contains non-ASCII characters with UTF-8 encoding)
from the previous section:

In [230]: with open(path) as f:
et chars = f.read(10)

In [231]: chars
Out[231]: 'Suena el r'

UTF-8 is a variable-length Unicode encoding, so when I requested some number of
characters from the file, Python reads enough bytes (which could be as few as 10 or as
many as 40 bytes) from the file to decode that many characters. If I open the file in
'rb' mode instead, read requests exact numbers of bytes:

In [232]: with open(path, 'rb') as f:
P data = f.read(10)

In [233]: data
Out[233]: b'Sue\xc3\xbia el '

Depending on the text encoding, you may be able to decode the bytes to a str object
yourself, but only if each of the encoded Unicode characters is fully formed:

In [234]: data.decode('utf8')
Out[234]: 'Suena el '

In [235]: data[:4].decode('utf8")

UnicodeDecodeError Traceback (most recent call last)
<ipython-input-235-300e0af10bb7> in <module>()

----> 1 data[:4].decode('utf8")

UnicodeDecodeError: 'utf-8' codec can't decode byte 0xc3 in position 3: unexpecte
d end of data

Text mode, combined with the encoding option of open, provides a convenient way
to convert from one Unicode encoding to another:
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In [236]: sink_path = 'sink.txt'

In [237]: with open(path) as source:
..... : with open(sink_path, 'xt', encoding='1s0-8859-1') as sink:
et sink.write(source.read())

In [238]: with open(sink_path, encoding='1s0-8859-1') as f:
P print(f.read(10))
Suena el r

Beware using seek when opening files in any mode other than binary. If the file posi-
tion falls in the middle of the bytes defining a Unicode character, then subsequent
reads will result in an error:

In [240]: f = open(path)

In [241]: f.read(5)
Out[241]: 'Suena'

In [242]: f.seek(4)
Out[242]: 4

In [243]: f.read(1)

UnicodeDecodeError Traceback (most recent call last)
<ipython-input-243-7841103e33f5> in <module>()

----> 1 f.read(1)

/miniconda/envs/book-env/1lib/python3.6/codecs.py in decode(self, input, final)

319 # decode input (taking the buffer into account)

320 data = self.buffer + input
--> 321 (result, consumed) = self._buffer_decode(data, self.errors, final
)

322 # keep undecoded input until the next call

323 self.buffer = data[consumed:]
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xbl in position 0: invalid s
tart byte

In [244]: f.close()

If you find yourself regularly doing data analysis on non-ASCII text data, mastering
Python’s Unicode functionality will prove valuable. See Python’s online documenta-
tion for much more.

3.4 Conclusion

With some of the basics and the Python environment and language now under our
belt, it’s time to move on and learn about NumPy and array-oriented computing in
Python.
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CHAPTER 4

NumPy Basics: Arrays and
Vectorized Computation

NumPy, short for Numerical Python, is one of the most important foundational pack-
ages for numerical computing in Python. Most computational packages providing
scientific functionality use NumPy’s array objects as the lingua franca for data
exchange.

Here are some of the things you’ll find in NumPy:

o ndarray, an efficient multidimensional array providing fast array-oriented arith-
metic operations and flexible broadcasting capabilities.

« Mathematical functions for fast operations on entire arrays of data without hav-
ing to write loops.

o Tools for reading/writing array data to disk and working with memory-mapped
files.

o Linear algebra, random number generation, and Fourier transform capabilities.

o A C API for connecting NumPy with libraries written in C, C++, or FORTRAN.

Because NumPy provides an easy-to-use C API, it is straightforward to pass data to
external libraries written in a low-level language and also for external libraries to
return data to Python as NumPy arrays. This feature has made Python a language of
choice for wrapping legacy C/C++/Fortran codebases and giving them a dynamic and
easy-to-use interface.

While NumPy by itself does not provide modeling or scientific functionality, having
an understanding of NumPy arrays and array-oriented computing will help you use
tools with array-oriented semantics, like pandas, much more effectively. Since
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NumPy is a large topic, I will cover many advanced NumPy features like broadcasting
in more depth later (see Appendix A).

For most data analysis applications, the main areas of functionality I'll focus on are:

« Fast vectorized array operations for data munging and cleaning, subsetting and
filtering, transformation, and any other kinds of computations

o Common array algorithms like sorting, unique, and set operations
o Efficient descriptive statistics and aggregating/summarizing data

« Data alignment and relational data manipulations for merging and joining
together heterogeneous datasets

« Expressing conditional logic as array expressions instead of loops with if-elif-
else branches

+ Group-wise data manipulations (aggregation, transformation, function applica-
tion)

While NumPy provides a computational foundation for general numerical data pro-
cessing, many readers will want to use pandas as the basis for most kinds of statistics
or analytics, especially on tabular data. pandas also provides some more domain-
specific functionality like time series manipulation, which is not present in NumPy.

Array-oriented computing in Python traces its roots back to 1995,
when Jim Hugunin created the Numeric library. Over the next 10
years, many scientific programming communities began doing
array programming in Python, but the library ecosystem had
become fragmented in the early 2000s. In 2005, Travis Oliphant
was able to forge the NumPy project from the then Numeric and
Numarray projects to bring the community together around a sin-
gle array computing framework.

One of the reasons NumPy is so important for numerical computations in Python is
because it is designed for efficiency on large arrays of data. There are a number of
reasons for this:

o NumPy internally stores data in a contiguous block of memory, independent of
other built-in Python objects. NumPy’s library of algorithms written in the C lan-
guage can operate on this memory without any type checking or other overhead.
NumPy arrays also use much less memory than built-in Python sequences.

o NumPy operations perform complex computations on entire arrays without the
need for Python for loops.
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To give you an idea of the performance difference, consider a NumPy array of one
million integers, and the equivalent Python list:

In [7]: import as
In [8]: my_arr = np.arange(1000000)

In [9]: my_list = list(range(1000000))
Now let’s multiply each sequence by 2:

In [10]: %time for _ in range(10): my_arr2 = my_arr * 2
CPU times: user 20 ms, sys: 50 ms, total: 70 ms
Wall time: 72.4 ms

In [11]: %time for _ in range(10): my_list2 = [x * 2 for x in my_list]

CPU times: user 760 ms, sys: 290 ms, total: 1.05 s

Wall time: 1.05 s
NumPy-based algorithms are generally 10 to 100 times faster (or more) than their
pure Python counterparts and use significantly less memory.

4.1 The NumPy ndarray: A Multidimensional Array Object

One of the key features of NumPy is its N-dimensional array object, or ndarray,
which is a fast, flexible container for large datasets in Python. Arrays enable you to
perform mathematical operations on whole blocks of data using similar syntax to the
equivalent operations between scalar elements.

To give you a flavor of how NumPy enables batch computations with similar syntax
to scalar values on built-in Python objects, I first import NumPy and generate a small
array of random data:

In [12]: import as

# Generate some random data
In [13]: data = np.random.randn(2, 3)

In [14]: data

out[14]:

array([[-0.2047, ©0.4789, -0.5194],
[-0.5557, 1.9658, 1.3934]])

I then write mathematical operations with data:

In [15]: data * 10

Out[15]:

array([[ -2.0471, 4.7894, -5.1944],
[ -5.5573, 19.6578, 13.9341]])

In [16]: data + data
Out[16]:
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array([[-0.4094, ©0.9579, -1.0389],
[-1.1115, 3.9316, 2.7868]1)

In the first example, all of the elements have been multiplied by 10. In the second, the
corresponding values in each “cell” in the array have been added to each other.

In this chapter and throughout the book, I use the standard
NumPy convention of always using import numpy as np. You are,
of course, welcome to put from numpy import * in your code to
avoid having to write np., but I advise against making a habit of
this. The numpy namespace is large and contains a number of func-
tions whose names conflict with built-in Python functions (like min
and max).

An ndarray is a generic multidimensional container for homogeneous data; that is, all
of the elements must be the same type. Every array has a shape, a tuple indicating the
size of each dimension, and a dtype, an object describing the data type of the array:

In [17]: data.shape
out[17]: (2, 3)

In [18]: data.dtype

Out[18]: dtype('float64')
This chapter will introduce you to the basics of using NumPy arrays, and should be
sufficient for following along with the rest of the book. While it’s not necessary to
have a deep understanding of NumPy for many data analytical applications, becom-
ing proficient in array-oriented programming and thinking is a key step along the
way to becoming a scientific Python guru.

Whenever you see “array, “NumPy array, or “ndarray” in the text,
with few exceptions they all refer to the same thing: the ndarray
object.

Creating ndarrays

The easiest way to create an array is to use the array function. This accepts any
sequence-like object (including other arrays) and produces a new NumPy array con-
taining the passed data. For example, a list is a good candidate for conversion:

In [19]: datal = [6, 7.5, 8, 0, 1]
In [20]: arrl = np.array(datal)

In [21]: arr1
Out[21]: array([ 6. , 7.5, 8., 0., 1.1
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Nested sequences, like a list of equal-length lists, will be converted into a multidimen-
sional array:

In [22]: data2 = [[1, 2, 3, 41, [5, 6, 7, 811
In [23]: arr2 = np.array(data2)

In [24]: arr2
outf[24]:
array([[ls 2: 3: 4]:
(5, 6, 7, 81D
Since data2 was a list of lists, the NumPy array arr2 has two dimensions with shape
inferred from the data. We can confirm this by inspecting the ndim and shape
attributes:

In [25]: arr2.ndim
Out[25]: 2

In [26]: arr2.shape

Out[26]: (2, 4)
Unless explicitly specified (more on this later), np.array tries to infer a good data
type for the array that it creates. The data type is stored in a special dtype metadata
object; for example, in the previous two examples we have:

In [27]: arrl.dtype
Out[27]: dtype('float64d')

In [28]: arr2.dtype

Out[28]: dtype('int64')
In addition to np.array, there are a number of other functions for creating new
arrays. As examples, zeros and ones create arrays of Os or 1s, respectively, with a
given length or shape. empty creates an array without initializing its values to any par-
ticular value. To create a higher dimensional array with these methods, pass a tuple
for the shape:

In [29]: np.zeros(10)
out[29]: array([ 6., 0., 0., 0., 0., 0., 0., 0., 0., 0.])

In [30]: np.zeros((3, 6))

Out[30]:

array([[ 0., ©., 0., 0., 0., 0.1,
[ 0., 0., 0., 0., 0., 0.1,
[0., 0., 0., 0., 0., 0.1])

In [31]: np.empty((2, 3, 2))

Out[31]:

array([[ s s

[ 0., 0.]
[ 0., 0.]
[ 0., 0.]

1,
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It's not safe to assume that np.empty will return an array of all
zeros. In some cases, it may return uninitialized “garbage” values.

\

arange is an array-valued version of the built-in Python range function:

In [32]: np.arange(15)
out[32]: array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14])

See Table 4-1 for a short list of standard array creation functions. Since NumPy is
focused on numerical computing, the data type, if not specified, will in many cases be
float64 (floating point).

Table 4-1. Array creation functions

Function Description

array Convert input data (list, tuple, array, or other sequence type) to an ndarray either by inferring a dtype
or explicitly specifying a dtype; copies the input data by default

asarray Convert input to ndarray, but do not copy if the input is already an ndarray

arange Like the built-in range but returns an ndarray instead of a list

ones, Produce an array of all s with the given shape and dtype; ones_11ike takes another array and

ones_like produces a ones array of the same shape and dtype

zeros, Like ones and ones_1l1ike but producing arrays of 0s instead

zeros_like

empty, Create new arrays by allocating new memory, but do not populate with any values like ones and

empty_like zeros

full, Produce an array of the given shape and dtype with all values set to the indicated “fill value”

full_like full_Llike takes another array and produces a filled array of the same shape and dtype

eye, identity Createa square N x N identity matrix (1s on the diagonal and 0s elsewhere)

Data Types for ndarrays

The data type or dtype is a special object containing the information (or metadata,
data about data) the ndarray needs to interpret a chunk of memory as a particular

type of data:

In [33]: arrl = np.array([1, 2, 3], dtype=np.float64)

In [34]: arr2 = np.array([1, 2, 3], dtype=np.int32)

In [35]: arrl.dtype
Out[35]: dtype('float64"')
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In [36]: arr2.dtype

Out[36]: dtype('int32')
dtypes are a source of NumPy’s flexibility for interacting with data coming from other
systems. In most cases they provide a mapping directly onto an underlying disk or
memory representation, which makes it easy to read and write binary streams of data
to disk and also to connect to code written in a low-level language like C or Fortran.
The numerical dtypes are named the same way: a type name, like float or int, fol-
lowed by a number indicating the number of bits per element. A standard double-
precision floating-point value (what's used under the hood in Python’s float object)
takes up 8 bytes or 64 bits. Thus, this type is known in NumPy as float64. See
Table 4-2 for a full listing of NumPy’s supported data types.

Don't worry about memorizing the NumPy dtypes, especially if
youre a new user. It’s often only necessary to care about the general
kind of data youre dealing with, whether floating point, complex,
integer, boolean, string, or general Python object. When you need
more control over how data are stored in memory and on disk,
especially large datasets, it is good to know that you have control
over the storage type.

Table 4-2. NumPy data types

Type Type code Description

int8, uints i1, ul Signed and unsigned 8-bit (1 byte) integer types

int16, uint16 12, u2 Signed and unsigned 16-bit integer types

int32, uint32 i4, u4 Signed and unsigned 32-bit integer types

int64, uint64 i8, u8 Signed and unsigned 64-bit integer types

float16 f2 Half-precision floating point

float32 f4 or f Standard single-precision floating point; compatible with C float

floaté4 f8 or d Standard double-precision floating point; compatible with C double and
Python float object

float128 f16 or g Extended-precision floating point

complex64, c8, ci6, Complex numbers represented by two 32, 64, or 128 floats, respectively

complex128, c32

complex256

bool ? Boolean type storing True and False values

object 0 Python object type; a value can be any Python object

string_ S Fixed-length ASCIl string type (1 byte per character); for example, to create a
string dtype with length 10, use 'S10'

unicode_ u Fixed-length Unicode type (number of bytes platform specific); same

specification semantics as string_ (e.g., 'U10")
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You can explicitly convert or cast an array from one dtype to another using ndarray’s
astype method:

In [37]: arr = np.array([1, 2, 3, 4, 5])

In [38]: arr.dtype
Out[38]: dtype('int64')

In [39]: float_arr = arr.astype(np.float64)

In [40]: float_arr.dtype
Out[40]: dtype('float6ed")

In this example, integers were cast to floating point. If I cast some floating-point
numbers to be of integer dtype, the decimal part will be truncated:

In [41]: arr = np.array([3.7, -1.2, -2.6, 0.5, 12.9, 10.1])

In [42]: arr
Out[42]: array([ 3.7, ~-1.2, -2.6, 0.5, 12.9, 10.1])

In [43]: arr.astype(np.int32)
Out[43]: array([ 3, -1, -2, 0, 12, 10], dtype=int32)

If you have an array of strings representing numbers, you can use astype to convert
them to numeric form:

In [44]: numeric_strings = np.array(['1.25', '-9.6"', '42'], dtype=np.string_)

In [45]: numeric_strings.astype(float)
Out[45]: array([ 1.25, -9.6 , 42. 1)

It's important to be cautious when using the numpy.string_ type,
as string data in NumPy is fixed size and may truncate input
without warning. pandas has more intuitive out-of-the-box behav-
ior on non-numeric data.

If casting were to fail for some reason (like a string that cannot be converted to
float64), a ValueError will be raised. Here I was a bit lazy and wrote float instead
of np. float64; NumPy aliases the Python types to its own equivalent data dtypes.

You can also use another array’s dtype attribute:

In [46]: int_array = np.arange(10)
In [47]: calibers = np.array([.22, .270, .357, .380, .44, .50], dtype=np.floaté4)

In [48]: int_array.astype(calibers.dtype)
Out[48]: array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.1
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There are shorthand type code strings you can also use to refer to a dtype:

In [49]: empty_uint32 = np.empty(8, dtype='u4')

In [50]: empty_uint32

Out[50]:

array([ 0, 1075314688, 0, 1075707904, 0,
1075838976, 0, 1072693248], dtype=uint32)

Calling astype always creates a new array (a copy of the data), even
if the new dtype is the same as the old dtype.

Arithmetic with NumPy Arrays

Arrays are important because they enable you to express batch operations on data
without writing any for loops. NumPy users call this vectorization. Any arithmetic

operations between equal-size arrays applies the operation element-wise:

In [51]: arr = np.array([[1., 2., 3.1, [4., 5., 6.1])

In [52]: arr

Out[52]:

array([[ 1., 2., 3.1,
[ 4., 5., 6.1

In [53]: arr * arr

Out[53]:

array([[ 1., 4., 9.1,
[ 16., 25., 36.11)

In [54]: arr - arr

Out[54]:

array([[ 0., 0., 0.],
[ 0., 0., 0.1D

Arithmetic operations with scalars propagate the scalar argument to each element in

the array:

In [55]: 1 / arr

Out[55]:

array([[ 1. , 0.5 , 0.3333],
[ .25 , 0.2 , 0.166711)

In [56]: arr ** 0.5

Out[56]:

array([[ 1. , 1.4142, 1.7321],
[ 2. , 2.2361, 2.44951])

Comparisons between arrays of the same size yield boolean arrays:
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In [57]: arr2 = np.array([[0., 4., 1.1, [7., 2., 12.1])

In [58]: arr2

Out[58]:

array([[ ©., 4., 1.1,
L 7., 2., 12.1D

In [59]: arr2 > arr
Out[59]:
array([[False, True, False],
[ True, False, True]], dtype=bool)
Operations between differently sized arrays is called broadcasting and will be dis-
cussed in more detail in Appendix A. Having a deep understanding of broadcasting is
not necessary for most of this book.

Basic Indexing and Slicing

NumPy array indexing is a rich topic, as there are many ways you may want to select
a subset of your data or individual elements. One-dimensional arrays are simple; on
the surface they act similarly to Python lists:

In [60]: arr = np.arange(10)

In [61]: arr
Out[61]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [62]: arr[5]
Out[62]: 5

In [63]: arr[5:8]
Out[63]: array([5, 6, 7])

In [64]: arr[5:8] = 12

In [65]: arr

Out[65]: array([ ©, 1, 2, 3, 4, 12, 12, 12, 8, 9])
As you can see, if you assign a scalar value to a slice, asin arr[5:8] = 12, the value is
propagated (or broadcasted henceforth) to the entire selection. An important first dis-
tinction from Python’s built-in lists is that array slices are views on the original array.
This means that the data is not copied, and any modifications to the view will be
reflected in the source array.

To give an example of this, I first create a slice of arr:
In [66]: arr_slice = arr[5:8]

In [67]: arr_slice
Out[67]: array([12, 12, 12])
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Now, when I change values in arr_slice, the mutations are reflected in the original
array arr:

In [68]: arr_slice[1] = 12345

In [69]: arr
out[69]: array([ 0, 1, 2, 3, 4, 12, 12345, 12, 8,
°n

The “bare” slice [ : ] will assign to all values in an array:

In [70]: arr_slice[:] = 64

In [71]: arr

Out[71]: array([ 0, 1, 2, 3, 4, 64, 64, 64, 8, 9])
If you are new to NumPy, you might be surprised by this, especially if you have used
other array programming languages that copy data more eagerly. As NumPy has been
designed to be able to work with very large arrays, you could imagine performance
and memory problems if NumPy insisted on always copying data.

If you want a copy of a slice of an ndarray instead of a view, you
will need to explicity copy the array—for example,

\ arr[5:8].copy().

With higher dimensional arrays, you have many more options. In a two-dimensional
array, the elements at each index are no longer scalars but rather one-dimensional
arrays:

In [72]: arr2d = np.array([[1, 2, 31, [4, 5, 61, [7, 8, 91])
In [73]: arr2d[2]
Out[73]: array([7, 8, 9])

Thus, individual elements can be accessed recursively. But that is a bit too much
work, so you can pass a comma-separated list of indices to select individual elements.
So these are equivalent:

In [74]: arr2d[0][2]
Out[74]: 3

In [75]: arr2d[0, 2]
Out[75]: 3

See Figure 4-1 for an illustration of indexing on a two-dimensional array. I find it
helpful to think of axis 0 as the “rows” of the array and axis 1 as the “columns.”
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axis 1

axis0 1 1,0 1,1 1,2

Figure 4-1. Indexing elements in a NumPy array

In multidimensional arrays, if you omit later indices, the returned object will be a
lower dimensional ndarray consisting of all the data along the higher dimensions. So
in the 2 x 2 x 3 array arr3d:

In [76]: arr3d = np.array([[[1, 2, 3], [4, 5, 611, [[7, &, 9], [10, 11, 12]11D)

In [77]: arr3d

out[77]:

array([[[ 1, 2, 31,
[ 4, 5, 6]l,
(r7 s, 9,
[10, 11, 12]11D)

arr3d[0] isa 2 x 3 array:

In [78]: arr3d[0]

Out[78]:

array([[1, 2, 3],
[4, 5, 61D

Both scalar values and arrays can be assigned to arr3d[0]:

In [79]: old_values = arr3d[0].copy()
In [80]: arr3d[0] = 42

In [81]: arr3d

Out[81]:

array([[[42, 42, 42],
[42, 42, 42]1],
(r7 s, 9,
[10, 11, 1211D)

In [82]: arr3d[0] = old_values
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In [83]: arr3d

Out[83]:

array([[[ 1, 2, 31,
[ 4, 5, 611,
(r7 s, 9,
[10, 11, 12]11D)

Similarly, arr3d[1, 0] gives you all of the values whose indices start with (1, 0),

forming a 1-dimensional array:

In [84]: arr3d[1, 0]
Out[84]: array([7, 8, 9])

This expression is the same as though we had indexed in two steps:

In [85]: x = arr3d[1]

In [86]: x

out[86]:

array([[ 7, 8, 9],
[10, 11, 121])

In [87]: x[0]
Out[87]: array([7, 8, 9])

Note that in all of these cases where subsections of the array have been selected, the

returned arrays are views.

Indexing with slices

Like one-dimensional objects such as Python lists, ndarrays can be sliced with the

familiar syntax:

In [88]: arr
Out[88]: array([ ©, 1, 2, 3, 4, 64, 64, 64, 8, 9])

In [89]: arr[1:6]
Out[89]: array([ 1, 2, 3, 4, 64])

Consider the two-dimensional array from before, arr2d. Slicing this array is a bit

different:

In [90]: arr2d

Out[90]:

array([[1, 2, 3],
[4, 5, 6],
[7, 8, 91D

In [91]: arr2d[:2]

Out[91]:

array([[1, 2, 3],
[4, 5, 61D
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As you can see, it has sliced along axis 0, the first axis. A slice, therefore, selects a
range of elements along an axis. It can be helpful to read the expression arr2d[:2] as
“select the first two rows of arr2d.”
You can pass multiple slices just like you can pass multiple indexes:

In [92]: arr2d[:2, 1:]

Out[92]:

array([[2, 31,

[5, 61D

When slicing like this, you always obtain array views of the same number of dimen-
sions. By mixing integer indexes and slices, you get lower dimensional slices.

For example, I can select the second row but only the first two columns like so:

In [93]: arr2d[1, :2]
Out[93]: array([4, 51)

Similarly, I can select the third column but only the first two rows like so:

In [94]: arr2d[:2, 2]
out[94]: array([3, 6])

See Figure 4-2 for an illustration. Note that a colon by itself means to take the entire
axis, so you can slice only higher dimensional axes by doing:

In [95]: arr2d[:, :1]
Out[95]:
array([[1],

[41,

(71D

Of course, assigning to a slice expression assigns to the whole selection:

In [96]: arr2d[:2, 1:] =0

In [97]: arr2d

out[97]:

array([[1, 0, 0],
[4, o, 0],
[7, 8, 91D
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arr[:2, 1:]

arr[2]
arr[2, :]
arr[2:, :]

arr[:, :2]

arr[1, :2]
arr[1:2, :2]

Shape
(2, 2)

(3,)
(3,)
(1, 3)

(3, 2)

(2,)
(1, 2)

Figure 4-2. Two-dimensional array slicing

Boolean Indexing

Let’s consider an example where we have some data in an array and an array of names
with duplicates. I'm going to use here the randn function in numpy. random to generate
some random normally distributed data:

In [98]: names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])

In [99]: data = np.random.randn(7, 4)

In [100]: names
Out[100]:

array(['Bob', 'Joe', 'Will',
dtype="<U4")

In [101]: data

Out[101]:

array([[ 0.0929,
[ 1.0072,
[ 1.3529,
[ 1.669 ,
[ 3.2489,

0.2817,
-1.2962,
0.8864,
-0.4386,
-1.0212,

'Bob', 'Will', 'Joe', 'Joe'],

769 , 1.2464],
275 , 0.2289],
.0016, -0.3718],
.5397, 0.477 ],
5771, 0.1241],
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[ 0.3026, 0.5238, 0.0009, 1.3438],

[-0.7135, -0.8312, -2.3702, -1.8608]])
Suppose each name corresponds to a row in the data array and we wanted to select
all the rows with corresponding name 'Bob'. Like arithmetic operations, compari-
sons (such as ==) with arrays are also vectorized. Thus, comparing names with the
string 'Bob' yields a boolean array:

In [162]: names == 'Bob'
Out[102]: array([ True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [103]: data[names == 'Bob']

Out[103]:

array([[ 0.0929, 0.2817, 0.769 , 1.2464],
[ 1.669 , -0.4386, -0.5397, 0.477 11)

The boolean array must be of the same length as the array axis it's indexing. You can
even mix and match boolean arrays with slices or integers (or sequences of integers;
more on this later).

Boolean selection will not fail if the boolean array is not the correct
length, so I recommend care when using this feature.

\

In these examples, I select from the rows where names == 'Bob' and index the col-
umns, too:

In [104]: data[names == 'Bob', 2:]

out[104]:

array([[ 0.769 , 1.2464],
[-0.5397, 0.477 11)

In [165]: data[names == 'Bob', 3]
Out[105]: array([ 1.2464, 0.477 1)

To select everything but 'Bob', you can either use != or negate the condition using ~:

In [106]: names != 'Bob'
Out[106]: array([False, True, True, False, True, True, True], dtype=bool)

In [107]: data[~(names == 'Bob')]

out[107]:

array([[ 1.0072, -1.2962, 0.275 , 0.2289],
[ 1.3529, 0.8864, -2.0016, -0.3718],
[ 3.2489, -1.0212, -0.5771, 0.1241],
[ 0.3026, ©0.5238, 0.0009, 1.3438],
[-0.7135, -0.8312, -2.3702, -1.8608]]1)
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The ~ operator can be useful when you want to invert a general condition:

In [168]: cond = names == 'Bob'

In [109]: data[~cond]

Out[109]:

array([[ 1.0072, -1.2962, ©.275 , 0.2289],
[ 1.3529, 0.8864, -2.0016, -0.3718],
[ 3.2489, -1.0212, -0.5771, 0.1241],
[ 0.3026, 0.5238, 0.0009, 1.3438],
[-0.7135, -0.8312, -2.3702, -1.8608]1)

Selecting two of the three names to combine multiple boolean conditions, use
boolean arithmetic operators like & (and) and | (or):

In [110]: mask = (names == 'Bob') | (names == 'Will')

In [111]: mask
Out[111]: array([ True, False, True, True, True, False, False], dtype=bool)

In [112]: data[mask]

Out[112]:

array([[ 0.0929, 0.2817, 0.769 , 1.2464],
[ 1.3529, 0.8864, -2.0016, -0.3718],
[ 1.669 , -0.4386, -0.5397, 0.477 ],
[ 3.2489, -1.0212, -0.5771, 0.1241]])

Selecting data from an array by boolean indexing always creates a copy of the data,
even if the returned array is unchanged.

The Python keywords and and or do not work with boolean arrays.
Use & (and) and | (or) instead.

\

Setting values with boolean arrays works in a common-sense way. To set all of the
negative values in data to 0 we need only do:

In [113]: data[data < 0] = 0

In [114]: data

Out[114]:

array([[ 0.0929, 0.2817, 0.769 , 1.2464],
[ 1.0072, 0 , 0.275, 0.2289],
[ 1.3529, 0.8864, 0. , o. 1,
[ 1.669 , 0 , 0. , 0.477 1,
[ 3.2489, 0 , 0. , 0.1241],
[ 0.3026, ©0.5238, 0.0009, 1.3438],
[ o. , 0 , 0. , 0 1D
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Setting whole rows or columns using a one-dimensional boolean array is also easy:

In [115]: data[names != 'Joe'] = 7

In [116]: data

Out[116]:

array([[ 7. s 7 s 7. , 7. 1,
[ 1.0072, © , 0.275 , 0.2289],
[ 7. , 7 , 7. , 7 1,
[ 7. . 7 , 7. , 7 1,
[ 7. , 7. , 7. , 7. 1,
[ 0.3026, ©0.5238, 0.0009, 1.3438],
[ 0. , 0 , 0. , 0 1

As we will see later, these types of operations on two-dimensional data are convenient
to do with pandas.

Fancy Indexing

Fancy indexing is a term adopted by NumPy to describe indexing using integer arrays.
Suppose we had an 8 x 4 array:

In [117]: arr = np.empty((8, 4))

In [118]: for 1 in range(8):
..... : arr[i] = 1

In [119]: arr

Out[119]:

array([[ 0., 0., 0., 0.],
[ 1., 1., 1., 1.1,
[ 2., 2., 2., 2.1,
[ 3., 3., 3., 3.1,
[ 4., 4., 4., 4.1,
[ 5., 5., 5., 5.1,
[ 6., 6., 6., 6.1,
L7., 7., 7., 7.1

To select out a subset of the rows in a particular order, you can simply pass a list or
ndarray of integers specifying the desired order:

In [120]: arr[[4, 3, 0, 6]]

Out[120]:

array([[ 4., 4., 4., 4.1,
[ 3., 3., 3., 3.1,
[ ., 0., 0., 0.1,
[6., 6., 6., 6.1

Hopefully this code did what you expected! Using negative indices selects rows from
the end:

In [121]: arr[[-3, -5, -7]1]
Out[121]:
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array([[ 5., 5., 5., 5.1,
[ 3., 3., 3., 3.1,
[ 1., 1., 1., 1.1D

Passing multiple index arrays does something slightly different; it selects a one-
dimensional array of elements corresponding to each tuple of indices:

In [122]: arr = np.arange(32).reshape((8, 4))

In [123]: arr

Out[123]:

array([[ o, 1, 2, 3],
[ 4, 5, 6, 71,
[ 8, o9, 10, 111,
[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23],
[24, 25, 26, 271,
[28, 29, 30, 3111)

In [124]: arr[[1, 5, 7, 2], [0, 3, 1, 2]]
Out[124]: array([ 4, 23, 29, 10])

We'll look at the reshape method in more detail in Appendix A.

Here the elements (1, 0), (5, 3), (7, 1),and (2, 2) were selected. Regardless of
how many dimensions the array has (here, only 2), the result of fancy indexing is
always one-dimensional.

The behavior of fancy indexing in this case is a bit different from what some users
might have expected (myself included), which is the rectangular region formed by
selecting a subset of the matrix’s rows and columns. Here is one way to get that:
In [125]: arr[[1, 5, 7, 2]11[:, [0, 3, 1, 2]]
Out[125]:
array([[ 4, 7, 5, 6],
[20, 23, 21, 22],
[28, 31, 29, 30],
[ 8 11, 9, 10]D
Keep in mind that fancy indexing, unlike slicing, always copies the data into a new
array.

Transposing Arrays and Swapping Axes

Transposing is a special form of reshaping that similarly returns a view on the under-
lying data without copying anything. Arrays have the transpose method and also the
special T attribute:

In [126]: arr = np.arange(15).reshape((3, 5))

In [127]: arr
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Out[127]:

array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]1])

In [128]: arr.T

Out[128]:

array([[ 0, 5, 10],
[ 1, 6, 11],
[ 2, 7, 121,
[ 3, 8, 13],
[ 4, 9, 141])

When doing matrix computations, you may do this very often—for example, when
computing the inner matrix product using np.dot:

In [129]: arr = np.random.randn(6, 3)

In [130]: arr
Out[130]:

array([[-0.8608, 0.5601, -1.2659],
[ ©.1198, -1.0635, 0.3329],
[-2.3594, -0.1995, -1.542 ],
[-0.9707, -1.307 , 0.2863],
[ 0.378 , -0.7539, 0.3313],
[ 1.3497, 0.0699, 0.24671])

In [131]: np.dot(arr.T, arr)

Out[131]:

array([[ 9.2291, 0.9394, 4.948 ],
[ 0.9394, 3.7662, -1.3622],
[ 4.948 , -1.3622, 4.34371])

For higher dimensional arrays, transpose will accept a tuple of axis numbers to per-
mute the axes (for extra mind bending):

In [132]: arr = np.arange(16).reshape((2, 2, 4))

In [133]: arr

Out[133]:

array([[[ o, 1, 2, 31,
[ 4, 5, 6, 711,
[[ 8, 9, 10, 11],

[12, 13, 14, 15]111)

In [134]: arr.transpose((1, 0, 2))
Out[134]:
array([[[ 0, 1, 2, 3],

[ 8 9, 10, 11]],

[t 4, 5, 6, 71,

[12, 13, 14, 15]11])
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Here, the axes have been reordered with the second axis first, the first axis second,

and the last axis unchanged.

Simple transposing with . T is a special case of swapping axes. ndarray has the method
swapaxes, which takes a pair of axis numbers and switches the indicated axes to rear-

range the data:

In [135]: arr

Out[135]:

array([[[ o, 1, 2, 3],
[ 4, 5, 6, 7]]’
[[ 8, 9, 10, 11],
[12, 13, 14, 15]11])

In [136]: arr.swapaxes(1l, 2)
Out[136]:

array([[[ o,
[1,
[2,
[3,
[l 8,
[9,

[10,

41,
51,
61,
711,
121,
13],
147,

[11, 1511D)

swapaxes similarly returns a view on the data without making a copy.

4.2 Universal Functions: Fast Element-Wise Array
Functions

A universal function, or ufunc, is a function that performs element-wise operations
on data in ndarrays. You can think of them as fast vectorized wrappers for simple
functions that take one or more scalar values and produce one or more scalar results.

Many ufuncs are simple element-wise transformations, like sqrt or exp:

2. , 2.2361, 2.4495,

20.0855, 54.5982,

In [137]: arr = np.arange(10)

In [138]: arr

Out[138]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [139]: np.sqrt(arr)

Out[139]:

array([ 0. , 1. , 1.4142, 1.7321,
2.6458, 2.8284, 3. 1

In [140]: np.exp(arr)

Out[140]:

array([ 1. s 2.7183, 7.3891,
148.4132, 403.4288, 1096.6332,

2980.958 , 8103.0839])
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These are referred to as unary ufuncs. Others, such as add or maximum, take two arrays
(thus, binary ufuncs) and return a single array as the result:

In [141]: x = np.random.randn(8)
In [142]: y = np.random.randn(8)

In [143]: x

Out[143]:

array([-0.0119, 1.0048, 1.3272, -0.9193, -1.5491, 0.0222, 0.7584,
-0.6605])

In [144]: y

Out[144]:

array([ 0.8626, -0.01 , ©0.05 , 0.6702, 0.853 , -0.9559, -0.0235,
-2.3042])

In [145]: np.maximum(x, y)

Out[145]:

array([ 0.8626, 1.0048, 1.3272, 0.6702, 0.853 , 0.0222, 0.7584,
-0.66051)

Here, numpy . maximum computed the element-wise maximum of the elements in x and
y.

While not common, a ufunc can return multiple arrays. modf is one example, a vec-
torized version of the built-in Python divmod; it returns the fractional and integral
parts of a floating-point array:

In [146]: arr = np.random.randn(7) * 5

In [147]: arr
Out[147]: array([-3.2623, -6.0915, -6.663 , 5.3731, 3.6182, 3.45 , 5.0077])

In [148]: remainder, whole_part = np.modf(arr)

In [149]: remainder
Out[149]: array([-0.2623, -0.0915, -0.663 , 0.3731, 0.6182, 0.45 , 0.0077])

In [150]: whole_part
Out[150]: array([-3., -6., -6., 5., 3., 3., 5.1)

Ufuncs accept an optional out argument that allows them to operate in-place on
arrays:

In [151]: arr
Out[151]: array([-3.2623, -6.0915, -6.663 , 5.3731, 3.6182, 3.45 , 5.0077])

In [152]: np.sqrt(arr)
Out[152]: array([ nan, nan, nan, 2.318 , 1.9022, 1.8574, 2.2378])

In [153]: np.sqrt(arr, arr)
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Out[153]: array([ nan, nan, nan, 2.318 , 1.9022, 1.8574, 2.2378])

In [154]: arr
Out[154]: array([ nan, nan, nan, 2.318 , 1.9022, 1.8574, 2.2378])

See Tables 4-3 and 4-4 for a listing of available ufuncs.

Table 4-3. Unary ufuncs

abs, fabs Compute the absolute value element-wise for integer, floating-point, or complex values

sqrt Compute the square root of each element (equivalent to arr ** 0.5)

square Compute the square of each element (equivalent to arr ** 2)

exp Compute the exponent e of each element

log, logilo, Natural logarithm (base e), log base 10, log base 2, and log(1 + x), respectively

log2, loglp

sign Compute the sign of each element: 1 (positive), 0 (zero), or —1 (negative)

ceil Compute the ceiling of each element (i.e., the smallest integer greater than or equal to that
number)

floor Compute the floor of each element (i.e., the largest integer less than or equal to each element)

rint Round elements to the nearest integer, preserving the dtype

modf Return fractional and integral parts of array as a separate array

isnan Return boolean array indicating whether each value is NaN (Not a Number)

isfinite, isinf Return boolean array indicating whether each element is finite (non-inf, non-NaN) or infinite,
respectively

cos, cosh, sin, Regular and hyperbolic trigonometric functions

sinh, tan, tanh

arccos, arccosh, Inverse trigonometric functions

arcsin, arcsinh,

arctan, arctanh

logical_not Compute truth value of not x element-wise (equivalent to ~arr).

Table 4-4. Binary universal functions

add Add corresponding elements in arrays

subtract Subtract elements in second array from first array

multiply Multiply array elements

divide, floor_divide Divide or floor divide (truncating the remainder)

power Raise elements in first array to powers indicated in second array
maximum, fmax Element-wise maximum; fmax ignores NaN

minimum, fmin Element-wise minimum; fmin ignores NaN

mod Element-wise modulus (remainder of division)

copysign Copy sign of values in second argument to values in first argument
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Function Description

greater, greater_equal,  Perform element-wise comparison, yielding boolean array (equivalent to infix
less, less_equal, operators >, >=, <, <=, ==, !=)

equal, not_equal

logical_and, Compute element-wise truth value of logical operation (equivalent to infix operators
logical_or, logical_xor & |, %)

4.3 Array-Oriented Programming with Arrays

Using NumPy arrays enables you to express many kinds of data processing tasks as
concise array expressions that might otherwise require writing loops. This practice of
replacing explicit loops with array expressions is commonly referred to as vectoriza-
tion. In general, vectorized array operations will often be one or two (or more) orders
of magnitude faster than their pure Python equivalents, with the biggest impact in
any kind of numerical computations. Later, in Appendix A, I explain broadcasting, a
powerful method for vectorizing computations.

As a simple example, suppose we wished to evaluate the function sqrt(x*2 + y~2)
across a regular grid of values. The np.meshgrid function takes two 1D arrays and
produces two 2D matrices corresponding to all pairs of (x, y) in the two arrays:

In [155]: points = np.arange(-5, 5, 0.01) # 1000 equally spaced points
In [156]: xs, ys = np.meshgrid(points, points)

In [157]: ys

Out[157]:

array([[-5. , -5. , -5. , ..., -5. , -5. , -5. 1],
[-4.99, -4.99, -4.99, ..., -4.99, -4.99, -4.99],
[-4.98, -4.98, -4.98, ..., -4.98, -4.98, -4.98],
[ 4.97, 4.97, 4.97, ..., 4.97, 4.97, 4.97],
[ 4.98, 4.98, 4.98, ..., 4.98, 4.98, 4.98],
[ 4.99, 4.99, 4.99, ..., 4.99, 4.99, 4.99]1])

Now, evaluating the function is a matter of writing the same expression you would
write with two points:

In [158]: z = np.sqrt(xs ** 2 + ys ** 2)

In [159]: z
Out[159]:
array([[ 7.0711, 7.064 , 7.0569, ..., 7.0499, 7.0569, 7.064 ],

[ 7.064 , 7.0569, 7.0499, ..., 7.0428, 7.0499, 7.0569],
[ 7.0569, 7.0499, 7.0428, ..., 7.0357, 7.0428, 7.0499],
[ 7.0499, 7.0428, 7.0357, ..., 7.0286, 7.0357, 7.0428],
[ 7.0569, 7.0499, 7.0428, ..., 7.0357, 7.0428, 7.0499],

[ 7.064 , 7.0569, 7.0499, ..., 7.0428, 7.0499, 7.0569]1)
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As a preview of Chapter 9, I use matplotlib to create visualizations of this two-
dimensional array:

In [160]: import matplotlib.pyplot as plt

In [161]: plt.imshow(z, cmap=plt.cm.gray); plt.colorbar()
Out[161]: <matplotlib.colorbar.Colorbar at Ox7f715e3fa630>

In [162]: plt.title("Image plot of S$\sqrt{x”2 + y~2}$ for a grid of values")
Out[162]: <matplotlib.text.Text at Ox7f715d2de748>

See Figure 4-3. Here I used the matplotlib function imshow to create an image plot
from a two-dimensional array of function values.

Image plot of V x? + y? for a grid of values

17

- 6
200 +
400 A
600
800 A

1000 T T
0 200 400 600 800 1000

Figure 4-3. Plot of function evaluated on grid

Expressing Conditional Logic as Array Operations

The numpy .where function is a vectorized version of the ternary expression x if con
dition else y. Suppose we had a boolean array and two arrays of values:
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In [165]: xarr = np.array([1.1, 1.2, 1.3, 1.4, 1.5])
In [166]: yarr = np.array([2.1, 2.2, 2.3, 2.4, 2.5])

In [167]: cond = np.array([True, False, True, True, False])

Suppose we wanted to take a value from xarr whenever the corresponding value in
cond is True, and otherwise take the value from yarr. A list comprehension doing
this might look like:

In [168]: result = [(x if c else y)
..... : for x, y, c in zip(xarr, yarr, cond)]

In [169]: result
Out[169]: [1.1000000000000001, 2.2000000000000002, 1.3, 1.3999999999999999, 2.5]

This has multiple problems. First, it will not be very fast for large arrays (because all
the work is being done in interpreted Python code). Second, it will not work with
multidimensional arrays. With np.where you can write this very concisely:

In [170]: result = np.where(cond, xarr, yarr)

In [171]: result
Out[171]: array([ 1.1, 2.2, 1.3, 1.4, 2.5])

The second and third arguments to np.where don't need to be arrays; one or both of
them can be scalars. A typical use of where in data analysis is to produce a new array
of values based on another array. Suppose you had a matrix of randomly generated
data and you wanted to replace all positive values with 2 and all negative values with
-2. This is very easy to do with np.where:

In [172]: arr = np.random.randn(4, 4)

In [173]: arr

Out[173]:

array([[-0.5031, -0.6223, -0.9212, -0.7262],
[ 0.2229, 0.0513, -1.1577, 0.8167],
[ 0.4336, 1.0107, 1.8249, -0.9975],
[ 0.8506, -0.1316, 0.9124, 0.1882]])

In [174]: arr > 0
Out[174]:
array([[False, False, False, False],
[ True, True, False, True],
[ True, True, True, False],
[ True, False, True, True]], dtype=bool)

In [175]: np.where(arr > 0, 2, -2)
Out[175]:
array([[-2, -2, -2, -2],

[ 2, 2, -2, 2],
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[ 21 21 2: '2]’
[ 2: '2: 2) 2]])

You can combine scalars and arrays when using np.where. For example, I can replace
all positive values in arr with the constant 2 like so:

In [176]: np.where(arr > 0, 2, arr) # set only positive values to 2

Out[176]:

array([[-0.5031, -0.6223, -0.9212, -0.7262],
[ 2. , 2. , -1.1577, 2. 1,
[ 2. , 2. . 2. , -0.9975],
[ 2. , -0.1316, 2. , 2. 1

The arrays passed to np.where can be more than just equal-sized arrays or scalars.

Mathematical and Statistical Methods

A set of mathematical functions that compute statistics about an entire array or about
the data along an axis are accessible as methods of the array class. You can use aggre-
gations (often called reductions) like sum, mean, and std (standard deviation) either by
calling the array instance method or using the top-level NumPy function.

Here I generate some normally distributed random data and compute some aggregate
statistics:

In [177]: arr = np.random.randn(5, 4)

In [178]: arr

Out[178]:

array([[ 2.1695, -0.1149, 2.0037, 0.0296],
[ 6.7953, ©.1181, -0.7485, 0.585 ],
[ 0.1527, -1.5657, -0.5625, -0.0327],
[-0.929 , -0.4826, -0.0363, 1.0954],
[ 0.9809, -0.5895, 1.5817, -0.5287]11)

In [179]: arr.mean()
Out[179]: 0.19607051119998253

In [180]: np.mean(arr)
Out[180]: 0.19607051119998253

In [181]: arr.sum()
Out[181]: 3.9214102239996507

Functions like mean and sum take an optional axis argument that computes the statis-
tic over the given axis, resulting in an array with one fewer dimension:

In [182]: arr.mean(axis=1)
out[182]: array([ 1.022 , 0.1875, -0.502 , -0.0881, 0.3611])

In [183]: arr.sum(axis=0)
Out[183]: array([ 3.1693, -2.6345, 2.2381, 1.1486])

4.3 Array-Oriented Programming with Arrays | 111



Here, arr.mean(1) means “compute mean across the columns” where arr.sum(0)
means “‘compute sum down the rows.”

Other methods like cumsum and cumprod do not aggregate, instead producing an array
of the intermediate results:

In [184]: arr = np.array([0, 1, 2, 3, 4, 5, 6, 7])

In [185]: arr.cumsum()
Out[185]: array([ o0, 1, 3, 6, 10, 15, 21, 28])

In multidimensional arrays, accumulation functions like cumsum return an array of
the same size, but with the partial aggregates computed along the indicated axis
according to each lower dimensional slice:

In [186]: arr = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]1])

In [187]: arr

out[187]:

array([[o, 1, 2],
[3’ 4’ 5]!
[6, 7, 81D

In [188]: arr.cumsum(axis=0)
Out[188]:
array([[ o, 1, 2],

[ 3, 5, 71,

[ 9, 12, 15]11)

In [189]: arr.cumprod(axis=1)
Out[189]:
array([[ o, o, o],

[ 3, 12, 60],

[ 6, 42, 3361])

See Table 4-5 for a full listing. We'll see many examples of these methods in action in
later chapters.

Table 4-5. Basic array statistical methods

sum Sum of all the elements in the array or along an axis; zero-length arrays have sum 0

mean Arithmetic mean; zero-length arrays have NaN mean

std, var Standard deviation and variance, respectively, with optional degrees of freedom adjustment (default
denominator n)

min, max Minimum and maximum

argmin, argmax Indices of minimum and maximum elements, respectively

cumsum Cumulative sum of elements starting from 0

cumprod Cumulative product of elements starting from 1
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Methods for Boolean Arrays

Boolean values are coerced to 1 (True) and 0 (False) in the preceding methods. Thus,
sum is often used as a means of counting True values in a boolean array:

In [190]: arr = np.random.randn(100)
In [191]: (arr > 0).sum() # Number of positive values
Out[191]: 42

There are two additional methods, any and all, useful especially for boolean arrays.
any tests whether one or more values in an array is True, while all checks if every
value is True:

In [192]: bools = np.array([False, False, True, False])

In [193]: bools.any()
Out[193]: True

In [194]: bools.all()

Out[194]: False
These methods also work with non-boolean arrays, where non-zero elements evalu-
ate to True.

Sorting

Like Python’s built-in list type, NumPy arrays can be sorted in-place with the sort
method:

In [195]: arr = np.random.randn(6)

In [196]: arr
Out[196]: array([ 0.6095, -0.4938, 1.24 , -0.1357, 1.43 , -0.8469])

In [197]: arr.sort()

In [198]: arr
Out[198]: array([-0.8469, -0.4938, -0.1357, 0.6095, 1.24 , 1.43 1)

You can sort each one-dimensional section of values in a multidimensional array in-
place along an axis by passing the axis number to sort:

In [199]: arr = np.random.randn(5, 3)

In [200]: arr

Out[200]:

array([[ 0.6033, 1.2636, -0.2555],
[-0.4457, 0.4684, -0.9616],
[-1.8245, 0.6254, 1.0229],
[ 1.1074, 0.0909, -0.3501],
[ 0.218 , -0.8948, -1.7415]])
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In [201]: arr.sort(1)

In [202]: arr

Out[202]:

array([[-0.2555, 0.6033, 1.2636],
[-0.9616, -0.4457, 0.4684],
[-1.8245, 0.6254, 1.0229],
[-0.3501, 0.0909, 1.1074],
[-1.7415, -0.8948, 0.218 11)

The top-level method np.sort returns a sorted copy of an array instead of modifying
the array in-place. A quick-and-dirty way to compute the quantiles of an array is to
sort it and select the value at a particular rank:

In [203]: large_arr = np.random.randn(1000)
In [204]: large_arr.sort()

In [205]: large_arr[int(0.05 * len(large_arr))] # 5% quantile
Out[205]: -1.5311513550102103

For more details on using NumPy’s sorting methods, and more advanced techniques
like indirect sorts, see Appendix A. Several other kinds of data manipulations related
to sorting (e.g., sorting a table of data by one or more columns) can also be found in
pandas.

Unique and Other Set Logic

NumPy has some basic set operations for one-dimensional ndarrays. A commonly
used one is np.unique, which returns the sorted unique values in an array:

In [206]: names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])

In [207]: np.unique(names)

out[207]:
array(['Bob', 'Joe', 'Will'],
dtype="'<U4")

In [208]: ints = np.array([3, 3, 3, 2, 2, 1, 1, 4, 4])

In [209]: np.unique(ints)
Out[209]: array([1, 2, 3, 4])

Contrast np.unique with the pure Python alternative:

In [210]: sorted(set(names))
Out[216]: ['Bob', 'Joe', 'Will']

Another function, np.in1d, tests membership of the values in one array in another,
returning a boolean array:
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In [211]: values = np.array([6, 0, 0, 3, 2, 5, 6])

In [212]: np.inld(values, [2, 3, 6])
Out[212]: array([ True, False, False, True, True, False, True], dtype=bool)

See Table 4-6 for a listing of set functions in NumPy.

Table 4-6. Array set operations

Method Description

unique(x) Compute the sorted, unique elements in x

intersect1d(x, y) Compute the sorted, common elementsin x and y

unionld(x, y) Compute the sorted union of elements

inld(x, vy) Compute a boolean array indicating whether each element of x is contained in y
setdiff1d(x, y) Set difference, elements in x that are notin y

setxorld(x, y) Set symmetric differences; elements that are in either of the arrays, but not both

4.4 File Input and Output with Arrays

NumPy is able to save and load data to and from disk either in text or binary format.
In this section I only discuss NumPy’s built-in binary format, since most users will
prefer pandas and other tools for loading text or tabular data (see Chapter 6 for much
more).

np.save and np.load are the two workhorse functions for efficiently saving and load-
ing array data on disk. Arrays are saved by default in an uncompressed raw binary
format with file extension .npy:

In [213]: arr = np.arange(10)
In [214]: np.save('some_array', arr)

If the file path does not already end in .npy, the extension will be appended. The array
on disk can then be loaded with np.load:

In [215]: np.load('some_array.npy')
Out[215]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

You save multiple arrays in an uncompressed archive using np.savez and passing the
arrays as keyword arguments:

In [216]: np.savez('array_archive.npz', a=arr, b=arr)

When loading an .npz file, you get back a dict-like object that loads the individual
arrays lazily:

In [217]: arch = np.load('array_archive.npz"')

In [218]: arch['b']
Out[218]: array([06, 1, 2, 3, 4, 5, 6, 7, 8, 9])
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If your data compresses well, you may wish to use numpy . savez_compressed instead:

In [219]: np.savez_compressed('arrays_compressed.npz', a=arr, b=arr)

4.5 Linear Algebra

Linear algebra, like matrix multiplication, decompositions, determinants, and other
square matrix math, is an important part of any array library. Unlike some languages
like MATLAB, multiplying two two-dimensional arrays with * is an element-wise
product instead of a matrix dot product. Thus, there is a function dot, both an array
method and a function in the numpy namespace, for matrix multiplication:

In [223]: x = np.array([[1., 2., 3.1, [4., 5., 6.1])
In [224]: y = np.array([[6., 23.1, [-1, 71, [8, 911)
In [225]: x
Out[225]:
array([[ 1., 2., 3.1,
[ 4 5., 6.1
In [226]: y
Out[226]:
array([[ 6., 23.1,
[ -1., 7.1,
[ &, °ID
In [227]: x.dot(y)
Out[227]:

array([[ 28., 64.],
[ 67., 181.11)

x.dot(y) is equivalent to np.dot(x, y):

In [228]: np.dot(x, y)

Out[228]:

array([[ 28., 64.],
[ 67., 181.11)

A matrix product between a two-dimensional array and a suitably sized one-
dimensional array results in a one-dimensional array:

In [229]: np.dot(x, np.ones(3))
Out[229]: array([ 6., 15.1)

The @ symbol (as of Python 3.5) also works as an infix operator that performs matrix

multiplication:

In [230]: x

@ np.ones(3)

Out[230]: array([ 6., 15.1)
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numpy. linalg has a standard set of matrix decompositions and things like inverse
and determinant. These are implemented under the hood via the same industry-
standard linear algebra libraries used in other languages like MATLAB and R, such as
BLAS, LAPACK, or possibly (depending on your NumPy build) the proprietary Intel
MKL (Math Kernel Library):

In [231]:
In [232]:

In [233]: mat

In [234]: inv
Out[234]:
array([[

[ 871.
[-1417.
[-1460.
[ 1782.

In [235]: mat.

Out[235]:
array([[ 1.,

[cl oo

[-
[

[-
[-

In [236]: q,

In [237]: r

Out[237]:

array([[-1.69
[ o.

[ e W |
[cl oMo

933.

X = np.random.randn(5, 5)

from numpy.linalg import inv, gr

= X.T.dot(X)
(mat)
1189, 871.8258, -1417.6902, -1460.4005, 1782.1391],
8258,  815.3929, -1325.9965, -1365.9242, 1666.9347],
6902, -1325.9965, 2158.4424, 2222.0191, -2711.6822],
4005, -1365.9242, 2222.0191, 2289.0575, -2793.422 ],
1391, 1666.9347, -2711.6822, -2793.422 , 3409.5128]])
dot(inv(mat))
0., -0., -0., -0.1,
1., 0., 0., 0.1,
0., 1., 0., 0.1,
0., 0., 1., -0.],
0., 0., 0., 1.11
r = qr(mat)
14, 4.38 , 0.1757, 0.4075, -0.7838],
, -2.6436, 0.1939, -3.072 , -1.0702],
, 0. , -0.8138, 1.5414, 0.6155],
, 0. , , -2.6445, -2.1669],
, 0. s , 0. , 0.000211)

The expression X.T.dot(X) computes the dot product of X with its transpose X.T.

See Table 4-7 for a list of some of the most commonly used linear algebra functions.

Table 4-7. Commonly used numpy.linalg functions

Function Description
diag

square matrix with zeros on the off-diagonal

dot
trace
det

Matrix multiplication
Compute the sum of the diagonal elements
Compute the matrix determinant

Return the diagonal (or off-diagonal) elements of a square matrix as a 1D array, or convert a 1D array into a
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Function Description

elg Compute the eigenvalues and eigenvectors of a square matrix
inv Compute the inverse of a square matrix

pinv Compute the Moore-Penrose pseudo-inverse of a matrix

qr Compute the QR decomposition

svd Compute the singular value decomposition (SVD)

solve  Solve the linear system Ax = b for x, where A is a square matrix
1stsq  Compute the least-squares solution to Ax = b

4.6 Pseudorandom Number Generation

The numpy.random module supplements the built-in Python random with functions
for efficiently generating whole arrays of sample values from many kinds of probabil-
ity distributions. For example, you can get a 4 x 4 array of samples from the standard
normal distribution using normatl:

In [238]: samples = np.random.normal(size=(4, 4))

In [239]: samples

Out[239]:

array([[ 0.5732, 0.1933, 0.4429, 1.2796],
[ .575 , 0.4339, -0.7658, -1.237 ],
[-0.5367, 1.8545, -0.92 , -0.1082],
[ ©.1525, 0.9435, -1.0953, -0.144 ]])

Python’s built-in random module, by contrast, only samples one value at a time. As
you can see from this benchmark, numpy.random is well over an order of magnitude
faster for generating very large samples:

In [240]: from random import normalvariate
In [241]: N = 1000000

In [242]: %timeit samples = [normalvariate(0, 1) for _ in range(N)]
1.77 s +- 126 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)

In [243]: %timeilt np.random.normal(size=N)

61.7 ms +- 1.32 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)
We say that these are pseudorandom numbers because they are generated by an algo-
rithm with deterministic behavior based on the seed of the random number genera-
tor. You can change NumPy’s random number generation seed using
np.random. seed:

In [244]: np.random.seed(1234)

118 | Chapter4: NumPy Basics: Arrays and Vectorized Computation



The data generation functions in numpy.random use a global random seed. To avoid
global state, you can use numpy.random.RandomState to create a random number
generator isolated from others:

In [245]: rng = np.random.RandomState(1234)

In [246]: rng.randn(10)

Out[246]:

array([ 0.4714, -1.191 , 1.4327, -0.3127, -0.7206, 0.8872, 0.8596,
-0.6365, 0.0157, -2.2427])

See Table 4-8 for a partial list of functions available in numpy.random. I'll give some
examples of leveraging these functions’ ability to generate large arrays of samples all
at once in the next section.

Table 4-8. Partial list of numpy.random functions

Function Description

seed Seed the random number generator

permutation Returnarandom permutation of a sequence, or return a permuted range
shuffle Randomly permute a sequence in-place

rand Draw samples from a uniform distribution

randint Draw random integers from a given low-to-high range

randn Draw samples from a normal distribution with mean 0 and standard deviation 1 (MATLAB-like interface)
binomial Draw samples from a binomial distribution

normal Draw samples from a normal (Gaussian) distribution

beta Draw samples from a beta distribution

chisquare Draw samples from a chi-square distribution

gamma Draw samples from a gamma distribution

uniform Draw samples from a uniform [0, 1) distribution

4.7 Example: Random Walks

The simulation of random walks provides an illustrative application of utilizing array
operations. Let’s first consider a simple random walk starting at 0 with steps of 1 and
-1 occurring with equal probability.

Here is a pure Python way to implement a single random walk with 1,000 steps using
the built-in random module:

In [247]: import random
.....: position = 0
.....: walk = [position]
.....: steps = 1000
.....: for 1 in range(steps):
P step = 1 if random.randint(0, 1) else -1
el position += step
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et walk.append(position)

See Figure 4-4 for an example plot of the first 100 values on one of these random
walks:

In [249]: plt.plot(walk[:100])

14 A

12 4

10 4

0 20 40 60 80 100

Figure 4-4. A simple random walk

You might make the observation that walk is simply the cumulative sum of the ran-
dom steps and could be evaluated as an array expression. Thus, I use the np.random
module to draw 1,000 coin flips at once, set these to 1 and -1, and compute the
cumulative sum:

In [251]: nsteps = 1000
In [252]: draws = np.random.randint(0, 2, size=nsteps)
In [253]: steps = np.where(draws > 0, 1, -1)

In [254]: walk = steps.cumsum()

From this we can begin to extract statistics like the minimum and maximum value
along the walK’s trajectory:

In [255]: walk.min()
Out[255]: -3
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In [256]: walk.max()

Out[256]: 31
A more complicated statistic is the first crossing time, the step at which the random
walk reaches a particular value. Here we might want to know how long it took the
random walk to get at least 10 steps away from the origin 0 in either direction.
np.abs(walk) >= 10 gives us a boolean array indicating where the walk has reached
or exceeded 10, but we want the index of the first 10 or -10. Turns out, we can com-
pute this using argmax, which returns the first index of the maximum value in the
boolean array (True is the maximum value):

In [257]: (np.abs(walk) >= 10).argmax()

Out[257]: 37
Note that using argmax here is not always efficient because it always makes a full scan
of the array. In this special case, once a True is observed we know it to be the maxi-
mum value.

Simulating Many Random Walks at Once

If your goal was to simulate many random walks, say 5,000 of them, you can generate
all of the random walks with minor modifications to the preceding code. If passed a
2-tuple, the numpy. random functions will generate a two-dimensional array of draws,
and we can compute the cumulative sum across the rows to compute all 5,000 ran-
dom walks in one shot:

In [258]: nwalks = 5000

In [259]: nsteps = 1000

In [260]: draws = np.random.randint(0, 2, size=(nwalks, nsteps)) # 0 or 1
In [261]: steps = np.where(draws > 0, 1, -1)

In [262]: walks = steps.cumsum(1)

In [263]: walks

Out[263]:

array([[ 1, 0, 1, ..., 8, 7, 8],
[ 1, o, -1, ..., 34, 33, 321,
[ 1, o, -1, ..., 4, 5, 4],
[ 1, 2, 1, ..., 24, 25, 26],
[ 1, 2, 3, ..., 14, 13, 14],
[ -1, -2, -3, ..., -24, -23, -221D)

Now, we can compute the maximum and minimum values obtained over all of the
walks:
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In [264]: walks.max()
Out[264]: 138

In [265]: walks.min()

Out[265]: -133
Out of these walks, let's compute the minimum crossing time to 30 or -30. This is
slightly tricky because not all 5,000 of them reach 30. We can check this using the any
method:

In [266]: hits30 = (np.abs(walks) >= 30).any(1)

In [267]: hits30
Out[267]: array([False, True, False, ..., False, True, False], dtype=bool)

In [268]: hits30.sum() # Number that hit 30 or -30

Out[268]: 3410
We can use this boolean array to select out the rows of walks that actually cross the
absolute 30 level and call argmax across axis 1 to get the crossing times:

In [269]: crossing_times = (np.abs(walks[hits30]) >= 30).argmax(1)

In [270]: crossing_times.mean()

Out[270]: 498.88973607038122
Feel free to experiment with other distributions for the steps other than equal-sized
coin flips. You need only use a different random number generation function, like
normal to generate normally distributed steps with some mean and standard
deviation:

In [271]: steps = np.random.normal(loc=0, scale=0.25,
..... : size=(nwalks, nsteps))

4.8 Conclusion

While much of the rest of the book will focus on building data wrangling skills with
pandas, we will continue to work in a similar array-based style. In Appendix A, we
will dig deeper into NumPy features to help you further develop your array comput-
ing skills.
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CHAPTER 5
Getting Started with pandas

pandas will be a major tool of interest throughout much of the rest of the book. It
contains data structures and data manipulation tools designed to make data cleaning
and analysis fast and easy in Python. pandas is often used in tandem with numerical
computing tools like NumPy and SciPy, analytical libraries like statsmodels and
scikit-learn, and data visualization libraries like matplotlib. pandas adopts significant
parts of NumPy’s idiomatic style of array-based computing, especially array-based
functions and a preference for data processing without for loops.

While pandas adopts many coding idioms from NumPy, the biggest difference is that
pandas is designed for working with tabular or heterogeneous data. NumPy, by con-
trast, is best suited for working with homogeneous numerical array data.

Since becoming an open source project in 2010, pandas has matured into a quite
large library thats applicable in a broad set of real-world use cases. The developer
community has grown to over 800 distinct contributors, who've been helping build
the project as they’ve used it to solve their day-to-day data problems.

Throughout the rest of the book, I use the following import convention for pandas:
In [1]: import as

Thus, whenever you see pd. in code, it’s referring to pandas. You may also find it eas-
ier to import Series and DataFrame into the local namespace since they are so fre-
quently used:

In [2]: from import Series, DataFrame
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5.1 Introduction to pandas Data Structures

To get started with pandas, you will need to get comfortable with its two workhorse
data structures: Series and DataFrame. While they are not a universal solution for
every problem, they provide a solid, easy-to-use basis for most applications.

Series

A Series is a one-dimensional array-like object containing a sequence of values (of
similar types to NumPy types) and an associated array of data labels, called its index.
The simplest Series is formed from only an array of data:

In [11]: obj = pd.Series([4, 7, -5, 3])

In [12]: obj
Out[12]:

0 4

1 7

2 -5

3 3

dtype: int64

The string representation of a Series displayed interactively shows the index on the
left and the values on the right. Since we did not specify an index for the data, a
default one consisting of the integers © through N - 1 (where N is the length of the
data) is created. You can get the array representation and index object of the Series via
its values and index attributes, respectively:

In [13]: obj.values
Out[13]: array([ 4, 7, -5, 3])

In [14]: obj.index # like range(4)
Out[14]: RangeIndex(start=0, stop=4, step=1)

Often it will be desirable to create a Series with an index identifying each data point
with a label:

In [15]: obj2 = pd.Series([4, 7, -5, 3], index=['d', 'b', 'a', 'c'])

In [16]: obj2

Out[16]:
d 4
b 7
a -5
C 3

dtype: int64

In [17]: obj2.index
Out[17]: Index(['d', 'b', 'a', 'c'], dtype='object")
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Compared with NumPy arrays, you can use labels in the index when selecting single
values or a set of values:

In [18]: obj2['a']
Out[18]: -5

In [19]: obj2['d'] =6

In [20]: obj2[['c', 'a', 'd']]

Out[20]:
c 3
a -5
d 6

dtype: int64

Here ['c', 'a', 'd'] is interpreted as a list of indices, even though it contains
strings instead of integers.

Using NumPy functions or NumPy-like operations, such as filtering with a boolean
array, scalar multiplication, or applying math functions, will preserve the index-value
link:

In [21]: obj2[obj2 > 0]

Out[21]:
d 6
b 7
c 3

dtype: int64

In [22]: obj2 * 2

Out[22]:
d 12
b 14
a -10
d 6

dtype: inté64

In [23]: np.exp(obj2)

Out[23]:

d 403.428793
b 1096.633158
a 0.006738
C 20.085537

dtype: float64

Another way to think about a Series is as a fixed-length, ordered dict, as it is a map-
ping of index values to data values. It can be used in many contexts where you might
use a dict:

In [24]: 'b' in obj2
out[24]: True
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In [25]: 'e' in obj2
Out[25]: False

Should you have data contained in a Python dict, you can create a Series from it by
passing the dict:

In [26]: sdata = {'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 5000}
In [27]: obj3 = pd.Series(sdata)

In [28]: obj3

Out[28]:

Ohtio 35000
Oregon 16000
Texas 71000
Utah 5000

dtype: int64

When you are only passing a dict, the index in the resulting Series will have the dict’s
keys in sorted order. You can override this by passing the dict keys in the order you
want them to appear in the resulting Series:

In [29]: states = ['California', 'Ohio', 'Oregon', 'Texas']
In [30]: obj4 = pd.Series(sdata, index=states)

In [31]: obj4

Out[31]:

California NaN
Ohio 35000.0
Oregon 16000.0
Texas 71000.0

dtype: float64

Here, three values found in sdata were placed in the appropriate locations, but since
no value for 'California' was found, it appears as NaN (not a number), which is con-
sidered in pandas to mark missing or NA values. Since 'Utah' was not included in
states, it is excluded from the resulting object.

I will use the terms “missing” or “NA” interchangeably to refer to missing data. The
isnull and notnull functions in pandas should be used to detect missing data:

In [32]: pd.isnull(obj4)

Out[32]:

California True
Ohio False
Oregon False
Texas False
dtype: bool

In [33]: pd.notnull(obj4)
Out[33]:
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California False

Ohio True
Oregon True
Texas True
dtype: bool

Series also has these as instance methods:

In [34]: obj4.isnull()

out[34]:

California True
Ohio False
Oregon False
Texas False
dtype: bool

I discuss working with missing data in more detail in Chapter 7.

A useful Series feature for many applications is that it automatically aligns by index
label in arithmetic operations:

In [35]: obj3

Out[35]:

Ohtio 35000
Oregon 16000
Texas 71000
Utah 5000

dtype: inté64

In [36]: obj4

Out[36]:

California NaN
Ohio 35000.0
Oregon 16000.0
Texas 71000.0

dtype: float64

In [37]: obj3 + obj4

Out[37]:

California NaN
Ohio 70000.0
Oregon 32000.0
Texas 142000.0
Utah NaN

dtype: float64

Data alignment features will be addressed in more detail later. If you have experience
with databases, you can think about this as being similar to a join operation.

Both the Series object itself and its index have a name attribute, which integrates with
other key areas of pandas functionality:
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In [38]: obj4.name = 'population'

In [39]: obj4.index.name = 'state

In [40]: obj4

out[40]:

state

California NaN
Ohtio 35000.0
Oregon 16000.0
Texas 71000.0

Name: population, dtype: floaté4

A Series’s index can be altered in-place by assignment:

In [41]: obj
Out[41]:

0 4

1 7

2 -5

3 3

dtype: int64

In [42]: obj.index = ['Bob', 'Steve', 'Jeff', 'Ryan']

In [43]: obj
Out[43]:

Bob 4
Steve 7
Jeff -5
Ryan 3

dtype: int64

DataFrame

A DataFrame represents a rectangular table of data and contains an ordered collec-
tion of columns, each of which can be a different value type (numeric, string,
boolean, etc.). The DataFrame has both a row and column index; it can be thought of
as a dict of Series all sharing the same index. Under the hood, the data is stored as one
or more two-dimensional blocks rather than a list, dict, or some other collection of
one-dimensional arrays. The exact details of DataFrame’s internals are outside the
scope of this book.

While a DataFrame is physically two-dimensional, you can use it to
represent higher dimensional data in a tabular format using hier-
archical indexing, a subject we will discuss in Chapter 8 and an
ingredient in some of the more advanced data-handling features in
pandas.
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There are many ways to construct a DataFrame, though one of the most common is
from a dict of equal-length lists or NumPy arrays:

data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada', 'Nevada'],
'year': [2000, 2001, 2002, 2001, 2002, 2003],
‘pop': [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]}

frame = pd.DataFrame(data)

The resulting DataFrame will have its index assigned automatically as with Series, and
the columns are placed in sorted order:

In [45]: frame
Out[45]:

pop state year
1.5 Ohio 2000
.7 Ohio 2001
.6 Ohio 2002
.4 Nevada 2001
.9 Nevada 2002
.2 Nevada 2003

v A WN RO
w NN W

If you are using the Jupyter notebook, pandas DataFrame objects will be displayed as
a more browser-friendly HTML table.

For large DataFrames, the head method selects only the first five rows:

In [46]: frame.head()
Out[46]:

pop state year
1.5 Ohio 2000
1.7 Ohio 2001
3.6 Ohio 2002
2.4 Nevada 2001
2.9 Nevada 2002

A wWNERL O

If you specify a sequence of columns, the DataFrame’s columns will be arranged in
that order:

In [47]: pd.DataFrame(data, columns=['year', 'state', 'pop'])

Out[47]:

year state pop
0 2000 Ohio 1.5
1 2001 Ohio 1.7
2 2002 Ohio 3.6
3 2001 Nevada 2.4
4 2002 Nevada 2.9
5 2003 Nevada 3.2

If you pass a column that isn’t contained in the dict, it will appear with missing values
in the result:

In [48]: frame2 = pd.DataFrame(data, columns=['year', 'state', 'pop', 'debt'],
cealt index=['one', 'two', 'three', 'four',
et 'five', 'six'])
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In [49]: frame2

Out[49]:
year
one 2000
two 2001
three 2002
four 2001
five 2002
six 2003

state pop debt
Ohio 1.5 NaN
Ohio 1.7 NaN
Ohio 3.6 NaN
Nevada 2.4 NaN
Nevada 2.9 NaN
Nevada 3.2 NaN

In [50]: frame2.columns
Out[50]: Index(['year', 'state', 'pop', 'debt'], dtype='object')

A column in a

DataFrame can be retrieved as a Series either by dict-like notation or

by attribute:
In [51]: frame2['state']
Out[51]:
one Ohio
two Ohio
three Ohio
four Nevada
five Nevada
six Nevada

Name: state

, dtype: object

In [52]: frame2.year

Out[52]:

one 2000
two 2001
three 2002
four 2001
five 2002
six 2003

Name: year,

dtype: int64

Attribute-like access (e.g., frame2.year) and tab completion of col-
umn names in IPython is provided as a convenience.

frame2[column] works for any column name, but frame2.column
only works when the column name is a valid Python variable
name.

Note that the returned Series have the same index as the DataFrame, and their name
attribute has been appropriately set.

Rows can also be retrieved by position or name with the special loc attribute (much
more on this later):
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In [53]: frame2.loc['three']

Out[53]
year
state
pop
debt

2002
Ohio

3.6

NaN
Name: three, dtype: object

Columns can be modified by assignment. For example, the empty 'debt' column
could be assigned a scalar value or an array of values:

In [54]: frame2['debt'] = 16.5

In [55]: frame2

Out[55]

one
two
three
four
five
six

In [56]: frame2['debt'] =

year
2000
2001
2002
2001
2002
2003

state
Ohio
Ohio
Ohio
Nevada
Nevada
Nevada

In [57]: frame2

Out[57]

one
two
three
four
five
six

year
2000
2001
2002
2001
2002
2003

state
Ohio
Ohio
Ohio
Nevada
Nevada
Nevada

W NN WRE =,
N OB~ O DO

W NN WRE ==,
N OB~ O O

debt

16.
16.
16.
16.
16.
16.

np.

(S RV BV, BV RV, RV, |

arange(6.)

debt

v A WN -
[clcNoNoNoNol

When you are assigning lists or arrays to a column, the value’s length must match the
length of the DataFrame. If you assign a Series, its labels will be realigned exactly to
the DataFrame’s index, inserting missing values in any holes:

In [58]:
In [59]:

In [60]:

out[60]:

one
two
three
four
five
six

year
2000
2001
2002
2001
2002
2003

frame2

state
Ohio
Ohio
Ohio
Nevada
Nevada
Nevada

W NN WRE ==,
N OB~ O O

frame2[ 'debt'] = val

val = pd.Series([-1.2, -1.5, -1.7], index=['two', 'four', 'five'])

debt
NaN

-1.

2

NaN

-1.
-1.

5
7

NaN
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Assigning a column that doesn’t exist will create a new column. The del keyword will

delete columns

As an example
column equals

as with a dict.

of del, I first add a new column of boolean values where the state
'Ohio':

In [61]: frame2['eastern'] = frame2.state == 'Ohio’

In [62]: frame2

Out[62]:
year
one 2000
two 2001
three 2002
four 2001
five 2002
six 2003

\

state pop debt eastern
Ohio 1.5 NaN True
Ohio 1.7 ~-1.2 True
Ohio 3.6 NaN True
Nevada 2.4 -1.5 False
Nevada 2.9 -1.7 False
Nevada 3.2 NaN False

New columns cannot be created with the frame2.eastern syntax.

The del method can then be used to remove this column:

In [63]: del frame2['eastern']

In [64]: frame2.columns
Out[64]: Index(['year', 'state', 'pop', 'debt'], dtype='object')

The column returned from indexing a DataFrame is a view on the
underlying data, not a copy. Thus, any in-place modifications to the
Series will be reflected in the DataFrame. The column can be
explicitly copied with the Series’s copy method.

Another common form of data is a nested dict of dicts:

In [65]: pop = {'Nevada': {2001: 2.4, 2002: 2.9},

'Ohio': {2000: 1.5, 2001: 1.7, 2002: 3.6}}

If the nested dict is passed to the DataFrame, pandas will interpret the outer dict keys

as the columns

and the inner keys as the row indices:

In [66]: frame3 = pd.DataFrame(pop)

In [67]: frame3

Out[67]:

Nevada Ohio
2000 NaN 1.5
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2001 2.4
2.9

7
2002 6

1.
3.
You can transpose the DataFrame (swap rows and columns) with similar syntax to a
NumPy array:

In [68]: frame3.T
out[68]:

2000 2001 2002
Nevada NaN 2.4 2.9
Ohio 1.5 1.7 3.6

The keys in the inner dicts are combined and sorted to form the index in the result.
This isn't true if an explicit index is specified:

In [69]: pd.DataFrame(pop, index=[2001, 2002, 2003])

Out[69]:

Nevada Ohio
2001 2.4 1.7
2002 2.9 3.6
2003 NaN NaN

Dicts of Series are treated in much the same way:

In [70]: pdata = {'Ohio': frame3['Ohio'][:-1],
cealt 'Nevada': frame3['Nevada'][:2]}

In [71]: pd.DataFrame(pdata)

out[71]:

Nevada Ohio
2000 NaN 1.5
2001 2.4 1.7

For a complete list of things you can pass the DataFrame constructor, see Table 5-1.

If a DataFrame’s index and columns have their name attributes set, these will also be
displayed:

In [72]: frame3.index.name = 'year'; frame3.columns.name = 'state'

In [73]: frame3

Out[73]:

state Nevada Ohio
year

2000 NaN 1.5
2001 2.4 1.7
2002 2.9 3.6

As with Series, the values attribute returns the data contained in the DataFrame as a
two-dimensional ndarray:

In [74]: frame3.values
Out[74]:
array([[ nan, 1.5],
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[ 2.4, 1.71,
[ 2.9, 3.6]1])

If the DataFrame’s columns are different dtypes, the dtype of the values array will be
chosen to accommodate all of the columns:

In [75]: frame2.values
Out[75]:
array([[2000, 'Ohio', 1.5, nan],
[2001, 'Ohio', 1.7, -1.2],
[2602, 'Ohio', 3.6, nan],
[2001, 'Nevada', 2.4, -1.5],
[2002, 'Nevada', 2.9, -1.7],
[2003, 'Nevada', 3.2, nan]], dtype=object)

Table 5-1. Possible data inputs to DataFrame constructor

Type Notes

2D ndarray A matrix of data, passing optional row and column labels

dict of arrays, lists, or tuples  Each sequence becomes a column in the DataFrame; all sequences must be the same length

NumPy structured/record Treated as the “dict of arrays” case

array

dict of Series Each value becomes a column; indexes from each Series are unioned together to form the
result’s row index if no explicit index is passed

dict of dicts Each inner dict becomes a column; keys are unioned to form the row index as in the “dict of
Series” case

List of dicts or Series Each item becomes a row in the DataFrame; union of dict keys or Series indexes become the
DataFrame’s column labels

List of lists or tuples Treated as the “2D ndarray” case

Another DataFrame The DataFrame’s indexes are used unless different ones are passed

NumPy MaskedArray Like the “2D ndarray” case except masked values become NA/missing in the DataFrame result

Index Objects

pandas’s Index objects are responsible for holding the axis labels and other metadata
(like the axis name or names). Any array or other sequence of labels you use when
constructing a Series or DataFrame is internally converted to an Index:

In [76]: obj = pd.Series(range(3), index=['a', 'b', 'c'])
In [77]: index = obj.index

In [78]: index
Out[78]: Index(['a', 'b', 'c'], dtype='object")

In [79]: index[1:]
Out[79]: Index(['b', 'c'], dtype='object')

Index objects are immutable and thus can’t be modified by the user:
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index[1] = 'd' # TypeError

Immutability makes it safer to share Index objects among data structures:

In [80]:

In [81]:
Out[81]:

In [82]:

In [83]:
Out[83]:
0 1.5
1 -2.5
2 0.0

labels = pd.Index(np.arange(3))

labels

Int64Index([0, 1, 2], dtype='int64")

obj2 = pd.Series([1.5, -2.5, 0], index=labels)

obj2

dtype: float64

In [84]:
out[84]:

obj2.index is labels
True

Some users will not often take advantage of the capabilities pro-
vided by indexes, but because some operations will yield results
containing indexed data, it’s important to understand how they

\\ work.

In addition to being array-like, an Index also behaves like a fixed-size set:

In [85]:
Out[85]:

frame3

state Nevada Ohio

year
2000
2001
2002

In [86]:
Out[86]:

In [87]:
out[87]:

In [88]:
Out[88]:

NaN 1.5
2.4 1.7
2.9 3.6

frame3.columns

Index(['Nevada', 'Ohio'], dtype='object', name='state')

'Ohio' in frame3.columns

True

2003 in frame3.index
False

Unlike Python sets, a pandas Index can contain duplicate labels:

In [89]:

In [90]:
out[90]:

dup_labels = pd.Index(['foo', 'foo', 'bar', 'bar'])

dup_labels

Index(['foo', 'foo', 'bar', 'bar'], dtype='object')
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Selections with duplicate labels will select all occurrences of that label.

Each Index has a number of methods and properties for set logic, which answer other
common questions about the data it contains. Some useful ones are summarized in
Table 5-2.

Table 5-2. Some Index methods and properties

Method Description

append Concatenate with additional Index objects, producing a new Index
difference Compute set difference as an Index

intersection Compute set intersection

union Compute set union

isin Compute boolean array indicating whether each value is contained in the passed collection
delete Compute new Index with element at index i deleted

drop Compute new Index by deleting passed values

insert Compute new Index by inserting element at index 1

is_monotonic Returns True if each element is greater than or equal to the previous element
is_unique Returns True if the Index has no duplicate values

unique Compute the array of unique values in the Index

5.2 Essential Functionality

This section will walk you through the fundamental mechanics of interacting with the
data contained in a Series or DataFrame. In the chapters to come, we will delve more
deeply into data analysis and manipulation topics using pandas. This book is not
intended to serve as exhaustive documentation for the pandas library; instead, we'll
focus on the most important features, leaving the less common (i.e., more esoteric)
things for you to explore on your own.

Reindexing

An important method on pandas objects is reindex, which means to create a new
object with the data conformed to a new index. Consider an example:

In [91]: obj = pd.Series([4.5, 7.2, -5.3, 3.6], index=['d', 'b', 'a', 'c'])

In [92]: obj
out[92]:
d 4.5
b 7.2
a -5.3
o 3.6

dtype: float64
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Calling reindex on this Series rearranges the data according to the new index, intro-
ducing missing values if any index values were not already present:

In [93]: obj2 = obj.reindex(['a', 'b"', 'c', 'd', 'e'])

In [94]: obj2

Out[94]:
a -5.3
b 7.2
c 3.6
d 4.5
e NaN
dtype: float64

For ordered data like time series, it may be desirable to do some interpolation or fill-
ing of values when reindexing. The method option allows us to do this, using a
method such as ffill, which forward-fills the values:

In [95]: obj3 = pd.Series(['blue', 'purple', 'yellow'], index=[0, 2, 4])

In [96]: obj3

Out[96]:

0 blue
2 purple
4 yellow

dtype: object

In [97]: obj3.reindex(range(6), method='ffill")

out[97]:

0 blue
1 blue
2 purple
3 purple
4 yellow
5 yellow

dtype: object

With DataFrame, reindex can alter either the (row) index, columns, or both. When
passed only a sequence, it reindexes the rows in the result:

In [98]: frame = pd.DataFrame(np.arange(9).reshape((3, 3)),
cealt index=['a', 'c', 'd'],
P columns=[ 'Ohio', 'Texas', 'California'])

In [99]: frame

Out[99]:

Ohio Texas California
a 0 1 2
o 3 4 5
d 6 7 8

In [100]: frame2 = frame.reindex(['a', 'b', 'c', 'd'])
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In [101]: frame2

Out[101]:

Ohio Texas California
a 0.0 1.0 2.0
b  NaN NaN NaN
d 3.0 4.0 5.0
d 6.0 7.0 8.0

The columns can be reindexed with the columns keyword:

In [102]: states = ['Texas', 'Utah', 'California']

In [103]: frame.reindex(columns=states)

Out[103]:

Texas Utah California
a 1 NaN 2
C 4 NaN 5
d 7 NaN 8

See Table 5-3 for more about the arguments to reindex.

As we'll explore in more detail, you can reindex more succinctly by label-indexing
with loc, and many users prefer to use it exclusively:

In [104]: frame.loc[['a', 'b', 'c', 'd'], states]

out[104]:

Texas Utah California
a 1.0 NaN 2.0
b NaN  NaN NaN
d 4.0 NaN 5.0
d 7.0 NaN 8.0

Table 5-3. reindex function arguments

Argument Description

index New sequence to use as index. Can be Index instance or any other sequence-like Python data structure. An
Index will be used exactly as is without any copying.

method Interpolation (fill) method; ' Ffi11" fills forward, while 'bfi11" fills backward.

fill_value Substitute value to use when introducing missing data by reindexing.

limit When forward- or backfilling, maximum size gap (in number of elements) to fill.

tolerance  When forward- or backfilling, maximum size gap (in absolute numeric distance) to fill for inexact matches.

level Match simple Index on level of Multilndex; otherwise select subset of.

copy If True, always copy underlying data even if new index is equivalent to old index; if False, do not copy

the data when the indexes are equivalent.

Dropping Entries from an Axis

Dropping one or more entries from an axis is easy if you already have an index array
or list without those entries. As that can require a bit of munging and set logic, the
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drop method will return a new object with the indicated value or values deleted from
an axis:

In [105]: obj = pd.Series(np.arange(5.), index=['a', 'b', 'c', 'd', 'e'])
In [106]: obj

Out[106]:
0.0

[cl oo

1.
2.
3.
4,
type: floaté4

In [1067]: new_obj = obj.drop('c')

In [108]: new_obj

Out[108]:
a 0.0
b 1.0
d 3.0
e 4.0

dtype: float64

In [109]: obj.drop(['d', 'c'])

Out[109]:
a 0.0
b 1.0
e 4.0

dtype: float64

With DataFrame, index values can be deleted from either axis. To illustrate this, we
first create an example DataFrame:

In [110]: data = pd.DataFrame(np.arange(16).reshape((4, 4)),
..... : index=['0Ohio', 'Colorado', 'Utah', 'New York'],
et columns=['one', 'two', 'three', 'four'])

In [111]: data

Out[111]:

one two three four
Ohio 0 1 2 3
Colorado 4 5 6 7
Utah 8 9 10 11
New York 12 13 14 15

Calling drop with a sequence of labels will drop values from the row labels (axis 0):

In [112]: data.drop(['Colorado', 'Ohio'])

Out[112]:

one two three four
Utah 8 9 10 11
New York 12 13 14 15
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You can drop values from the columns by passing axis=1 or axis="'columns":

In [113]: data.drop('two', axis=1)

Out[113]:

one three four
Ohio 0 2 3
Colorado 4 6 7
Utah 8 10 11
New York 12 14 15

In [114]: data.drop(['two', 'four'], axis='columns')

Out[114]:

one three
Ohio 0 2
Colorado 4 6
Utah 8 10
New York 12 14

Many functions, like drop, which modify the size or shape of a Series or DataFrame,
can manipulate an object in-place without returning a new object:

In [115]: obj.drop('c', inplace=True)

In [116]: obj

Out[116]:
a 0.0
b 1.0
d 3.0
e 4.0

dtype: float64

Be careful with the inplace, as it destroys any data that is dropped.

Indexing, Selection, and Filtering

Series indexing (obj[...]) works analogously to NumPy array indexing, except you
can use the Series’s index values instead of only integers. Here are some examples of
this:

In [117]: obj = pd.Series(np.arange(4.), index=['a', 'b', 'c', 'd'])

In [118]: obj

Out[118]:
a 0.0
b 1.0
C 2.0
d 3.0

dtype: float64

In [119]: obj['b']
Out[119]: 1.0
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In [120]: obj[1]
Out[120]: 1.0

In [121]: obj[2:4]

Out[121]:
o 2.0
d 3.0

dtype: float64

In [122]: obj[['b', 'a', 'd']]

Out[122]:
b 1.0
a 0.0
d 3.0

dtype: float64

In [123]: obj[[1, 3]]

Out[123]:
b 1.0
d 3.0

dtype: float64

In [124]: obj[obj < 2]

Out[124]:
a 0.0
b 1.0

dtype: float64

Slicing with labels behaves differently than normal Python slicing in that the end-
point is inclusive:

In [125]: obj['b':'c']

Out[125]:
b 1.0
C 2.0

dtype: float64
Setting using these methods modifies the corresponding section of the Series:
In [126]: obj['b':'c'] =5

In [127]: obj

Out[127]:
a 0.0
b 5.0
c 5.0
d 3.0

dtype: float64

Indexing into a DataFrame is for retrieving one or more columns either with a single
value or sequence:
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In [128]: data = pd.DataFrame(np.arange(16).reshape((4, 4)),
P index=['Ohio', 'Colorado', 'Utah', 'New York'],
et columns=['one', 'two', 'three', 'four'])

In [129]: data

Out[129]:

one two three four
Ohio 0 1 2 3
Colorado 4 5 6 7
Utah 8 9 10 11
New York 12 13 14 15

In [130]: data['two']

Out[130]:

Ohtio 1
Colorado 5
Utah 9

New York 13
Name: two, dtype: int64

In [131]: data[['three', 'one']]

Out[131]:

three one
Ohio 2 0
Colorado 6 4
Utah 10 8
New York 14 12

Indexing like this has a few special cases. First, slicing or selecting data with a boolean
array:

In [132]: data[:2]

Out[132]:

one two three four
Ohio 0 1 2 3
Colorado 4 5 6 7

In [133]: data[data['three'] > 5]

Out[133]:

one two three four
Colorado 4 5 6 7
Utah 8 9 10 11
New York 12 13 14 15

The row selection syntax data[ :2] is provided as a convenience. Passing a single ele-
ment or a list to the [ ] operator selects columns.

Another use case is in indexing with a boolean DataFrame, such as one produced by a
scalar comparison:

142 | Chapter5: Getting Started with pandas



In [134]: data < 5

Out[134]:

one two three four
Ohio True True True True
Colorado True False False False
Utah False False False False

New York False False False False
In [135]: data[data < 5] = 0

In [136]: data

Out[136]:

one two three four
Ohio 0 0 0 0
Colorado 0 5 6 7
Utah 8 9 10 11
New York 12 13 14 15

This makes DataFrame syntactically more like a two-dimensional NumPy array in
this particular case.

Selection with loc and iloc

For DataFrame label-indexing on the rows, I introduce the special indexing operators
loc and iloc. They enable you to select a subset of the rows and columns from a
DataFrame with NumPy-like notation using either axis labels (loc) or integers
(iloc).

As a preliminary example, let’s select a single row and multiple columns by label:

In [137]: data.loc['Colorado', ['two', 'three']]

Out[137]:
two 5
three 6

Name: Colorado, dtype: int64
We'll then perform some similar selections with integers using iloc:

In [138]: data.iloc[2, [3, 0, 1]]

Out[138]:

four 11
one 8
two 9

Name: Utah, dtype: int64

In [139]: data.iloc[2]

Out[139]:

one 8
two 9
three 10
four 11

Name: Utah, dtype: int64
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In [140]: data.iloc[[1, 2], [3, 0, 1]]

Out[140]:

four one two
Colorado 7 0 5
Utah 11 8 9

Both indexing functions work with slices in addition to single labels or lists of labels:

In [141]: data.loc[:'Utah', "two']

Out[141]:

Ohio 0
Colorado 5
Utah 9

Name: two, dtype: int64

In [142]: data.iloc[:, :3][data.three > 5]

Out[142]:

one two three
Colorado 0 5 6
Utah 8 9 10
New York 12 13 14

So there are many ways to select and rearrange the data contained in a pandas object.
For DataFrame, Table 5-4 provides a short summary of many of them. As you'll see
later, there are a number of additional options for working with hierarchical indexes.

When originally designing pandas, I felt that having to type
frame[:, col] to select a column was too verbose (and error-
prone), since column selection is one of the most common opera-
tions. I made the design trade-off to push all of the fancy indexing
behavior (both labels and integers) into the ix operator. In practice,
this led to many edge cases in data with integer axis labels, so the
pandas team decided to create the loc and iloc operators to deal
with strictly label-based and integer-based indexing, respectively.

The ix indexing operator still exists, but it is deprecated. I do not
recommend using it.

Table 5-4. Indexing options with DataFrame

Type
df[val]

df.loc[val]
df.loc[:, val]
df.loc[vall, val2
df.iloc[where]

Notes

Select single column or sequence of columns from the DataFrame; special case
conveniences: boolean array (filter rows), slice (slice rows), or boolean DataFrame
(set values based on some criterion)

Selects single row or subset of rows from the DataFrame by label

Selects single column or subset of columns by label

Select both rows and columns by label

Selects single row or subset of rows from the DataFrame by integer position

]
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Type Notes

df.iloc[:, where] Selects single column or subset of columns by integer position
df.iloc[where_i, where_j] Select both rows and columns by integer position
df.at[label_i, label_j] Select a single scalar value by row and column label
df.iat[i, j] Select a single scalar value by row and column position (integers)
reindex method Select either rows or columns by labels

get_value, set_value methods Select single value by row and column label

Integer Indexes

Working with pandas objects indexed by integers is something that often trips up
new users due to some differences with indexing semantics on built-in Python data
structures like lists and tuples. For example, you might not expect the following code
to generate an error:

ser = pd.Series(np.arange(3.))

ser

ser[-1]
In this case, pandas could “fall back” on integer indexing, but it’s difficult to do this in
general without introducing subtle bugs. Here we have an index containing 0, 1, 2,
but inferring what the user wants (label-based indexing or position-based) is difficult:

In [144]: ser

Out[144]:
0 0.0
1 1.0
2 2.0

dtype: float64
On the other hand, with a non-integer index, there is no potential for ambiguity:

In [145]: ser2 = pd.Series(np.arange(3.), index=['a', 'b', 'c'])

In [146]: ser2[-1]

out[146]: 2.0
To keep things consistent, if you have an axis index containing integers, data selection
will always be label-oriented. For more precise handling, use loc (for labels) or iloc
(for integers):

In [147]: ser[:1]

out[147]:

0 0.0
dtype: float64

In [148]: ser.loc[:1]

Out[148]:
0 0.0
1 1.0
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dtype: float64

In [149]: ser.iloc[:1]
Out[149]:

0 0.0

dtype: float64

Arithmetic and Data Alignment

An important pandas feature for some applications is the behavior of arithmetic
between objects with different indexes. When you are adding together objects, if any
index pairs are not the same, the respective index in the result will be the union of the
index pairs. For users with database experience, this is similar to an automatic outer
join on the index labels. Let’s look at an example:

In [150]: s1 = pd.Series([7.3, -2.5, 3.4, 1.5], index=['a', 'c', 'd', 'e'])

In [151]: s2 = pd.Series([-2.1, 3.6, -1.5, 4, 3.1],
el index=['a', 'c', 'e', 'f', 'g'])

In [152]: s1

Out[152]:

a 7.3

o -2.5

d 3.4

e 1.5

dtype: float64

In [153]: s2
Out[153]:
-2.1
.6

'
w h =, W
= o wun

a
C
e
.f.'
¢]
dtype: float64

Adding these together yields:

In [154]: s1 + s2
Out[154]:

a 5.2

d 1.1

d NaN

e 0.0

f NaN

g NaN
dtype: float64

The internal data alignment introduces missing values in the label locations that don’t
overlap. Missing values will then propagate in further arithmetic computations.
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In the case of DataFrame, alignment is performed on both the rows and the columns:

In [155]: df1 = pd.DataFrame(np.arange(9.).reshape((3, 3)), columns=1ist('bcd"),
..... : index=['Ohio', 'Texas', 'Colorado'])

In [156]: df2 = pd.DataFrame(np.arange(12.).reshape((4, 3)), columns=1list('bde'),
et index=[ 'Utah', 'Ohio', 'Texas', 'Oregon'])

In [157]: df1
Out[157]:

Ohtio
Texas
Colorado

o woe

oo oo

N NGy

© o on
o N

o oo a

In [158]: df2
Out[158]:

Utah
Ohtio
Texas
Oregon

O 0N W o
oo o oo
©~N bR
co o oa
= 00 U1 N
oo oo

1 1

Adding these together returns a DataFrame whose index and columns are the unions
of the ones in each DataFrame:

In [159]: df1 + df2
Out[159]:

b ¢ d e
Colorado NaN NaN  NaN NaN

Ohio 3.0 NaN 6.0 NaN
Oregon NaN NaN  NaN NaN
Texas 9.0 NaN 12.0 NaN
Utah NaN NaN  NaN NaN

Since the 'c' and 'e' columns are not found in both DataFrame objects, they appear
as all missing in the result. The same holds for the rows whose labels are not common
to both objects.

If you add DataFrame objects with no column or row labels in common, the result
will contain all nulls:

In [160]: df1 = pd.DataFrame({'A': [1, 2]})
In [161]: df2 = pd.DataFrame({'B': [3, 4]})

In [162]: df1
Out[162]:
A
0 1
1 2

In [163]: df2
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Out[163]:
B

0 3

1 4

In [164]: df1 - df2

Out[164]:
A B

O NaN NaN

1 NaN NaN

Arithmetic methods with fill values

In arithmetic operations between differently indexed objects, you might want to fill
with a special value, like 0, when an axis label is found in one object but not the other:

In [165]: df1 = pd.DataFrame(np.arange(12.).reshape((3, 4)),
..... : columns=1ist('abcd"'))

In [166]: df2 = pd.DataFrame(np.arange(20.).reshape((4, 5)),
..... : columns=11ist('abcde"))

In [167]: df2.loc[1, 'b'] = np.nan

In [168]: df1

Out[168]:

a b C d
0 0.0 1.0 2.0 3.0
1 4.0 5.0 6.0 7.0
2 8.0 9.0 10.0 11.0
In [169]: df2
Out[169]:

a b C d e
0 0.0 1.0 2.0 3.0 4.0
1 5.0 NaN 7.0 8.0 9.0
2 10.0 11.0 12.0 13.0 14.0
3 15.0 16.0 17.0 18.0 19.0

Adding these together results in NA values in the locations that don’t overlap:

In [170]: df1 + df2

Out[170]:

a b C d e
O 0.0 2.0 4.0 6.0 NaN
1 9.0 NaN 13.0 15.0 NaN
2 18.0 20.0 22.0 24.0 NaN
3 NaN NaN NaN NaN NaN

Using the add method on df1, I pass df2 and an argument to fill_value:

In [171]: dfil.add(df2, fill_value=0)
Out[171]:
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0
1
2

3 1

See Table 5-5 for a listing of Series and DataFrame methods for arithmetic. Each of
them has a counterpart, starting with the letter r, that has arguments flipped. So these

C d e
0 6.0 4.0
0 15.0 9.0
0 24.0 14.0
0 18.0 19.0

two statements are equivalent:

In [172]: 1 / df1
Out[172]:
a

b C

0 inf 1.000000 0.500000
1 0.250000 0.200000 0.166667
2 0.125000 0.111111 ©0.100000

In [173]: dfi.rdiv(1)

Out[173]:
a

b C

0 inf 1.000000 0.500000
1 0.250000 0.200000 0.166667
2 0.125000 ©0.111111 0.100000

Relatedly, when reindexing a Series or DataFrame, you can also specify a different fill

value:

In [174]: dfl.reindex(columns=df2.columns, fill_value=0)

out[174]:

N B ©
o h O
o o o w
O U=
o o o o
o N
o o O N

=N W
o o o a
o o o m

Table 5-5. Flexible arithmetic methods

Method Description

Methods for addition (+)
Methods for subtraction (-)

add, radd
sub, rsub
div, rdiv
floordiv, rfloordiv
mul, rmul

pow, rpow

Methods for division (/)

[<)

0.
0.
0.

d

.333333
.142857
.090909

d
333333
142857
090909

Methods for floor division (//)
Methods for multiplication (*)
Methods for exponentiation (**)

Operations between DataFrame and Series

As with NumPy arrays of different dimensions, arithmetic between DataFrame and
Series is also defined. First, as a motivating example, consider the difference between

a two-dimensional array and one of its rows:
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In [175]: arr = np.arange(12.).reshape((3, 4))
In [176]: arr
Out[176]:
array([[ ©o., 1., 2., 3.1,

[ 4., 5., 6., 7.1,

[ 8., 9., 10., 11.1D
In [177]: arr[0]
Out[177]: array([ 0., 1., 2., 3.1
In [178]: arr - arr[0]
Out[178]:
array([[ 0., 0., 0., 0.],

[ 4., 4., 4., 4.1,

[8., 8., 8., 8.1D

When we subtract arr[0] from arr, the subtraction is performed once for each row.
This is referred to as broadcasting and is explained in more detail as it relates to gen-
eral NumPy arrays in Appendix A. Operations between a DataFrame and a Series are
similar:

frame = pd.DataFrame(np.arange(12.).reshape((4, 3)),

columns=1ist('bde"),
index=['Utah', 'Ohio',

In [179]:

'Texas', 'Oregon'])
In [180]: series = frame.iloc[0]

In [181]:
Out[181]:

frame

Utah
Ohio
Texas
Oregon

O N Wwo
oo o oo
O N bR
O o000 0 a
= 00 U1 N
[ol oo N/

In [182]: series

Out[182]:

b
d
e

0.0
1.0
2.0

Name: Utah, dtype: float64

By default, arithmetic between DataFrame and Series matches the index of the Series
on the DataFrame’s columns, broadcasting down the rows:

In [183]: frame - series
Out[183]:

b d e
Utah 0.0 0.0 0.0
Ohio 3.0 3.0 3.0
Texas 6.0 6.0 6.0
Oregon 9.0 9.0 9.0
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If an index value is not found in either the DataFrame’s columns or the Series’s index,

the objects will be reindexed to form the union:

In [184]: series2 = pd.Series(range(3), index=['b', 'e', 'f'])

In [185]:
Out[185]:

Utah 0.
Ohtio 3.
Texas 6.
Oregon 9.

frame +

b d
0 NaN
0 NaN
0 NaN
0 NaN

series2

e f
3.0 NaN
6.0 NaN
9.0 NaN

12.0 NaN

If you want to instead broadcast over the columns, matching on the rows, you have to

use one of the arithmetic methods. For example:

In [186]: series3 = frame['d']

In [187]:
out[187]:

Utah
Ohio
Texas
Oregon

O N Wwo

In [188]:
Out[188]:
Utah
Ohtio
Texas
Oregon

oo o oo

frame

IS RN N
oo oo a

series3

10.0

= 00 U1 N
[ol oo N/

Name: d, dtype: float64

In [189]:
Out[189]:

Utah
Ohio
Texas

1.
1.
-1.
Oregon -1.

frame.sub(series3, axis='index')

o o oo
[cl o oMo
o000

0

N =
o o o o

The axis number that you pass is the axis to match on. In this case we mean to match

on the DataFrame’s row index (axis="'1index' or axis=0) and broadcast across.

Function Application and Mapping

NumPy ufuncs (element-wise array methods) also work with pandas objects:

In [190]:

frame = pd.DataFrame(np.random.randn(4, 3), columns=1list('bde'),
index=['Utah', 'Ohio', 'Texas', 'Oregon'])

5.2 Essential Functionality

| 151



In [191]: frame
Out[191]:

b d e
Utah -0.204708 0.478943 -0.519439
Ohtio -0.555730 1.965781 1.393406
Texas 0.092908 0.281746 0.769023
Oregon 1.246435 1.007189 -1.296221

In [192]: np.abs(frame)

Out[192]:

b d e
Utah 0.204708 0.478943 0.519439
Ohio 0.555730 1.965781 1.393406
Texas 0.092908 0.281746 0.769023
Oregon 1.246435 1.007189 1.296221

Another frequent operation is applying a function on one-dimensional arrays to each
column or row. DataFrame’s apply method does exactly this:

In [193]: f = lambda x: x.max() - x.min()

In [194]: frame.apply(f)
out[194]:

b 1.802165

d 1.684034

e 2.689627

dtype: float64

Here the function f, which computes the difference between the maximum and mini-
mum of a Series, is invoked once on each column in frame. The result is a Series hav-
ing the columns of frame as its index.

If you pass axis='columns' to apply, the function will be invoked once per row
instead:

In [195]: frame.apply(f, axis='columns')

Out[195]:

Utah 0.998382
Ohtio 2.521511
Texas 0.676115

Oregon 2.542656
dtype: float64

Many of the most common array statistics (like sum and mean) are DataFrame meth-
ods, so using apply is not necessary.

The function passed to apply need not return a scalar value; it can also return a Series
with multiple values:

In [196]: def f(x):
el return pd.Series([x.min(), x.max()], index=['min', 'max'])

In [197]: frame.apply(f)
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Out[197]:

b d e
min -0.555730 0.281746 -1.296221
max 1.246435 1.965781 1.393406

Element-wise Python functions can be used, too. Suppose you wanted to compute a
formatted string from each floating-point value in frame. You can do this with apply

map:

In [198]: format = lambda x: '%.2f' % x

In [199]: frame.applymap(format)

Out[199]:

b d e
Utah -0.20 0.48 -0.52
Ohio -0.56 1.97 1.39

Texas 0.09 0.28 0.77
Oregon 1.25 1.01 -1.30

The reason for the name applymap is that Series has a map method for applying an

element-wise function:

In [200]: frame['e'].map(format)

Out[200]:

Utah -0.52
Ohio 1.39
Texas 0.77
Oregon -1.30

Name: e, dtype: object

Sorting and Ranking

Sorting a dataset by some criterion is another important built-in operation. To sort
lexicographically by row or column index, use the sort_index method, which returns

a new, sorted object:

In [201]: obj = pd.Series(range(4), index=['d', 'a', 'b', 'c'])

In [202]: obj.sort_index()

Out[202]:
a 1
b 2
C 3
d 0

dtype: int64
With a DataFrame, you can sort by index on either axis:

In [203]: frame = pd.DataFrame(np.arange(8).reshape((2, 4)),
..... : index=["'three', 'one'],
et columns=['d', 'a', 'b', 'c'])

In [204]: frame.sort_index()
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Out[204]:

In [205]: frame.sort_index(axis=1)
Out[205]:
a b cd
three 1 2 3 0
one 5 6 7 4

The data is sorted in ascending order by default, but can be sorted in descending
order, too:

In [206]: frame.sort_index(axis=1, ascending=False)

Out[206]:

d c b a
three 0 3 2 1
one 4 7 6 5

To sort a Series by its values, use its sort_values method:
In [207]: obj = pd.Series([4, 7, -3, 2])

In [208]: obj.sort_values()

Out[208]:
2 -3
3 2
0 4
1 7

dtype: int64
Any missing values are sorted to the end of the Series by default:

In [209]: obj = pd.Series([4, np.nan, 7, np.nan, -3, 2])

In [210]: obj.sort_values()
Out[210]:

4 -3.0

5 2.0

0 4.0

2 7.0

1 NaN

3 NaN
dtype: float64

When sorting a DataFrame, you can use the data in one or more columns as the sort
keys. To do so, pass one or more column names to the by option of sort_values:

In [211]: frame = pd.DataFrame({'b': [4, 7, -3, 2], 'a': [0, 1, 0, 1]1})

In [212]: frame
Out[212]:
a b
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In [213]: frame.sort_values(by='b")
Out[213]:
a b
-3
2
4
7

o WN
= o L, o

To sort by multiple columns, pass a list of names:

In [214]: frame.sort_values(by=['a', 'b'])
Out[214]:
a b
-3
4
2
7

= W onN
]

Ranking assigns ranks from one through the number of valid data points in an array.
The rank methods for Series and DataFrame are the place to look; by default rank
breaks ties by assigning each group the mean rank:

In [215]: obj = pd.Series([7, -5, 7, 4, 2, 0, 4])

In [216]: obj.rank()
Out[216]:
6.5

uvin A WN RPR O
AN WSRO
un o © U1 un

6
dtype: float64

Ranks can also be assigned according to the order in which they’re observed in the
data:

In [217]: obj.rank(method='first")
out[217]:
6.0

U NN Wbh N
[clcoloM ol ool

0
1
2
3
4
5
6
d

type: float64
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Here, instead of using the average rank 6.5 for the entries 0 and 2, they instead have
been set to 6 and 7 because label 0 precedes label 2 in the data.

You can rank in descending order, too:

# Assign tie values the maximum rank in the group
In [218]: obj.rank(ascending=False, method='max')

Out[218]:
0 2.0
1 7.0
2 2.0
3 4.0
4 5.0
5 6.0
6 4.0

dtype: float64
See Table 5-6 for a list of tie-breaking methods available.
DataFrame can compute ranks over the rows or the columns:

In [219]: frame = pd.DataFrame({'b': [4.3, 7, -3, 2], 'a': [0, 1, 0O, 1],
..... : 'c's [-2, 5, 8, -2.51})

In [220]: frame
Out[220]:
a

= o L, o
N W N A
© 0o 0o wo
N U N
oo O enNn

w N RO

In [221]: frame.rank(axis='columns')
Out[221]:

w N RO
NN RN
o 00 0w
w = W w
o o o o o
= W N -
o0 0o on

Table 5-6. Tie-breaking methods with rank

Method Description

"average' Default: assign the average rank to each entry in the equal group

'min' Use the minimum rank for the whole group

'max’ Use the maximum rank for the whole group

'first' Assign ranks in the order the values appear in the data

'dense’ Like method="min", but ranks always increase by 1in between groups rather than the number of equal

elements in a group
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Axis Indexes with Duplicate Labels

Up until now all of the examples we've looked at have had unique axis labels (index
values). While many pandas functions (like reindex) require that the labels be
unique, it's not mandatory. Let’s consider a small Series with duplicate indices:

In [222]: obj = pd.Series(range(5), index=['a', 'a', 'b', 'b', 'c'])
In [223]: obj

Out[223]:
0

A WN R

d
a
b
b
C
dtype: int64

The index’s is_unique property can tell you whether its labels are unique or not:

In [224]: obj.index.is_unique
Out[224]: False

Data selection is one of the main things that behaves differently with duplicates.
Indexing a label with multiple entries returns a Series, while single entries return a
scalar value:

In [225]: obj['a']

Out[225]:
a 0
a 1

dtype: inté4

In [226]: obj['c']
Out[226]: 4

This can make your code more complicated, as the output type from indexing can
vary based on whether a label is repeated or not.

The same logic extends to indexing rows in a DataFrame:

In [227]: df = pd.DataFrame(np.random.randn(4, 3), index=['a', 'a', 'b', 'b'])

In [228]: df
Out[228]:

0 1 2
0.274992 0.228913 1.352917
0.886429 -2.001637 -0.371843
1.669025 -0.438570 -0.539741
0.476985 3.248944 -1.021228

o oo w

In [229]: df.loc['b']
Out[229]:
0 1 2
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b 1.669025 -0.438570 -0.539741
b 0.476985 3.248944 -1.021228

5.3 Summarizing and Computing Descriptive Statistics

pandas objects are equipped with a set of common mathematical and statistical meth-
ods. Most of these fall into the category of reductions or summary statistics, methods
that extract a single value (like the sum or mean) from a Series or a Series of values
from the rows or columns of a DataFrame. Compared with the similar methods
found on NumPy arrays, they have built-in handling for missing data. Consider a
small DataFrame:

In [230]: df = pd.DataFrame([[1.4, np.nan], [7.1, -4.5],
..... : [np.nan, np.nan], [0.75, -1.31],
et index=['a', 'b', 'c', 'd'],
el columns=['one', 'two'])

In [231]: df
Out[231]:
one two
a 1.40 NaN
b 7.10 -4.5
C NaN NaN
d 0.75 -1.3

Calling DataFrame’s sum method returns a Series containing column sums:

In [232]: df.sum()

Out[232]:
one 9.25
two -5.80

dtype: float64
Passing axis="columns' or axis=1 sums across the columns instead:

In [233]: df.sum(axis='columns')

Out[233]:
a 1.40
b 2.60
C NaN
d -0.55

dtype: float64

NA values are excluded unless the entire slice (row or column in this case) is NA.
This can be disabled with the skipna option:

In [234]: df.mean(axis='columns', skipna=False)

Out[234]:

a NaN
b 1.300
o NaN
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d -0.275
dtype: float64

See Table 5-7 for a list of common options for each reduction method.

Table 5-7. Options for reduction methods

Method  Description

axis Axis to reduce over; 0 for DataFrame’s rows and 1 for columns
skipna Exclude missing values; True by default
level  Reduce grouped by level if the axis is hierarchically indexed (Multilndex)

Some methods, like idxmin and idxmax, return indirect statistics like the index value
where the minimum or maximum values are attained:

In [235]: df.idxmax()

Out[235]:
one b
two d

dtype: object
Other methods are accumulations:

In [236]: df.cumsum()
Out[236]:

one two

1.40 NaN

8.50 -4.5

NaN NaN

9.25 -5.8

anNn oow

Another type of method is neither a reduction nor an accumulation. describe is one
such example, producing multiple summary statistics in one shot:

In [237]: df.describe()
Out[237]:

one two
count 3.000000 2.000000
mean 3.083333 -2.900000
std 3.493685 2.262742
min 0.750000 -4.500000
25% 1.075000 -3.700000
50% 1.400000 -2.900000
75% 4.250000 -2.100000
max 7.100000 -1.300000

On non-numeric data, describe produces alternative summary statistics:
In [238]: obj = pd.Series(['a', 'a', 'b', 'c'] * 4)
In [239]: obj.describe()

Out[239]:
count 16

5.3 Summarizing and Computing Descriptive Statistics | 159



unique 3
top a
freq 8
dtype: object

See Table 5-8 for a full list of summary statistics and related methods.

Table 5-8. Descriptive and summary statistics

count Number of non-NA values
describe Compute set of summary statistics for Series or each DataFrame column
min, max Compute minimum and maximum values

argmin, argmax Compute index locations (integers) at which minimum or maximum value obtained, respectively
idxmin, idxmax Compute index labels at which minimum or maximum value obtained, respectively

quantile Compute sample quantile ranging from 0 to 1
sum Sum of values

mean Mean of values

median Arithmetic median (50% quantile) of values
mad Mean absolute deviation from mean value
prod Product of all values

var Sample variance of values

std Sample standard deviation of values

skew Sample skewness (third moment) of values
kurt Sample kurtosis (fourth moment) of values
cumsum Cumulative sum of values

cummin, cummax Cumulative minimum or maximum of values, respectively

cumprod Cumulative product of values
diff Compute first arithmetic difference (useful for time series)
pct_change Compute percent changes

Correlation and Covariance

Some summary statistics, like correlation and covariance, are computed from pairs of
arguments. Let’s consider some DataFrames of stock prices and volumes obtained
from Yahoo! Finance using the add-on pandas-datareader package. If you don’t
have it installed already, it can be obtained via conda or pip:

conda install pandas-datareader
I use the pandas_datareader module to download some data for a few stock tickers:

import pandas_datareader.data as web
all_data = {ticker: web.get_data_yahoo(ticker)
for ticker in ['AAPL', 'IBM', 'MSFT', 'GOOG']}
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price = pd.DataFrame({ticker: data['Adj Close']

for ticker, data in all_data.items()})
volume = pd.DataFrame({ticker: data['Volume']

for ticker, data in all_data.items()})

It’s possible by the time you are reading this that Yahoo! Finance no
longer exists since Yahoo! was acquired by Verizon in 2017. Refer
] to the pandas-datareader documentation online for the latest
\ functionality.

I now compute percent changes of the prices, a time series operation which will be
explored further in Chapter 11:

In [242]: returns = price.pct_change()

In [243]: returns.tail()
Out[243]:

AAPL GOOG IBM MSFT
Date
2016-10-17 -0.000680 0.001837 0.002072 -0.003483
2016-10-18 -0.000681 0.019616 -0.026168 0.007690
2016-10-19 -0.002979 0.007846 0.003583 -0.002255
2016-10-20 -0.000512 -0.005652 0.001719 -0.004867
2016-10-21 -0.003930 0.003011 -0.012474 0.042096

The corr method of Series computes the correlation of the overlapping, non-NA,
aligned-by-index values in two Series. Relatedly, cov computes the covariance:

In [244]: returns['MSFT'].corr(returns['IBM'])
Out[244]: 0.49976361144151144

In [245]: returns['MSFT'].cov(returns['IBM'])
Out[245]: 8.8706554797035462e-05

Since MSFT is a valid Python attribute, we can also select these columns using more
concise syntax:

In [246]: returns.MSFT.corr(returns.IBM)
Out[246]: 0.49976361144151144

DataFrame’s corr and cov methods, on the other hand, return a full correlation or
covariance matrix as a DataFrame, respectively:

In [247]: returns.corr()
out[247]:

AAPL GOOG IBM MSFT
AAPL 1.000000 0.407919 0.386817 0.389695
GOOG 0.407919 1.000000 0.405099 0.465919
IBM 0.386817 0.405099 1.000000 0.499764
MSFT 0.389695 0.465919 0.499764 1.000000
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In [248]: returns.cov()
Out[248]:

AAPL GOOG IBM MSFT
AAPL 0.000277 0.000107 0.000078 0.000095
GOOG 0.000107 0.000251 0.000078 0.000108
IBM 0.000078 0.000078 0.000146 0.000089
MSFT 0.000095 0.000108 0.000089 0.000215

Using DataFrames corrwith method, you can compute pairwise correlations
between a DataFrame’s columns or rows with another Series or DataFrame. Passing a
Series returns a Series with the correlation value computed for each column:

In [249]: returns.corrwith(returns.IBM)

Out[249]:

AAPL 0.386817
GOOG 0.405099
IBM 1.000000

MSFT  0.499764

dtype: float64
Passing a DataFrame computes the correlations of matching column names. Here I
compute correlations of percent changes with volume:

In [250]: returns.corrwith(volume)

out[250]:

AAPL  -0.075565

GOO0G -0.007067

IBM -0.204849

MSFT  -0.092950

dtype: float64
Passing axis="'columns' does things row-by-row instead. In all cases, the data points
are aligned by label before the correlation is computed.

Unique Values, Value Counts, and Membership

Another class of related methods extracts information about the values contained in a
one-dimensional Series. To illustrate these, consider this example:

In [251]: obj = pd.Series(['c', 'a', 'd', 'a', 'a', 'b', 'b', 'c', 'c'])
The first function is unique, which gives you an array of the unique values in a Series:

In [252]: uniques = obj.unique()

In [253]: uniques

Out[253]: array(['c', 'a', 'd', 'b'], dtype=object)
The unique values are not necessarily returned in sorted order, but could be sorted
after the fact if needed (uniques.sort()). Relatedly, value_counts computes a Series
containing value frequencies:
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In [254]: obj.value_counts()

out[254]:
C 3
a 3
b 2
d 1

dtype: int64

The Series is sorted by value in descending order as a convenience. value_counts is
also available as a top-level pandas method that can be used with any array or
sequence:

In [255]: pd.value_counts(obj.values, sort=False)

Out[255]:
a 3
b 2
c 3
d 1

dtype: int64

isin performs a vectorized set membership check and can be useful in filtering a
dataset down to a subset of values in a Series or column in a DataFrame:

In [256]: obj
Out[256]:
C

N N ooow o oo

0
1
2
3
4
5
6
7
8
d

type: object
In [257]: mask = obj.isin(['b', 'c'])

In [258]: mask
Out[258]:

0 True
1 False
2 False
3 False
4 False
5 True
6 True
7 True
8 True
dtype: bool

In [259]: obj[mask]
out[259]:
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0
5
6
7
8
dtype: object

Related to isin is the Index.get_indexer method, which gives you an index array
from an array of possibly non-distinct values into another array of distinct values:

In [260]: to_match = pd.Series(['c', 'a', 'b', 'b', 'c', 'a'l])
In [261]: unique_vals = pd.Series(['c', 'b', 'a'])

In [262]: pd.Index(unique_vals).get_indexer(to_match)
Out[262]: array([0, 2, 1, 1, 0, 2])

See Table 5-9 for a reference on these methods.

Table 5-9. Unique, value counts, and set membership methods

Method Description

isin Compute boolean array indicating whether each Series value is contained in the passed sequence of
values

match Compute integer indices for each value in an array into another array of distinct values; helpful for data
alignment and join-type operations

unique Compute array of unique values in a Series, returned in the order observed

value_counts Return a Series containing unique values as its index and frequencies as its values, ordered count in
descending order

In some cases, you may want to compute a histogram on multiple related columns in
a DataFrame. Here’s an example:
In [263]: data = pd.DataFrame({'Quil': [1, 3, 4, 3, 4],

...... Qu2': [2, 3, 1, 2, 31,
'Qu3': [1, 5, 2, 4, 41})

In [264]: data

Out[264]:

Qul Qu2 Qu3
0 1 2 1
1 3 3 5
2 4 1 2
3 3 2 4
4 4 3 4

Passing pandas.value_counts to this DataFrame’s apply function gives:

In [265]: result = data.apply(pd.value_counts).fillna(0)

In [266]: result
Out[266]:
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Qul Qu2 Qu3
1 1.0 1.0 1.0
2 0.0 2.0 1.0
3 2.6 2.0 0.0
4 2.0 0.0 2.0
5 0.0 0.0 1.0

Here, the row labels in the result are the distinct values occurring in all of the col-
umns. The values are the respective counts of these values in each column.

5.4 Conclusion

In the next chapter, we'll discuss tools for reading (or loading) and writing datasets
with pandas. After that, we'll dig deeper into data cleaning, wrangling, analysis, and
visualization tools using pandas.
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CHAPTER 6
Data Loading, Storage, and File Formats

Accessing data is a necessary first step for using most of the tools in this book. I'm
going to be focused on data input and output using pandas, though there are numer-
ous tools in other libraries to help with reading and writing data in various formats.

Input and output typically falls into a few main categories: reading text files and other
more efficient on-disk formats, loading data from databases, and interacting with net-
work sources like web APIs.

6.1 Reading and Writing Data in Text Format

pandas features a number of functions for reading tabular data as a DataFrame
object. Table 6-1 summarizes some of them, though read_csv and read_table are
likely the ones you’ll use the most.

Table 6-1. Parsing functions in pandas

Function Description

read_csv Load delimited data from a file, URL, or file-like object; use comma as default delimiter

read_table Load delimited data from a file, URL, or file-like object; use tab (" \ t ") as default delimiter

read_fwf Read data in fixed-width column format (i.e., no delimiters)

read_clipboard Version of read_table that reads data from the clipboard; useful for converting tables from web
pages

read_excel Read tabular data from an Excel XLS or XLSX file

read_hdf Read HDF5 files written by pandas

read_html Read all tables found in the given HTML document

read_json Read data from a JSON (JavaScript Object Notation) string representation

read_msgpack Read pandas data encoded using the MessagePack binary format
read_pickle Read an arbitrary object stored in Python pickle format
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Function Description

read_sas Read a SAS dataset stored in one of the SAS system'’s custom storage formats
read_sql Read the results of a SQL query (using SQLAlchemy) as a pandas DataFrame
read_stata Read a dataset from Stata file format

read_feather Read the Feather binary file format

I'll give an overview of the mechanics of these functions, which are meant to convert
text data into a DataFrame. The optional arguments for these functions may fall into
a few categories:

Indexing
Can treat one or more columns as the returned DataFrame, and whether to get
column names from the file, the user, or not at all.

Type inference and data conversion
This includes the user-defined value conversions and custom list of missing value
markers.

Datetime parsing
Includes combining capability, including combining date and time information
spread over multiple columns into a single column in the result.

Iterating
Support for iterating over chunks of very large files.

Unclean data issues
Skipping rows or a footer, comments, or other minor things like numeric data
with thousands separated by commas.

Because of how messy data in the real world can be, some of the data loading func-
tions (especially read_csv) have grown very complex in their options over time. It’s
normal to feel overwhelmed by the number of different parameters (read_csv has
over 50 as of this writing). The online pandas documentation has many examples
about how each of them works, so if you're struggling to read a particular file, there
might be a similar enough example to help you find the right parameters.

Some of these functions, like pandas.read_csv, perform type inference, because the
column data types are not part of the data format. That means you don't necessarily
have to specify which columns are numeric, integer, boolean, or string. Other data
formats, like HDF5, Feather, and msgpack, have the data types stored in the format.

Handling dates and other custom types can require extra effort. Let’s start with a
small comma-separated (CSV) text file:

In [8]: !cat examples/exl.csv
a,b,c,d,message
1,2,3,4,hello
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5,6,7,8,world
9,10,11,12,foo0

Here I used the Unix cat shell command to print the raw contents
of the file to the screen. If youre on Windows, you can use type
instead of cat to achieve the same effect.

Since this is comma-delimited, we can use read_csv to read it into a DataFrame:

In [9]: df = pd.read_csv('examples/exl.csv')

In [10]: df
Out[10]:

a b ¢ d message
0 1 2 3 4 hello
15 6 7 8 world
2 9 10 11 12 foo

We could also have used read_table and specified the delimiter:

In [11]: pd.read_table('examples/exl.csv', sep=",")
Out[11]:
a b ¢ d message
12 3 4 hello
5 6 7 8 world
9 10 11 12 foo

N B ©

A file will not always have a header row. Consider this file:

In [12]: !cat examples/ex2.csv
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,fo0

To read this file, you have a couple of options. You can allow pandas to assign default

column names, or you can specify names yourself:

In [13]: pd.read_csv('examples/ex2.csv', header=None)

Out[13]:

0 1 2 3 4
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo

In [14]: pd.read_csv('examples/ex2.csv', names=['a', 'b', 'c
b ¢ d message

1 2 3 4 hello
6 7 8 world
0 11 12 foo

, 'd', 'message'])
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Suppose you wanted the message column to be the index of the returned DataFrame.
You can either indicate you want the column at index 4 or named 'message' using
the index_col argument:

In [15]: names = ['a', 'b', 'c', 'd', 'message']

In [16]: pd.read_csv('examples/ex2.csv', names=names, index_col='message')
Out[16]:
a b ¢ d
message
hello 1 2 3 4
world 5 6 7 8
foo 9 10 11 12

In the event that you want to form a hierarchical index from multiple columns, pass a
list of column numbers or names:

In [17]: !cat examples/csv_mindex.csv
key1,key2,valuel,value2

one,a,l1,?

one,b,3,4

one,c,5,6

one,d,7,8

two,a,9,10

two,b,11,12

two,c,13,14

two,d, 15,16

In [18]: parsed = pd.read_csv('examples/csv_mindex.csv',
el index_col=["keyl', 'key2'])

In [19]: parsed

Out[19]:
valuel value2
keyl key2
one a 1 2
b 3 4
C 5 6
d 7 8
two a 9 10
b 11 12
C 13 14
d 15 16

In some cases, a table might not have a fixed delimiter, using whitespace or some
other pattern to separate fields. Consider a text file that looks like this:

In [20]: list(open('examples/ex3.txt"))

Out[20]:

[ A B C\n',
'aaa -0.264438 -1.026059 -0.619500\n",
'bbb  0.927272 0.302904 -0.032399\n',

170 | Chapter 6: Data Loading, Storage, and File Formats



'ccc -0.264273 -0.386314 -0.217601\n',
'ddd -0.871858 -0.348382 1.100491\n']

While you could do some munging by hand, the fields here are separated by a vari-
able amount of whitespace. In these cases, you can pass a regular expression as a
delimiter for read_table. This can be expressed by the regular expression \s+, so we
have then:

In [21]: result = pd.read_table('examples/ex3.txt', sep="\s+")

In [22]: result
out[22]:

A B C
aaa -0.264438 -1.026059 -0.619500
bbb 0.927272 0.302904 -0.032399
ccc -0.264273 -0.386314 -0.217601
ddd -0.871858 -0.348382 1.100491

Because there was one fewer column name than the number of data rows,
read_table infers that the first column should be the DataFrame’s index in this spe-
cial case.

The parser functions have many additional arguments to help you handle the wide
variety of exception file formats that occur (see a partial listing in Table 6-2). For
example, you can skip the first, third, and fourth rows of a file with skiprows:

In [23]: !cat examples/ex4.csv
# hey!
a,b,c,d,message
# just wanted to make things more difficult for you
# who reads CSV files with computers, anyway?
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo
In [24]: pd.read_csv('examples/ex4.csv', skiprows=[0, 2, 3])
outf[24]:
a b ¢ d message
6 1 2 3 4 hello
15 6 7 8 world
2 9 10 11 12 foo

Handling missing values is an important and frequently nuanced part of the file pars-
ing process. Missing data is usually either not present (empty string) or marked by
some sentinel value. By default, pandas uses a set of commonly occurring sentinels,
such as NA and NULL:

In [25]: !cat examples/ex5.csv
something,a,b,c,d,message

one,1,2,3,4,NA

two,5,6,,8,world

three,9,10,11,12,foo0

In [26]: result = pd.read_csv('examples/ex5.csv')
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In [27]: result

Out[27]:

something a b c d message
0 one 1 2 3.0 4 NaN
1 two 5 6 NaN 8 world
2 three 9 10 11.0 12 foo

In [28]: pd.isnull(result)

out[28]:

something a b C d message
0 False False False False False True
1 False False False True False False
2 False False False False False False

The na_values option can take either a list or set of strings to consider missing
values:

In [29]: result = pd.read_csv('examples/ex5.csv', na_values=['NULL'])

In [30]: result

Out[30]:
something a b c d message
one 1 2 3.0 4 NaN
1 two 5 6 NaN 8 world
2 three 9 10 11.0 12 foo

Different NA sentinels can be specified for each column in a dict:
In [31]: sentinels = {'message': ['foo', 'NA'], 'something': ['two']}

In [32]: pd.read_csv('examples/ex5.csv', na_values=sentinels)

out[32]:
something a b c d message
one 1 2 3.0 4 NaN
1 NaN 5 6 NaN 8 world
2 three 9 10 11.0 12 NaN

Table 6-2 lists some frequently used options in pandas.read_csv and pan
das.read_table.

Table 6-2. Some read_csv/read_table function arguments

path String indicating filesystem location, URL, or file-like object

sep ordelimiter Character sequence or regular expression to use to split fields in each row

header Row number to use as column names; defaults to 0 (first row), but should be None if there is no
header row

index_col Column numbers or names to use as the row index in the result; can be a single name/number or a

list of them for a hierarchical index
names List of column names for result, combine with header=None
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Argument
skiprows
na_values
comment

parse_dates

keep_date_col
converters

dayfirst

date_parser
nrows
iterator
chunksize
skip_footer

verbose

encoding
squeeze

thousands

Description

Number of rows at beginning of file to ignore or list of row numbers (starting from 0) to skip.
Sequence of values to replace with NA.

Character(s) to split comments off the end of lines.

Attempt to parse data to datetime; False by default. If True, will attempt to parse all columns.
Otherwise can specify a list of column numbers or name to parse. If element of list is tuple or list, will
combine multiple columns together and parse to date (e.g., if date/time split across two columns).

If joining columns to parse date, keep the joined columns; False by default.

Dict containing column number of name mapping to functions (e.g., {' foo': 2} would apply the
function f to all values in the ' foo' column).

When parsing potentially ambiguous dates, treat as international format (e.g., 7/6/2012 -> June 7,
2012); False by default.

Function to use to parse dates.

Number of rows to read from beginning of file.

Return a TextParser object for reading file piecemeal.
For iteration, size of file chunks.

Number of lines to ignore at end of file.

Print various parser output information, like the number of missing values placed in non-numeric
columns.

Text encoding for Unicode (e.g., 'utf-8" for UTF-8 encoded text).
If the parsed data only contains one column, return a Series.
Separator for thousands (e.g., ', ' or '.").

Reading Text Files in Pieces

When processing very large files or figuring out the right set of arguments to cor-
rectly process a large file, you may only want to read in a small piece of a file or iterate
through smaller chunks of the file.

Before we look at a large file, we make the pandas display settings more compact:

In [33]: pd.options.display.max_rows = 10

Now we have:

In [34]: result = pd.read_csv('examples/ex6.csv')

In [35]: result

Out[35]:

one two three four key
0 0.467976 -0.038649 -0.295344 -1.824726 L
1 -0.358893 1.404453 0.704965 -0.200638 B
2 -0.501840 0.659254 -0.421691 -0.057688 G
3 0.204886 1.074134 1.388361 -0.982404 R
4 0.354628 -0.133116 0.283763 -0.837063 Q

9995 2.311896 -0.417070 -1.409599 -0.515821 L
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9996 -0.479893 -0.650419 0.745152 -0.646038
9997 0.523331 0.787112 0.486066 1.093156
9998 -0.362559 0.598894 -1.843201 0.887292
9999 -0.096376 -1.012999 -0.657431 -0.573315
[16000 rows x 5 columns]

[l

If you want to only read a small number of rows (avoiding reading the entire file),
specify that with nrows:

In [36]: pd.read_csv('examples/ex6.csv', nrows=5)

Out[36]:

one two three four key
0 0.467976 -0.038649 -0.295344 -1.824726 L
1 -0.358893 1.404453 0.704965 -0.200638 B
2 -0.501840 0.659254 -0.421691 -0.057688 G
3 0.204886 1.074134 1.388361 -0.982404 R
4 0.354628 -0.133116 0.283763 -0.837063 Q

To read a file in pieces, specify a chunksize as a number of rows:

In [37]: chunker = pd.read_csv('examples/ex6.csv', chunksize=1000)

In [38]: chunker
Out[38]: <pandas.io.parsers.TextFileReader at 0x7f6ble2672e8>

The TextParser object returned by read_csv allows you to iterate over the parts of
the file according to the chunksize. For example, we can iterate over ex6.csv, aggre-
gating the value counts in the 'key' column like so:

chunker = pd.read_csv('examples/ex6.csv', chunksize=1000)

tot = pd.Series([])
for piece in chunker:
tot = tot.add(piece['key'].value_counts(), fill_value=0)

tot = tot.sort_values(ascending=False)
We have then:

In [40]: tot[:10]
Out[40]:

E 368.
X 364.
L 346.
0 343,
Q  340.
M 338.
J 337.
F 335.
K 334.
H 330.0
dtype: float64

[cl oo oNoNoNoNoNoOJ
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TextParser is also equipped with a get_chunk method that enables you to read
pieces of an arbitrary size.

Writing Data to Text Format

Data can also be exported to a delimited format. Let’s consider one of the CSV files
read before:

In [41]: data = pd.read_csv('examples/ex5.csv')

In [42]: data

Out[42]:

something a b c d message
0 one 1 2 3.0 4 NaN
1 two 5 6 NaN 8 world
2 three 9 10 11.0 12 foo

Using DataFrame’s to_csv method, we can write the data out to a comma-separated
file:

In [43]: data.to_csv('examples/out.csv')

In [44]: !cat examples/out.csv
,something,a,b,c,d,message
0,one,1,2,3.0,4,
1,two,5,6,,8,world
2,three,9,10,11.0,12,foo0

Other delimiters can be used, of course (writing to sys.stdout so it prints the text
result to the console):

In [45]: import

In [46]: data.to_csv(sys.stdout, sep="|")
| something|a|b|c|d|message
Olone|1]2]3.0]4|

1|two|5]|6]|8|world
2|three|9]|10[11.0]12]|foo0

Missing values appear as empty strings in the output. You might want to denote them
by some other sentinel value:

In [47]: data.to_csv(sys.stdout, na_rep="NULL')
,something,a,b,c,d,message
0,one,1,2,3.0,4,NULL

1,two,5,6,NULL,8,world

2,three,9,10,11.0,12,foo

With no other options specified, both the row and column labels are written. Both of
these can be disabled:
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In [48]: data.to_csv(sys.stdout, index=False, header=False)
one,1,2,3.0,4,

two,5,6,,8,world

three,9,10,11.0,12,fo0

You can also write only a subset of the columns, and in an order of your choosing:

In [49]: data.to_csv(sys.stdout, index=False, columns=['a', 'b', 'c'])
a,b,c

1,2,3.0

5,6,

9,10,11.0

Series also has a to_csv method:
In [50]: dates = pd.date_range('1/1/2000', periods=7)
In [51]: ts = pd.Series(np.arange(7), index=dates)
In [52]: ts.to_csv('examples/tseries.csv')

In [53]: !cat examples/tseries.csv
2000-01-01,0
2000-01-02,1
2000-01-03,2
2000-01-04,3
2000-01-05,4
2000-01-06,5
2000-01-07,6

Working with Delimited Formats

It’s possible to load most forms of tabular data from disk using functions like pan
das.read_table. In some cases, however, some manual processing may be necessary.
It's not uncommon to receive a file with one or more malformed lines that trip up
read_table. To illustrate the basic tools, consider a small CSV file:

In [54]: !cat examples/ex7.csv

1an,mh" e

nqn wgn ngn

agn wgn ngn
For any file with a single-character delimiter, you can use Python’s built-in csv mod-
ule. To use it, pass any open file or file-like object to csv.reader:

import
f = open('examples/ex7.csv')

reader = csv.reader(f)

Iterating through the reader like a file yields tuples of values with any quote charac-
ters removed:
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In [56]: for line in reader:
R print(line)
[ 1 a 1 s 1 b 1 , 1 C 1 ]
[ 1 1 1 , 1 2 1 , 1 3 1 ]
[ 1 1 1 , 1 2 1 , 1 3 1 ]
From there, it’s up to you to do the wrangling necessary to put the data in the form
that you need it. Let’s take this step by step. First, we read the file into a list of lines:

In [57]: with open('examples/ex7.csv') as f:
et lines = list(csv.reader(f))

Then, we split the lines into the header line and the data lines:
In [58]: header, values = lines[0], lines[1:]

Then we can create a dictionary of data columns using a dictionary comprehension
and the expression zip(*values), which transposes rows to columns:

In [59]: data_dict = {h: v for h, v in zip(header, zip(*values))}

In [60]: data_dict

OUt[GO]: {|a|: (Ill’ |1|), 'h'. (Izl’ |2|), et (I3l’ |3|)}
CSV files come in many different flavors. To define a new format with a different
delimiter, string quoting convention, or line terminator, we define a simple subclass
of csv.Dialect:

class my_dialect(csv.Dialect):

lineterminator = '\n'
delimiter = ';'
quotechar = '"'

quoting = csv.QUOTE_MINIMAL

reader = csv.reader(f, dialect=my_dialect)

We can also give individual CSV dialect parameters as keywords to csv.reader
without having to define a subclass:

reader = csv.reader(f, delimiter="[|")

The possible options (attributes of csv.Dialect) and what they do can be found in
Table 6-3.

Table 6-3. CSV dialect options

Argument Description

delimiter One-character string to separate fields; defaultsto ', '.

lineterminator Line terminator for writing; defaults to ' \r\n". Reader ignores this and recognizes cross-platform
line terminators.

quotechar Quote character for fields with special characters (like a delimiter); defaultis ' " '.
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Argument Description

quoting Quoting convention. Options include csv.QUOTE_ALL (quote all fields), csv.QUOTE_MINI
MAL (only fields with special characters like the delimiter), csv.QUOTE_NONNUMERIC, and
csv.QUOTE_NONE (no quoting). See Python’s documentation for full details. Defaults to
QUOTE_MINIMAL.

skipinitialspace Ignore whitespace after each delimiter; default is False.

doublequote How to handle quoting character inside a field; if True, it is doubled (see online documentation
for full detail and behavior).
escapechar String to escape the delimiter if quoting is set to csv.QUOTE_NONE; disabled by default.

For files with more complicated or fixed multicharacter delimiters,
you will not be able to use the csv module. In those cases, you’ll
have to do the line splitting and other cleanup using string’s split
method or the regular expression method re.split.

To write delimited files manually, you can use csv.writer. It accepts an open, writa-
ble file object and the same dialect and format options as csv.reader:

with open('mydata.csv', 'w') as f:
writer = csv.writer(f, dialect=my_dialect)
writer.writerow(('one', 'two', 'three'))
writer.writerow(('1', '2', '3"))
writer.writerow(('4', '5', '6'))
writer.writerow(('7', '8', '9"))

JSON Data

JSON (short for JavaScript Object Notation) has become one of the standard formats
for sending data by HT TP request between web browsers and other applications. It is
a much more free-form data format than a tabular text form like CSV. Here is an
example:

obj = """

"name": "Wes",

"places_lived": ["United States", "Spain", "Germany"],
"pet": null,

"siblings": [{"name": "Scott", "age": 30, "pets": ["Zeus", "Zuko"]},
"name": "Katie", "age": 38,
"pets": ["Sixes", "Stache", "Cisco"]}]

}
JSON is very nearly valid Python code with the exception of its null value null and
some other nuances (such as disallowing trailing commas at the end of lists). The
basic types are objects (dicts), arrays (lists), strings, numbers, booleans, and nulls. All
of the keys in an object must be strings. There are several Python libraries for reading
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and writing JSON data. I'll use json here, as it is built into the Python standard
library. To convert a JSON string to Python form, use json. loads:

In [62]: import json
In [63]: result = json.loads(obj)

In [64]: result
out[64]:
{'name': 'Wes',
'pet': None,
'places_lived': ['United States', 'Spain', 'Germany'],
'siblings': [{'age': 30, 'name': 'Scott', 'pets': ['Zeus', 'Zuko'l},
{'age': 38, 'name': 'Katie', 'pets': ['Sixes', 'Stache', 'Cisco']}]}
json.dumps, on the other hand, converts a Python object back to JSON:
In [65]: asjson = json.dumps(result)

How you convert a JSON object or list of objects to a DataFrame or some other data
structure for analysis will be up to you. Conveniently, you can pass a list of dicts
(which were previously JSON objects) to the DataFrame constructor and select a sub-
set of the data fields:

In [66]: siblings = pd.DataFrame(result['siblings'], columns=['name', 'age'])

In [67]: siblings
Out[67]:
name age
0 Scott 30
1 Katie 38

The pandas.read_json can automatically convert JSON datasets in specific arrange-
ments into a Series or DataFrame. For example:
In [68]: !cat examples/example.json
[{"a": 1, "b": 2, "c": 3},
{“a”: 4, "b": 5, "c"s 6},
{"a": 7, "b": 8, "c": 9}]

The default options for pandas.read_json assume that each object in the JSON array
is a row in the table:

In [69]: data = pd.read_json('examples/example.json')

In [70]: data

Out[70]:

a b c
0 1 2 3
1 4 5 6
2 7 8 9
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For an extended example of reading and manipulating JSON data (including nested
records), see the USDA Food Database example in Chapter 7.

If you need to export data from pandas to JSON, one way is to use the to_json meth-
ods on Series and DataFrame:

In [71]: print(data.to_json())
{"a":{"0":1,"1":4,"2":7},"b":{"0":2,"1":5,"2":8},"c":{"0":3,"1":6,"2" : 9}}

In [72]: print(data.to_json(orient='records'))
[{"a":1,"b":2,"c":3},{"a":4,"b":5,"c":6},{"a":7,"b":8,"c":9}]

XML and HTML: Web Scraping

Python has many libraries for reading and writing data in the ubiquitous HTML and
XML formats. Examples include Ixml, Beautiful Soup, and html5lib. While Ixml is
comparatively much faster in general, the other libraries can better handle malformed
HTML or XML files.

pandas has a built-in function, read_htm1l, which uses libraries like Ixml and Beauti-
ful Soup to automatically parse tables out of HTML files as DataFrame objects. To
show how this works, I downloaded an HTML file (used in the pandas documenta-
tion) from the United States FDIC government agency showing bank failures.' First,
you must install some additional libraries used by read_html:

conda install lxml
pip install beautifulsoup4 html51lib

If you are not using conda, pip install lxml will likely also work.

The pandas.read_html function has a number of options, but by default it searches
for and attempts to parse all tabular data contained within <table> tags. The result is
a list of DataFrame objects:

In [73]: tables = pd.read_html('examples/fdic_failed_bank_list.html')

In [74]: len(tables)
out[74]: 1

In [75]: failures = tables[0]

In [76]: failures.head()

out[76]:
Bank Name City ST  CERT \
0 Allied Bank Mulberry AR 91
1 The Woodbury Banking Company Woodbury GA 11297
2 First CornerStone Bank King of Prussia PA 35312

1 For the full list, see https://www.fdic.gov/bank/individual/failed/banklist.html.
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3 Trust Company Bank Memphis TN 9956

4 North Milwaukee State Bank Milwaukee WI 20364

Acquiring Institution Closing Date Updated Date
0 Today's Bank September 23, 2016 November 17, 2016
1 United Bank August 19, 2016 November 17, 2016
2  First-Citizens Bank & Trust Company May 6, 2016 September 6, 2016
3 The Bank of Fayette County April 29, 2016 September 6, 2016
4  First-Citizens Bank & Trust Company March 11, 2016 June 16, 2016

Because failures has many columns, pandas inserts a line break character \.

As you will learn in later chapters, from here we could proceed to do some data
cleaning and analysis, like computing the number of bank failures by year:

In [77]: close_timestamps = pd.to_datetime(failures['Closing Date'])

In [78]: close_timestamps.dt.year.value_counts()

out[78]:

2010 157
2009 140
2011 92
2012 51
2008 25
2004 4
2001 4
2007 3
2003 3
2000 2

Name: Closing Date, Length: 15, dtype: int64

Parsing XML with Ixml.objectify

XML (eXtensible Markup Language) is another common structured data format sup-
porting hierarchical, nested data with metadata. The book you are currently reading
was actually created from a series of large XML documents.

Earlier, I showed the pandas.read_html function, which uses either Ixml or Beautiful
Soup under the hood to parse data from HTML. XML and HTML are structurally
similar, but XML is more general. Here, I will show an example of how to use Ixml to
parse data from a more general XML format.

The New York Metropolitan Transportation Authority (MTA) publishes a number of
data series about its bus and train services. Here we'll look at the performance data,
which is contained in a set of XML files. Each train or bus service has a different file
(like Performance_MNR.xml for the Metro-North Railroad) containing monthly data
as a series of XML records that look like this:

<INDICATOR>
<INDICATOR_SEQ>373889</INDICATOR_SEQ>
<PARENT_SEQ></PARENT_SEQ>
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<AGENCY_NAME>Metro-North Railroad</AGENCY_NAME>
<INDICATOR_NAME>Escalator Availability</INDICATOR_NAME>
<DESCRIPTION>Percent of the time that escalators are operational
systemwide. The availability rate is based on physical observations performed
the morning of regular business days only. This is a new indicator the agency
began reporting in 2009.</DESCRIPTION>
<PERIOD_YEAR>2011</PERIOD_YEAR>
<PERIOD_MONTH>12</PERIOD_MONTH>
<CATEGORY>Service Indicators</CATEGORY>
<FREQUENCY>M</FREQUENCY>
<DESIRED_CHANGE>U</DESIRED_CHANGE>
<INDICATOR_UNIT>%</INDICATOR_UNIT>
<DECIMAL_PLACES>1</DECIMAL_PLACES>
<YTD_TARGET>97.00</YTD_TARGET>
<YTD_ACTUAL></YTD_ACTUAL>
<MONTHLY_TARGET>97.00</MONTHLY_TARGET>
<MONTHLY_ACTUAL></MONTHLY_ACTUAL>
</INDICATOR>

Using 1xml.objectify, we parse the file and get a reference to the root node of the
XML file with getroot:

from Lxml import objectify

path = 'examples/mta_perf/Performance_MNR.xml'
parsed = objectify.parse(open(path))
root = parsed.getroot()

root.INDICATOR returns a generator yielding each <INDICATOR> XML element. For
each record, we can populate a dict of tag names (like YTD_ACTUAL) to data values
(excluding a few tags):

data = []

skip_fields = ['PARENT_SEQ', 'INDICATOR_SEQ',
'DESIRED_CHANGE', 'DECIMAL_PLACES']

for elt in root.INDICATOR:
el_data = {}
for child in elt.getchildren():
if child.tag in skip_fields:
continue
el_data[child.tag] = child.pyval
data.append(el_data)

Lastly, convert this list of dicts into a DataFrame:

In [81]: perf = pd.DataFrame(data)

In [82]: perf.head()
Out[82]:
Empty DataFrame
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Columns: []
Index: []

XML data can get much more complicated than this example. Each tag can have
metadata, too. Consider an HTML link tag, which is also valid XML:

from 1o import StringIO
tag = '<a href="http://www.google.com">Google</a>"'
root = objectify.parse(StringIO(tag)).getroot()

You can now access any of the fields (like href) in the tag or the link text:

In [84]: root
Out[84]: <Element a at Ox7f6b15817748>

In [85]: root.get('href")
Out[85]: 'http://www.google.com'

In [86]: root.text
Out[86]: 'Google'

6.2 Binary Data Formats

One of the easiest ways to store data (also known as serialization) efficiently in binary
format is using Pythons built-in pickle serialization. pandas objects all have a
to_pickle method that writes the data to disk in pickle format:

In [87]: frame = pd.read_csv('examples/exl.csv')

In [88]: frame

Out[88]:

a b ¢ d message
0 1 2 3 4 hello
1 5 6 8 world
2 9 10 11 12 foo

In [89]: frame.to_pickle('examples/frame_pickle')

You can read any “pickled” object stored in a file by using the built-in pickle directly,
or even more conveniently using pandas. read_pickle:

In [90]: pd.read_pickle('examples/frame_pickle')
Out[90]:
a b ¢ d message
1 2 3 4 hello
5 6 7 8 world
9 10 11 12 foo

N =, O
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pickle is only recommended as a short-term storage format. The
problem is that it is hard to guarantee that the format will be stable
over time; an object pickled today may not unpickle with a later
version of a library. We have tried to maintain backward compati-
bility when possible, but at some point in the future it may be nec-
essary to “break” the pickle format.

pandas has built-in support for two more binary data formats: HDF5 and Message-
Pack. I will give some HDF5 examples in the next section, but I encourage you to
explore different file formats to see how fast they are and how well they work for your
analysis. Some other storage formats for pandas or NumPy data include:

beolz
A compressable column-oriented binary format based on the Blosc compression
library.

Feather
A cross-language column-oriented file format I designed with the R program-
ming community’s Hadley Wickham. Feather uses the Apache Arrow columnar
memory format.

Using HDF5 Format

HDF5 is a well-regarded file format intended for storing large quantities of scientific
array data. It is available as a C library, and it has interfaces available in many other
languages, including Java, Julia, MATLAB, and Python. The “HDF” in HDF5 stands
for hierarchical data format. Each HDFb5 file can store multiple datasets and support-
ing metadata. Compared with simpler formats, HDF5 supports on-the-fly compres-
sion with a variety of compression modes, enabling data with repeated patterns to be
stored more efficiently. HDF5 can be a good choice for working with very large data-
sets that don't fit into memory, as you can efficiently read and write small sections of
much larger arrays.

While it’s possible to directly access HDFS5 files using either the PyTables or h5py
libraries, pandas provides a high-level interface that simplifies storing Series and
DataFrame object. The HDFStore class works like a dict and handles the low-level
details:

In [92]: frame = pd.DataFrame({'a': np.random.randn(100)})
In [93]: store = pd.HDFStore('mydata.h5')

In [94]: store['obj1'] = frame

In [95]: store['objl_col'] = frame['a']

In [96]: store
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Out[96]:

<class 'pandas.io.pytables.HDFStore'>

File path: mydata.h5
/obj1

/obj1_col

/obj2
[index])
/obj3
[index])

frame (shape->[100,1])
series (shape->[100])
frame_table (typ->appendable,nrows->100,ncols->1,indexers->

frame_table (typ->appendable,nrows->100,ncols->1,indexers->

Objects contained in the HDFb5 file can then be retrieved with the same dict-like API:

In [97]: store['obj1'

out[97]:
a
-0.204708
0.478943
-0.519439
-0.555730
1.965781

A wWwNREL O

95 0.795253
96 0.118110
97 -0.748532
98 0.584970
99 0.152677

]

[160 rows x 1 columns]

HDFStore supports two storage schemas, 'fixed' and 'table'. The latter is generally
slower, but it supports query operations using a special syntax:

In [98]: store.put('obj2', frame, format='table')

In [99]: store.select('obj2', where=['index >= 10 and index <= 15'])

Out[99]:

a
10 1.007189
11 -1.296221
12 0.274992
13 0.228913
14 1.352917
15 0.886429

In [100]: store.close()

The put is an explicit version of the store['obj2'] = frame method but allows us to
set other options like the storage format.

The pandas. read_hdf function gives you a shortcut to these tools:

In [101]: frame.to_hdf('mydata.h5', 'obj3', format='table')
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In [102]: pd.read_hdf('mydata.h5', 'obj3', where=['index < 5'])
Out[102]:
a
-0.204708
0.478943
-0.519439
-0.555730
1.965781

A WNERO

If you are processing data that is stored on remote servers, like
Amazon S3 or HDFS, using a different binary format designed for
distributed storage like Apache Parquet may be more suitable.
Python for Parquet and other such storage formats is still develop-
ing, so I do not write about them in this book.

If you work with large quantities of data locally, I would encourage you to explore
PyTables and h5py to see how they can suit your needs. Since many data analysis
problems are I/O-bound (rather than CPU-bound), using a tool like HDF5 can mas-
sively accelerate your applications.

HDFS5 is not a database. It is best suited for write-once, read-many
datasets. While data can be added to a file at any time, if multiple
writers do so simultaneously, the file can become corrupted.

N

Reading Microsoft Excel Files

pandas also supports reading tabular data stored in Excel 2003 (and higher) files
using either the ExcelFile class or pandas.read_excel function. Internally these
tools use the add-on packages x1rd and openpyx1 to read XLS and XLSX files, respec-
tively. You may need to install these manually with pip or conda.

To use ExcelFile, create an instance by passing a path to an x1s or x1sx file:
In [104]: x1lsx = pd.ExcelFile('examples/ex1l.x1lsx")
Data stored in a sheet can then be read into DataFrame with parse:

In [105]: pd.read_excel(xlsx, 'Sheetl')
Out[105]:
a b ¢ d message
6 1 2 3 4 hello
15 6 7 8 world
2 9 10 11 12 foo

If you are reading multiple sheets in a file, then it is faster to create the ExcelFile,
but you can also simply pass the filename to pandas.read_excel:
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In [106]: frame = pd.read_excel('examples/ex1l.xlsx', 'Sheetl')

In [107]: frame
out[107]:

a b ¢ d message
0 1 2 3 4 hello
15 6 7 8 world
2 9 10 11 12 foo

To write pandas data to Excel format, you must first create an ExcelWriter, then
write data to it using pandas objects’ to_excel method:

In [108]: writer = pd.ExcelWriter('examples/ex2.x1lsx")
In [109]: frame.to_excel(writer, 'Sheetl')

In [110]: writer.save()
You can also pass a file path to to_excel and avoid the ExcelWriter:

In [111]: frame.to_excel('examples/ex2.xlsx")

6.3 Interacting with Web APIs

Many websites have public APIs providing data feeds via JSON or some other format.
There are a number of ways to access these APIs from Python; one easy-to-use
method that I recommend is the requests package.

To find the last 30 GitHub issues for pandas on GitHub, we can make a GET HTTP
request using the add-on requests library:

In [113]: import
In [114]: url = 'https://api.github.com/repos/pandas-dev/pandas/issues'
In [115]: resp = requests.get(url)

In [116]: resp
Out[116]: <Response [200]>

The Response object’s json method will return a dictionary containing JSON parsed
into native Python objects:

In [117]: data = resp.json()

In [118]: data[0]['title']

Out[118]: 'Period does not round down for frequencies less that 1 hour'
Each element in data is a dictionary containing all of the data found on a GitHub
issue page (except for the comments). We can pass data directly to DataFrame and
extract fields of interest:
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In [119]: issues = pd.DataFrame(data, columns=['number', 'title',
..... : 'labels', 'state'])

In [120]: 1issues

Out[120]:
number title \
0 17666 Period does not round down for frequencies les...
1 17665 DOC: improve docstring of function where
2 17664 COMPAT: skip 32-bit test on int repr
3 17662 implement Delegator class
4 17654 BUG: Fix series rename called with str alterin...

25 17603 BUG: Correctly localize naive datetime strings...
26 17599 core.dtypes.generic --> cython
27 17596  Merge cdate_range functionality into bdate_range
28 17587 Time Grouper bug fix when applied for list gro...
29 17583 BUG: fix tz-aware DatetimelIndex + Timedeltalnd...
labels state

0 [T open
1 [{'id"': 134699, 'url': 'https://api.github.com... open
2 [{'id': 563047854, 'url': 'https://api.github.... open
3 [1 open
4  [{'id': 76811, 'url': 'https://api.github.com/... open
25 [{'id': 76811, 'url': 'https://api.github.com/... open
26 [{'id': 49094459, 'url': 'https://api.github.c... open

27 [{'id': 35818298, 'url': 'https://api.github.c... open

28 [{'id': 233160, 'url': 'https://api.github.com... open

29 [{'id': 76811, 'url': 'https://api.github.com/... open

[30 rows x 4 columns]
With a bit of elbow grease, you can create some higher-level interfaces to common
web APIs that return DataFrame objects for easy analysis.

6.4 Interacting with Databases

In a business setting, most data may not be stored in text or Excel files. SQL-based
relational databases (such as SQL Server, PostgreSQL, and MySQL) are in wide use,
and many alternative databases have become quite popular. The choice of database is
usually dependent on the performance, data integrity, and scalability needs of an
application.

Loading data from SQL into a DataFrame is fairly straightforward, and pandas has
some functions to simplify the process. As an example, I'll create a SQLite database
using Python’s built-in sqlite3 driver:

In [121]: import sqlite3

In [122]: query = """
.....: CREATE TABLE test
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.....: C REAL, d INTEGER
U P

In [123]: con = sqlite3.connect('mydata.sqlite')

In [124]: con.execute(query)
Out[124]: <sqlite3.Cursor at Ox7f6b12a50f10>

In [125]: con.commit()

Then, insert a few rows of data:

In [126]: data [('Atlanta', 'Georgia', 1.25, 6),
..... : ('Tallahassee', 'Florida', 2.6, 3),
et ('Sacramento', 'California', 1.7, 5)]

In [127]: stmt = "INSERT INTO test VALUES(?, ?, 7, ?)"

In [128]: con.executemany(stmt, data)
Out[128]: <sqglite3.Cursor at 0x7f6bl5c66ced>

In [129]: con.commit()

Most Python SQL drivers (PyODBC, psycopg2, MySQLdDb, pymssq]l, etc.) return a list
of tuples when selecting data from a table:

In [130]: cursor = con.execute('select * from test')
In [131]: rows = cursor.fetchall()

In [132]: rows

Out[132]:

[('Atlanta', 'Georgia', 1.25, 6),
('Tallahassee', 'Florida', 2.6, 3),
('Sacramento', 'California', 1.7, 5)]

You can pass the list of tuples to the DataFrame constructor, but you also need the
column names, contained in the cursor’s description attribute:

In [133]: cursor.description

Out[133]:

(('a', None, None, None, None, None, None),
('b', None, None, None, None, None, None),
('c', None, None, None, None, None, None),
('d', None, None, None, None, None, None))

In [134]: pd.DataFrame(rows, columns=[x[0] for x in cursor.description])

out[134]:

a b c d
0 Atlanta Georgia 1.25 6
1 Tallahassee Florida 2.60 3
2 Sacramento California 1.70 5
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This is quite a bit of munging that youd rather not repeat each time you query the
database. The SQLAlchemy project is a popular Python SQL toolkit that abstracts
away many of the common differences between SQL databases. pandas has a
read_sql function that enables you to read data easily from a general SQLAlchemy
connection. Here, we'll connect to the same SQLite database with SQLAlchemy and
read data from the table created before:

In [135]: import as
In [136]: db = sqla.create_engine('sqlite:///mydata.sqlite")

In [137]: pd.read_sql('select * from test', db)

Out[137]:

a b c d
0 Atlanta Georgia 1.25 6
1 Tallahassee Florida 2.60 3
2 Sacramento California 1.70 5

6.5 Conclusion

Getting access to data is frequently the first step in the data analysis process. We have
looked at a number of useful tools in this chapter that should help you get started. In
the upcoming chapters we will dig deeper into data wrangling, data visualization,
time series analysis, and other topics.
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CHAPTER 7
Data Cleaning and Preparation

During the course of doing data analysis and modeling, a significant amount of time
is spent on data preparation: loading, cleaning, transforming, and rearranging. Such
tasks are often reported to take up 80% or more of an analyst’s time. Sometimes the
way that data is stored in files or databases is not in the right format for a particular
task. Many researchers choose to do ad hoc processing of data from one form to
another using a general-purpose programming language, like Python, Perl, R, or Java,
or Unix text-processing tools like sed or awk. Fortunately, pandas, along with the
built-in Python language features, provides you with a high-level, flexible, and fast set
of tools to enable you to manipulate data into the right form.

If you identify a type of data manipulation that isn’t anywhere in this book or else-
where in the pandas library, feel free to share your use case on one of the Python
mailing lists or on the pandas GitHub site. Indeed, much of the design and imple-
mentation of pandas has been driven by the needs of real-world applications.

In this chapter I discuss tools for missing data, duplicate data, string manipulation,
and some other analytical data transformations. In the next chapter, I focus on com-
bining and rearranging datasets in various ways.

7.1 Handling Missing Data

Missing data occurs commonly in many data analysis applications. One of the goals
of pandas is to make working with missing data as painless as possible. For example,
all of the descriptive statistics on pandas objects exclude missing data by default.

The way that missing data is represented in pandas objects is somewhat imperfect,
but it is functional for a lot of users. For numeric data, pandas uses the floating-point
value NaN (Not a Number) to represent missing data. We call this a sentinel value that
can be easily detected:
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In [10]: string_data = pd.Series(['aardvark', 'artichoke', np.nan, 'avocado'])

In [11]: string_data

Out[11]:

0 aardvark
1 artichoke
2 NaN
3 avocado

dtype: object

In [12]: string_data.isnull()

Outf[12]:

0 False
1 False
2 True
3 False
dtype: bool

In pandas, we've adopted a convention used in the R programming language by refer-
ring to missing data as NA, which stands for not available. In statistics applications,
NA data may either be data that does not exist or that exists but was not observed
(through problems with data collection, for example). When cleaning up data for
analysis, it is often important to do analysis on the missing data itself to identify data
collection problems or potential biases in the data caused by missing data.

The built-in Python None value is also treated as NA in object arrays:
In [13]: string_data[0] = None

In [14]: string_data.isnull()

Out[14]:

0 True
1 False
2 True
3 False
dtype: bool

There is work ongoing in the pandas project to improve the internal details of how
missing data is handled, but the user API functions, like pandas.isnull, abstract
away many of the annoying details. See Table 7-1 for a list of some functions related
to missing data handling.

Table 7-1. NA handling methods

Argument  Description

dropna Filter axis labels based on whether values for each label have missing data, with varying thresholds for how
much missing data to tolerate.

fillna  Fillin missing data with some value or using an interpolation method such as ' ffill' or 'bfill'.
isnull  Return boolean values indicating which values are missing/NA.
notnull Negation of isnull
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Filtering Out Missing Data

There are a few ways to filter out missing data. While you always have the option to
do it by hand using pandas.isnull and boolean indexing, the dropna can be helpful.
On a Series, it returns the Series with only the non-null data and index values:

In [15]: from import nan as NA
In [16]: data = pd.Series([1, NA, 3.5, NA, 7])

In [17]: data.dropna()

Out[17]:
o 1.0
2 3.5
4 7.0

dtype: float64
This is equivalent to:

In [18]: data[data.notnull()]

Out[18]:
0 1.0
2 3.5
4 7.0

dtype: float64

With DataFrame objects, things are a bit more complex. You may want to drop rows
or columns that are all NA or only those containing any NAs. dropna by default drops
any row containing a missing value:

In [19]: data = pd.DataFrame([[1., 6.5, 3.], [1., NA, NA],
[NA, NA, NA], [NA, 6.5, 3.11)

In [20]: cleaned = data.dropna()

In [21]: data
Out[21]:

0 1 2
0 1.0 6.5 3.0
1 1.0 NaN NaN
2 NaN NaN NaN
3 NaN 6.5 3.0

In [22]: cleaned
out[22]:

0 1 2
0 1.0 6.5 3.0

Passing how="all"' will only drop rows that are all NA:

In [23]: data.dropnaChow='all")
Out[23]:
0 1 2

7.1 Handling Missing Data | 193



To drop columns in the same way, pass axis=1:

In [24]: data[4] = NA

In [25]: data
Out[25]:

w N RO

0 1
1.0 6.5
1.0 NaN
NaN NaN
NaN 6.5

2

4

3.0 NaN
NaN NaN
NaN NaN
3.0 NaN

In [26]: data.dropna(axis=1, how='all')
Out[26]:

0
1
2

3

0 1
1.0 6.5
1.0 NaN
NaN NaN
NaN 6.5

2
3.0
NaN
NaN
3.0

A related way to filter out DataFrame rows tends to concern time series data. Suppose
you want to keep only rows containing a certain number of observations. You can
indicate this with the thresh argument:

[27]: df
[28]: df
[29]: df

[30]: df

Out[30]:

AU h WNRER O

0
.204708
.555730
.092908
.246435
.274992
.886429
.669025

o oo Nl

In [31]: df
Out[31]:

4 0.2
5 0.886429
6 1.

0
74992

669025

In [32]: df

= pd.DataFrame(np.random.randn(7, 3))

.iloc[:4, 1] =

.iloc[:2, 2]

1
NaN
NaN
NaN
NaN

0.228913
-2.001637
-0.438570

.dropna()

1

0.228913
-2.001637
-0.438570

-1.

-0.
-0.

1.
-0.
-0.

NA

NA

2
NaN
NaN

.769023

296221

.352917

371843
539741

2
352917
371843
539741

.dropna(thresh=2)
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Out[32]:

0
0.092908
1.246435
0.274992 0.
0.886429 -2.
1.669025 -0.

A WN

1

NaN
NaN
228913
001637
438570

0.
-1.
1.
-0.
-0.

Filling In Missing Data

Rather than filtering out missing data (and potentially discarding other data along
with it), you may want to fill in the “holes” in any number of ways. For most pur-
poses, the fillna method is the workhorse function to use. Calling fillna with a

constant replaces missing values with that value:

In [33]: df.fillna(0)

Out[33]:

0
.204708
.555730
.092908
.246435
.274992
.886429 -2.
.669025 -0.

AU WNRERL O
P OO r OO0
[clcoNoNoNo]

1

.000000
.000000
.000000
.000000
.228913

001637
438570

0.
0.
0.
-1.
1.
-0.
-0.

2
769023
296221
352917
371843
539741

2
000000
000000
769023
296221
352917
371843
539741

Calling fillna with a dict, you can use a different fill value for each column:

In [34]: df.fillna({1: 0.5, 2: 0})

Out[34]:
0

0 -0.204708 0
1 -0.555730 ©
2 0.092908 0
3 1.246435 0
4 0.274992 0
5 0.886429 -2.
6 1.669025 -0.

1

.500000
.500000
.500000
.500000
.228913

001637
438570

o]

-0.
-0.

2

.000000
.000000
.769023
.296221
.352917

371843
539741

fillna returns a new object, but you can modify the existing object in-place:

In [35]: _ = df.fillna(0, inplace=True)
In [36]: df
Out[36]:

0 1 2
0 -0.204708 0.000000 0.000000
1 -0.555730 0.000000 0.000000
2 0.092908 0.000000 0.769023
3 1.246435 0.000000 -1.296221
4 0.274992 0.228913 1.352917
5 0.886429 -2.001637 -0.371843
6 1.669025 -0.438570 -0.539741
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The same interpolation methods available for reindexing can be used with fillna:
In [37]: df = pd.DataFrame(np.random.randn(6, 3))

In [38]: df.iloc[2:, 1] = NA

In [39]: df.iloc[4:, 2] = NA

In [40]: df
Out[40]:

0 1 2
0 0.476985 3.248944 -1.021228
1 -0.577087 0.124121 0.302614
2 0.523772 NaN 1.343810
3 -0.713544 NaN -2.370232
4 -1.860761 NaN NaN
5 -1.265934 NaN NaN

In [41]: df.fillna(method="ffill")

Out[41]:

0 1 2
0 0.476985 3.248944 -1.021228
1 -0.577087 0.124121 0.302614
2 0.523772 0.124121 1.343810
3 -0.713544 0.124121 -2.370232
4 -1.860761 0.124121 -2.370232
5 -1.265934 0.124121 -2.370232

In [42]: df.fillna(method="ffill', limit=2)
Out[42]:
0 1 2
0 0.476985 3.248944 -1.021228
1 -0.577087 0.124121 0.302614
2 0.523772 0.124121 1.343810
3 -0.713544 0.124121 -2.370232
4 -1.860761 NaN -2.370232
5 -1.265934 NaN -2.370232

With fillna you can do lots of other things with a little creativity. For example, you
might pass the mean or median value of a Series:

In [43]: data = pd.Series([1., NA, 3.5, NA, 7])

In [44]: data.fillna(data.mean())

Out[44]:

0 1.000000
1 3.833333
2 3.500000
3 3.833333
4 7.000000

dtype: float64

See Table 7-2 for a reference on fillna.
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Table 7-2. fillna function arguments

Argument Description

value Scalar value or dict-like object to use to fill missing values

method  Interpolation; by default ' FFL 11" if function called with no other arguments
axis Axis to fill on; default axis=0

inplace Modify the calling object without producing a copy

limit For forward and backward filling, maximum number of consecutive periods to fill

7.2 Data Transformation

So far in this chapter we've been concerned with rearranging data. Filtering, cleaning,
and other transformations are another class of important operations.

Removing Duplicates

Duplicate rows may be found in a DataFrame for any number of reasons. Here is an
example:

In [45]: data = pd.DataFrame({'k1l': ['one', "two'] * 3 + ['two'],
P 'k2': [1, 1, 2, 3, 3, 4, 41})

In [46]: data
Out[46]:

k1 k2

one
two
one
two
one
two
two

AU, WNREPRO
A A WWNRELRE

The DataFrame method duplicated returns a boolean Series indicating whether each
row is a duplicate (has been observed in a previous row) or not:

In [47]: data.duplicated()
Out[47]:

0 False
1 False
2 False
3 False
4 False
5 False
6 True
dtype: bool

Relatedly, drop_duplicates returns a DataFrame where the duplicated array is
False:
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In [48]: data.drop_duplicates()
Oout[48]:
ki k2

one
two
one
two
one
5 two

A WNERO
AP WWNR PR

Both of these methods by default consider all of the columns; alternatively, you can
specify any subset of them to detect duplicates. Suppose we had an additional column
of values and wanted to filter duplicates only based on the 'k1' column:

In [49]: data['vl'] = range(7)

In [50]: data.drop_duplicates(['k1'])
Out[50]:
ki k2 wvi1
0 one 1 0
1 two 1 1

duplicated and drop_duplicates by default keep the first observed value combina-
tion. Passing keep="1ast' will return the last one:

In [51]: data.drop_duplicates(['k1l', 'k2'], keep='last')
Out[51]:

ki k2 v
one
two
one
two
one
two

A b WN PO
AW WNR R
AR WNRFEPEOBR

Transforming Data Using a Function or Mapping

For many datasets, you may wish to perform some transformation based on the val-
ues in an array, Series, or column in a DataFrame. Consider the following hypotheti-
cal data collected about various kinds of meat:

In [52]: data = pd.DataFrame({'food': ['bacon', 'pulled pork', 'bacon',
el '"Pastrami', 'corned beef', 'Bacon',
et 'pastrami', 'honey ham', 'nova lox'],
P 'ounces': [4, 3, 12, 6, 7.5, 8, 3, 5, 6]})

In [53]: data

Out[53]:

food ounces
0 bacon 4.0
1 pulled pork 3.0
2 bacon 12.0
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Pastrami
corned beef
Bacon
pastrami
honey ham
nova lox

o ~NOYUT AW
A1 WO
[cl oo CNV, o

Suppose you wanted to add a column indicating the type of animal that each food
came from. Let’s write down a mapping of each distinct meat type to the kind of
animal:

meat_to_animal = {
'bacon': 'pig’,
'pulled pork': 'pig',
'pastrami': 'cow',
'corned beef': 'cow',
"honey ham': 'pig',
'nova lox': 'salmon'

}

The map method on a Series accepts a function or dict-like object containing a map-
ping, but here we have a small problem in that some of the meats are capitalized and
others are not. Thus, we need to convert each value to lowercase using the str. lower
Series method:

In [55]: lowercased = data['food'].str.lower()

In [56]: lowercased
Out[56]:
bacon
pulled pork
bacon
pastrami
corned beef
bacon
pastrami
honey ham
nova lox
Name: food, dtype: object

oO~NOTUL A WN PO

In [57]: data['animal'] = lowercased.map(meat_to_animal)

In [58]: data

Out[58]:

food ounces animal
0 bacon 4.0 pig
1 pulled pork 3.0 pig
2 bacon 12.0 pig
3 Pastrami 6.0 cow
4 corned beef 7.5 cow
5 Bacon 8.0 pig
6 pastrami 3.0 cow
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7 honey ham 5.0 pig
8 nova lox 6.0 salmon

We could also have passed a function that does all the work:

In [59]: data['food'].map(lambda x: meat_to_animal[x.lower()])
Out[59]:

0 pig

1 pig

2 pig

3 cow

4 cow

5 pig

6 cow

7 pig

8 salmon

Name: food, dtype: object

Using map is a convenient way to perform element-wise transformations and other
data cleaning-related operations.

Replacing Values

Filling in missing data with the fillna method is a special case of more general value
replacement. As you've already seen, map can be used to modify a subset of values in
an object but replace provides a simpler and more flexible way to do so. Let’s con-
sider this Series:

In [60]: data = pd.Series([1., -999., 2., -999., -1000., 3.])

In [61]: data
Out[61]:
0 1.
1 -999.
2 2
3 -999.
4
5
d

[cl ol oNoNo]

-1000.
3.0
type: float64
The -999 values might be sentinel values for missing data. To replace these with NA
values that pandas understands, we can use replace, producing a new Series (unless
you pass inplace=True):

In [62]: data.replace(-999, np.nan)

Out[62]:

0 1.0
1 NaN
2 2.0
3 NaN
4 -1000.0
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5 3.0
dtype: float64

If you want to replace multiple values at once, you instead pass a list and then the
substitute value:

In [63]: data.replace([-999, -1000], np.nan)
Out[63]:
1.0
1 NaN
2 2.0
3 NaN
4 NaN
5 3.0
dtype: float64

To use a different replacement for each value, pass a list of substitutes:

In [64]: data.replace([-999, -1000], [np.nan, 0])
Out[64]:
1.0
1 NaN
2 2.0
3 NaN
4 0.0
5 3.0
dtype: float64

The argument passed can also be a dict:

In [65]: data.replace({-999: np.nan, -1000: 0})
Out[65]:
1.0
1 NaN
2 2.0
3 NaN
4 0.0
5 3.0
dtype: float64

The data.replace method is distinct from data.str.replace,
which performs string substitution element-wise. We look at these
string methods on Series later in the chapter.

Renaming Axis Indexes

Like values in a Series, axis labels can be similarly transformed by a function or map-
ping of some form to produce new, differently labeled objects. You can also modify
the axes in-place without creating a new data structure. Here’s a simple example:
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In [66]: data = pd.DataFrame(np.arange(12).reshape((3, 4)),
: index=[ 'Ohio', 'Colorado', 'New York'],
columns=['one', 'two', 'three', 'four'])

Like a Series, the axis indexes have a map method:

In [67]: transform = lambda x: x[:4].upper()

In [68]: data.index.map(transform)
Out[68]: Index(['OHIO', 'COLO', 'NEW '], dtype='object')

You can assign to index, modifying the DataFrame in-place:

In [69]: data.index = data.index.map(transform)

In [70]: data

Out[70]:

one two three four
OHIO 0 1 2 3
CcoLo 4 5 6 7
NEW 8 9 10 11

If you want to create a transformed version of a dataset without modifying the origi-
nal, a useful method is rename:

In [71]: data.rename(index=str.title, columns=str.upper)

Out[71]:

ONE TWO THREE FOUR
Ohio 0 1 2 3
Colo 4 5 6 7
New 8 9 10 11

Notably, rename can be used in conjunction with a dict-like object providing new val-
ues for a subset of the axis labels:

In [72]: data.rename(index={'OHIO': "INDIANA'},
et columns={"three': 'peekaboo'})

out[72]:

one two peekaboo four
INDIANA 0 1 2 3
coLo 4 5 6 7
NEW 8 9 10 11

rename saves you from the chore of copying the DataFrame manually and assigning
to its index and columns attributes. Should you wish to modify a dataset in-place,
pass inplace=True:

In [73]: data.rename(index={'OHIO': 'INDIANA'}, inplace=True)

In [74]: data
Out[74]:

one two three four
INDIANA 0 1 2 3
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CcoLo 4 5 6 7
NEW 8 9 10 11

Discretization and Binning

Continuous data is often discretized or otherwise separated into “bins” for analysis.
Suppose you have data about a group of people in a study, and you want to group
them into discrete age buckets:

In [75]: ages = [20, 22, 25, 27, 21, 23, 37, 31, 61, 45, 41, 32]

Let’s divide these into bins of 18 to 25, 26 to 35, 36 to 60, and finally 61 and older. To
do so, you have to use cut, a function in pandas:

In [76]: bins = [18, 25, 35, 60, 100]
In [77]: cats = pd.cut(ages, bins)

In [78]: cats

Out[78]:

[(18, 25], (18, 251, (18, 251, (25, 351, (18, 251, ..., (25, 35], (60, 100], (35,
60], (35, 60], (25, 35]]

Length: 12

Categories (4, interval[int64]): [(18, 25] < (25, 35] < (35, 60] < (60, 100]]

The object pandas returns is a special Categorical object. The output you see
describes the bins computed by pandas.cut. You can treat it like an array of strings

indicating the bin name; internally it contains a categories array specifying the dis-
tinct category names along with a labeling for the ages data in the codes attribute:

In [79]: cats.codes
Out[79]: array([06, 0, O, 1, 0, 0, 2, 1, 3, 2, 2, 1], dtype=int8)

In [80]: cats.categories

Out[80]:

Intervallndex([(18, 25], (25, 35], (35, 60], (60, 100]]
closed="right',
dtype='interval[int64]")

In [81]: pd.value_counts(cats)
Out[81]:

(18, 25] 5

(35, 60] 3

(25, 35] 3

(60, 100] 1

dtype: int64

Note that pd.value_counts(cats) are the bin counts for the result of pandas.cut.

Consistent with mathematical notation for intervals, a parenthesis means that the side
is open, while the square bracket means it is closed (inclusive). You can change which
side is closed by passing right=False:
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In [82]: pd.cut(ages, [18, 26, 36, 61, 100], right=False)

out[82]:

[[18, 26), [18, 26), [18, 26), [26, 36), [18, 26), ..., [26, 36), [61, 100), [36,
61), [36, 61), [26, 36)]

Length: 12

Categories (4, interval[int64]): [[18, 26) < [26, 36) < [36, 61) < [61, 100)]

You can also pass your own bin names by passing a list or array to the labels option:

In [83]: group_names = ['Youth', 'YoungAdult', 'MiddleAged', 'Senior']

In [84]: pd.cut(ages, bins, labels=group_names)

out[84]:

[Youth, Youth, Youth, YoungAdult, Youth, ..., YoungAdult, Senior, MiddleAged, Mid
dleAged, YoungAdult]

Length: 12

Categories (4, object): [Youth < YoungAdult < MiddleAged < Senior]

If you pass an integer number of bins to cut instead of explicit bin edges, it will com-
pute equal-length bins based on the minimum and maximum values in the data.
Consider the case of some uniformly distributed data chopped into fourths:

In [85]: data = np.random.rand(20)

In [86]: pd.cut(data, 4, precision=2)

out[86]:

[(0.34, 0.55], (0.34, 0.55], (0.76, 0.97], (0.76, 0.97], (0.34, 0.55], ..., (0.34
, 0.55], (0.34, 0.55], (0.55, 0.76], (0.34, 0.55], (0.12, 0.34]]

Length: 20

Categories (4, interval[float64]): [(0.12, 0.34] < (0.34, 0.55] < (0.55, 0.76] <
(0.76, 0.97]]

The precision=2 option limits the decimal precision to two digits.

A closely related function, qcut, bins the data based on sample quantiles. Depending
on the distribution of the data, using cut will not usually result in each bin having the
same number of data points. Since qcut uses sample quantiles instead, by definition
you will obtain roughly equal-size bins:

In [87]: data = np.random.randn(1000) # Normally distributed
In [88]: cats = pd.qcut(data, 4) # Cut into quartiles

In [89]: cats

Out[89]:

[(-0.0265, 0.62], (0.62, 3.928], (-0.68, -0.0265], (0.62, 3.928], (-0.0265, 0.62]
s ..., (-0.68, -0.0265], (-0.68, -0.0265], (-2.95, -0.68], (0.62, 3.928], (-0.68,
-0.02651]

Length: 1000

Categories (4, interval[float64]): [(-2.95, -0.68] < (-0.68, -0.0265] < (-0.0265,
0.62] <

(0.62, 3.928]]
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In [90]: pd.value_counts(cats)
Out[90]:

(0.62, 3.928]
(-0.0265, 0.62]
(-0.68, -0.0265]
(-2.95, -0.68]
dtype: int64

250
250
250
250

Similar to cut you can pass your own quantiles (numbers between 0 and 1, inclusive):

In [91]: pd.qcut(data, [0, 0.1, 0.5, 0.9, 1.])

Out[91]:
[(-0.0265, 1.286], (-0.0265, 1.286], (-1.187, -0.0265], (-0.0265, 1.286], (-0.026

5, 1.286], ...

1.286], (-1.187, -0.0265]]
Length: 1000
Categories (4, interval[float64]): [(-2.95, -1.187] < (-1.187, -0.0265] < (-0.026
5, 1.286] <

(1.286, 3.928]]

, (-1.187, -0.0265], (-1.187, -0.0265], (-2.95, -1.187], (-0.0265,

We'll return to cut and qgcut later in the chapter during our discussion of aggregation
and group operations, as these discretization functions are especially useful for quan-

tile and group analysis.

Detecting and Filtering OQutliers

Filtering or transforming outliers is largely a matter of applying array operations.
Consider a DataFrame with some normally distributed data:

In [92]: data = pd.DataFrame(np.random.randn(1000,

In [93]: data.describe()
Out[93]:

0

count 1000.000000

mean

std
min
25%
50%
75%
max

0.049091
0.996947
-3.645860
-0.599807
0.047101
0.756646
2.653656

1000.
0.

1.
-3.
-0.
-0.
0.

3.

1
000000
026112
007458
184377
612162
013609
695298
525865

1000.
-0.
0.
-3.
-0.
-0.
0.

2

2
000000
002544
995232
745356
687373
022158
699046

. 735527

1000.
-0.
0.
-3.
-0.
-0.
0.

3.

4))

3
000000
051827
998311
428254
747478
088274
623331
366626

Suppose you wanted to find values in one of the columns exceeding 3 in absolute

value:

In [94]: col = data[2]

In [95]: col[np.abs(col) > 3]

Out[95]:
41 -3.399312
136 -3.745356

Name: 2, dtype: float64
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To select all rows having a value exceeding 3 or -3, you can use the any method on a
boolean DataFrame:

In [96]: data[(np.abs(data) > 3).any(1)]

Out[96]:

0 1 2 3
41 0.457246 -0.025907 -3.399312 -0.974657
60 1.951312 3.260383 0.963301 1.201206
136 0.508391 -0.196713 -3.745356 -1.520113
235 -0.242459 -3.056990 1.918403 -0.578828
258 0.682841 0.326045 0.425384 -3.428254
322 1.179227 -3.184377 1.369891 -1.074833

544 -3.548824 1.553205 -2.186301 1.277104
635 -0.578093 0.193299 1.397822 3.366626
782 -0.207434 3.525865 0.283070 0.544635
803 -3.645860 0.255475 -0.549574 -1.907459

Values can be set based on these criteria. Here is code to cap values outside the inter-
val -3 to 3:

In [97]: data[np.abs(data) > 3] = np.sign(data) * 3

In [98]: data.describe()

Out[98]:

0 1 2 3
count 1000.000000 1000.000000 1000.000000 1000.000000
mean 0.050286 0.025567 -0.001399 -0.051765
std 0.992920 1.004214 0.991414 0.995761
min -3.000000 -3.000000 -3.000000 -3.000000
25% -0.599807 -0.612162 -0.687373 -0.747478
50% 0.047101 -0.013609 -0.022158 -0.088274
75% 0.756646 0.695298 0.699046 0.623331
max 2.653656 3.000000 2.735527 3.000000

The statement np.sign(data) produces 1 and -1 values based on whether the values
in data are positive or negative:

In [99]: np.sign(data).head()

Out[99]:

0 1 2 3
0 -1.0 .0 -1.0 1.0
1 .0 -1.0 1.0 -1.0
2 .0 .0 1.0 -1.0
3-1.0 -1.0 1.0 -1.0
4 -1.0 .0 -1.0 -1.0

Permutation and Random Sampling

Permuting (randomly reordering) a Series or the rows in a DataFrame is easy to do
using the numpy.random.permutation function. Calling permutation with the length
of the axis you want to permute produces an array of integers indicating the new
ordering:
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In [100]: df = pd.DataFrame(np.arange(5 * 4).reshape((5, 4)))
In [101]: sampler

In [102]: sampler
Out[162]: array([3, 1, 4, 2, 0])

np.random.permutation(5)

That array can then be used in iloc-based indexing or the equivalent take function:

In [103]: df
Out[103]:

0 1 2
0 0 1 2
1 4 5 6
2 8 9 10
3 12 13 14
4 16 17 18

In [104]: df.take(sampler)

Out[104]:

0 1 2
3 12 13 14
1 4 5 6
4 16 17 18
2 8 9 10
0 0 1 2

~N W w

To select a random subset without replacement, you can use the sample method on

Series and DataFrame:

In [105]: df.sample(n=3)

Out[105]:

e 1 2
3 12 13 14
4 16 17 18
2 8 9 10

To generate a sample with replacement (to allow repeat choices), pass replace=True

to sample:

In [106]: cholces = pd.Series([5, 7, -1, 6, 4])
In [107]: draws = choices.sample(n=10, replace=True)

In [108]: draws

Out[108]:
4 4
17
4 4
2 -1
0 5
36
17
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4
5

a b o p

type: int64

Computing Indicator/Dummy Variables

Another type of transformation for statistical modeling or machine learning applica-
tions is converting a categorical variable into a “dummy” or “indicator” matrix. If a
column in a DataFrame has k distinct values, you would derive a matrix or Data-
Frame with k columns containing all 1s and 0s. pandas has a get_dummies function
for doing this, though devising one yourself is not difficult. Let’s return to an earlier
example DataFrame:
In [109]: df = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'b'],
..... : 'datal': range(6)})

In [110]: pd.get_dummies(df[ 'key'])

Out[110]:

a b c
0 0 1 0
1 06 1 0
2 1 0 0
3 0 0 1
4 1 0 0
5 0 1 0

In some cases, you may want to add a prefix to the columns in the indicator Data-
Frame, which can then be merged with the other data. get_dummies has a prefix argu-
ment for doing this:

In [111]: dummies = pd.get_dummies(df['key'], prefix='key')
In [112]: df_with_dummy = df[['datal']].join(dummies)

In [113]: df_with_dummy

Out[113]:

datal key_a key b key c
0 0 0 1 0
1 1 0 1 0
2 2 1 0 0
3 3 0 0 1
4 4 1 0 0
5 5 0 1 0

If a row in a DataFrame belongs to multiple categories, things are a bit more compli-
cated. Let’s look at the MovieLens 1M dataset, which is investigated in more detail in
Chapter 14:
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In [114]: mnames = ['movie_id', 'title', 'genres']

In [115]: movies = pd.read_table('datasets/movielens/movies.dat', sep="::",
et header=None, names=mnames)

In [116]: movies[:10]

Out[116]:

movie_1id title genres
0 1 Toy Story (1995)  Animation|Children's|Comedy
1 2 Jumanji (1995) Adventure|Children's|Fantasy
2 3 Grumpier 0ld Men (1995) Comedy |Romance
3 4 Waiting to Exhale (1995) Comedy |Drama
4 5 Father of the Bride Part II (1995) Comedy
5 6 Heat (1995) Action|Crime|Thriller
6 7 Sabrina (1995) Comedy |Romance
7 8 Tom and Huck (1995) Adventure|Children's
8 9 Sudden Death (1995) Action
9 10 GoldenEye (1995) Action|Adventure|Thriller

Adding indicator variables for each genre requires a little bit of wrangling. First, we
extract the list of unique genres in the dataset:

In [117]: all_genres = []

In [118]: for x in movies.genres:
..... : all_genres.extend(x.split('|'))

In [119]: genres = pd.unique(all_genres)
Now we have:

In [120]: genres
Out[120]:
array(['Animation', "Children's", 'Comedy', 'Adventure', 'Fantasy',
'Romance', 'Drama', 'Action', 'Crime', 'Thriller', 'Horror',
'Sci-Fi', 'Documentary', 'War', 'Musical', 'Mystery', 'Film-Noir',
'Western'], dtype=object)
One way to construct the indicator DataFrame is to start with a DataFrame of all
Zeros:

In [121]: zero_matrix = np.zeros((len(movies), len(genres)))

In [122]: dummies = pd.DataFrame(zero_matrix, columns=genres)

Now, iterate through each movie and set entries in each row of dummies to 1. To do
this, we use the dummies.columns to compute the column indices for each genre:
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In [123]: gen = movies.genres[0]

In [124]: gen.split('|")
Out[124]: ['Animation', "Children's", 'Comedy']

In [125]: dummies.columns.get_indexer(gen.split('|"'))
Out[125]: array([0, 1, 2])

Then, we can use .1iloc to set values based on these indices:

In [126]: for i1, gen in enumerate(movies.genres):
ceeat indices = dummies.columns.get_indexer(gen.split('|'))
P dummies.iloc[1, indices] = 1

Then, as before, you can combine this with movies:

In [127]: movies_windic = movies.join(dummies.add_prefix('Genre_"'))

In [128]: movies_windic.iloc[0]
Out[128]:

movie_id 1
title Toy Story (1995)
genres Animation|Children's|Comedy
Genre_Animation 1
Genre_Children's
Genre_Comedy
Genre_Adventure
Genre_Fantasy
Genre_Romance
Genre_Drama

[l ol oI RN

Genre_Crime
Genre_Thriller
Genre_Horror
Genre_Sci-Fi
Genre_Documentary
Genre_War
Genre_Musical
Genre_Mystery
Genre_Film-Noir
Genre_Western
Name: 0, Length: 21, dtype: object

[l ol olNolNolNolNoNoNoNol

For much larger data, this method of constructing indicator vari-
ables with multiple membership is not especially speedy. It would
be better to write a lower-level function that writes directly to a
NumPy array, and then wrap the result in a DataFrame.

A useful recipe for statistical applications is to combine get_dummies with a discreti-
zation function like cut:
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In [129]: np.random.seed(12345)

In [130]: values = np.random.rand(10)

In [131]: values

Out[131]:

array([ 0.9296, 0.3164, 0.1839, 0.2046, 0.5677, 0.5955, 0.9645,
0.6532, 0.7489, 0.6536])

In [132]: bins = [0, 0.2, 0.4, 0.6, 0.8, 1]

In [133]: pd.get_dummies(pd.cut(values, bins))

Out[133]:
(0.0, 0.2] (0.2, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1.0

]
1
0
0
0
0
0
1
0
0
0

Voo ~NOTULLD WNREO
[clNcNoNoNoNocNocoN oo
[clolMoloNoNoN ol o]
[clcNoNoNTE o NoNolNo]
i ol ol o Mool oMo

We set the random seed with numpy. random.seed to make the example deterministic.
We will look again at pandas.get_dummies later in the book.

7.3 String Manipulation

Python has long been a popular raw data manipulation language in part due to its
ease of use for string and text processing. Most text operations are made simple with
the string object’s built-in methods. For more complex pattern matching and text
manipulations, regular expressions may be needed. pandas adds to the mix by ena-
bling you to apply string and regular expressions concisely on whole arrays of data,
additionally handling the annoyance of missing data.

String Object Methods

In many string munging and scripting applications, built-in string methods are suffi-
cient. As an example, a comma-separated string can be broken into pieces with
split:

In [134]: val = 'a,b, guido'

In [135]: val.split(',"')
Out[135]: ['a', 'b', ' gquido']

split is often combined with strip to trim whitespace (including line breaks):
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In [136]: pleces = [x.strip() for x in val.split(',')]

In [137]: pileces

Out[137]: ['a"', 'b", 'guido']
These substrings could be concatenated together with a two-colon delimiter using
addition:

In [138]: first, second, third = pieces

In [139]: first + "::' + second + '::' + third

Out[139]: 'a::b::guido’
But this isn’t a practical generic method. A faster and more Pythonic way is to pass a
list or tuple to the join method on the string '::":

In [140]: '::'.join(pieces)

Out[140]: 'a::b::guido’
Other methods are concerned with locating substrings. Using Python’s in keyword is
the best way to detect a substring, though index and find can also be used:

In [141]: 'guido' im val
Out[141]: True

In [142]: val.index(',"')
Out[142]: 1

In [143]: val.find(':")

Out[143]: -1
Note the difference between find and index is that index raises an exception if the
string isn’t found (versus returning -1):

In [144]: val.index(':")

ValueError Traceback (most recent call last)
<ipython-input-144-280f8b2856ce> in <module>()

----> 1 val.index(':")

ValueError: substring not found

Relatedly, count returns the number of occurrences of a particular substring:

In [145]: val.count(',"')
Out[145]: 2

replace will substitute occurrences of one pattern for another. It is commonly used
to delete patterns, too, by passing an empty string:

In [146]: val.replace(',', '::")
Out[146]: 'a::b:: guido'

In [147]: val.replace(',', '")
Out[147]: 'ab guido'
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See Table 7-3 for a listing of some of Python’s string methods.

Regular expressions can also be used with many of these operations, as you’'ll see.

Table 7-3. Python built-in string methods

count Return the number of non-overlapping occurrences of substring in the string.

endswith Returns True if string ends with suffix.

startswith  Returns True if string starts with prefix.

join Use string as delimiter for concatenating a sequence of other strings.

index Return position of first character in substring if found in the string; raises ValueError if not found.
find Return position of first character of first occurrence of substring in the string; like index, but returns —1

if not found.

rfind Return position of first character of /ast occurrence of substring in the string; returns —1 if not found.
replace Replace occurrences of string with another string.

strip, Trim whitespace, including newlines; equivalent to x.strip() (and rstrip, lstrip, respectively)
rstrip, for each element.

lstrip

split Break string into list of substrings using passed delimiter.

lower Convert alphabet characters to lowercase.

upper Convert alphabet characters to uppercase.

casefold Convert characters to lowercase, and convert any region-specific variable character combinations to a

common comparable form.

ljust, Left justify or right justify, respectively; pad opposite side of string with spaces (or some other fill
rjust character) to return a string with a minimum width.
Regular Expressions

Regular expressions provide a flexible way to search or match (often more complex)
string patterns in text. A single expression, commonly called a regex, is a string
formed according to the regular expression language. Python’s built-in re module is
responsible for applying regular expressions to strings; I'll give a number of examples
of its use here.

The art of writing regular expressions could be a chapter of its own
and thus is outside the book’s scope. There are many excellent tuto-
rials and references available on the internet and in other books.

The re module functions fall into three categories: pattern matching, substitution,
and splitting. Naturally these are all related; a regex describes a pattern to locate in the
text, which can then be used for many purposes. Lets look at a simple example:
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suppose we wanted to split a string with a variable number of whitespace characters
(tabs, spaces, and newlines). The regex describing one or more whitespace characters
is \s+:

In [148]: import re
In [149]: text = "foo bar\t baz \tqux"

In [150]: re.split('\s+', text)
Out[150]: ['foo', 'bar', 'baz', 'qux']

When you call re.split('\s+', text), the regular expression is first compiled, and
then its split method is called on the passed text. You can compile the regex yourself
with re.compile, forming a reusable regex object:

In [151]: regex = re.compile('\s+')

In [152]: regex.split(text)

Out[152]: ['foo', 'bar', 'baz', 'qux']
If, instead, you wanted to get a list of all patterns matching the regex, you can use the
findall method:

In [153]: regex.findall(text)
Out[153]: [' o\t ', A\t

To avoid unwanted escaping with \ in a regular expression, use raw
string literals like r'C:\x' instead of the equivalent 'C:\\x'.

Creating a regex object with re.compile is highly recommended if you intend to
apply the same expression to many strings; doing so will save CPU cycles.

match and search are closely related to findall. While findall returns all matches
in a string, search returns only the first match. More rigidly, match only matches at
the beginning of the string. As a less trivial example, let’s consider a block of text and
a regular expression capable of identifying most email addresses:

text = """Dave dave@google.com
Steve steve@gmail.com

Rob rob@gmail.com

Ryan ryan@yahoo.com

pattern = r'[A-Z0-9. %+-]+@[A-Z0-9.-1+\.[A-Z]1{2,4}"

# re.IGNORECASE makes the regex case-insensitive
regex = re.compile(pattern, flags=re.IGNORECASE)

Using findall on the text produces a list of the email addresses:
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In [155]: regex.findall(text)
Out[155]:
[ 'dave@google.com',
'steve@gmail.com',
'rob@gmail.com',
'ryan@yahoo.com']
search returns a special match object for the first email address in the text. For the
preceding regex, the match object can only tell us the start and end position of the
pattern in the string:

In [156]: m = regex.search(text)

In [157]: m
Out[157]: <_sre.SRE_Match object; span=(5, 20), match='dave@google.com'>

In [158]: text[m.start():m.end()]
Out[158]: 'dave@google.com'

regex.match returns None, as it only will match if the pattern occurs at the start of the
string:

In [159]: print(regex.match(text))
None

Relatedly, sub will return a new string with occurrences of the pattern replaced by the
a new string:

In [160]: print(regex.sub('REDACTED', text))
Dave REDACTED

Steve REDACTED

Rob REDACTED

Ryan REDACTED

Suppose you wanted to find email addresses and simultaneously segment each
address into its three components: username, domain name, and domain suffix. To
do this, put parentheses around the parts of the pattern to segment:

In [161]: pattern = r'([A-Z0-9. %+-]+)Q@([A-Z0-9.-]1+)\.([A-Z]{2,4})"'
In [162]: regex = re.compile(pattern, flags=re.IGNORECASE)

A match object produced by this modified regex returns a tuple of the pattern com-
ponents with its groups method:

In [163]: m = regex.match('wesm@bright.net')

In [164]: m.groups()
Out[164]: ('wesm', 'bright', 'net")

findall returns a list of tuples when the pattern has groups:

In [165]: regex.findall(text)
Out[165]:
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[('dave', 'google', 'com'),

('steve', 'gmail', 'com'),

('rob', 'gmail', 'com'),

('ryan', 'yahoo', 'com')]
sub also has access to groups in each match using special symbols like \1 and \2. The
symbol \1 corresponds to the first matched group, \2 corresponds to the second, and
so forth:

In [166]: print(regex.sub(r'Username: \1, Domain: \2, Suffix: \3', text))

Dave Username: dave, Domain: google, Suffix: com

Steve Username: steve, Domain: gmail, Suffix: com

Rob Username: rob, Domain: gmail, Suffix: com

Ryan Username: ryan, Domain: yahoo, Suffix: com
There is much more to regular expressions in Python, most of which is outside the
book’s scope. Table 7-4 provides a brief summary.

Table 7-4. Regular expression methods

Argument Description

findall Return all non-overlapping matching patterns in a string as a list
finditer Like findall, but returns an iterator

match Match pattern at start of string and optionally segment pattern components into groups; if the pattern
matches, returns a match object, and otherwise None

search Scan string for match to pattern; returning a match object if so; unlike match, the match can be anywhere in
the string as opposed to only at the beginning

split Break string into pieces at each occurrence of pattern

sub, subn Replace all (sub) or first n occurrences (subn) of pattern in string with replacement expression; use symbols
\1, \2, ... toreferto match group elements in the replacement string

Vectorized String Functions in pandas

Cleaning up a messy dataset for analysis often requires a lot of string munging and
regularization. To complicate matters, a column containing strings will sometimes
have missing data:

In [167]: data = {'Dave': 'dave@google.com', 'Steve': 'steve@gmail.com',
..... : 'Rob': 'rob@gmail.com', 'Wes': np.nan}

In [168]: data = pd.Series(data)

In [169]: data

Out[169]:

Dave dave

Rob rob

Steve steve

Wes NaN

dtype: object
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In [170]: data.isnull()

Out[170]:

Dave False
Rob False
Steve False
Wes True
dtype: bool

You can apply string and regular expression methods can be applied (passing a
lambda or other function) to each value using data.map, but it will fail on the NA
(null) values. To cope with this, Series has array-oriented methods for string opera-
tions that skip NA values. These are accessed through Series’s str attribute; for exam-
ple, we could check whether each email address has 'gmail’ in it with str.contains:

In [171]: data.str.contains('gmail')

Out[171]:

Dave False
Rob True
Steve True
Wes NaN

dtype: object
Regular expressions can be used, too, along with any re options like IGNORECASE:

In [172]: pattern
Out[172]: '([A-Z0-9. %+-1+)Q([A-Z0-9.-1+)\\.([A-Z]1{2,4})"'

In [173]: data.str.findall(pattern, flags=re.IGNORECASE)

Out[173]:

Dave [(dave, google, com)]
Rob [(rob, gmail, com)]
Steve [(steve, gmail, com)]
Wes NaN

dtype: object

There are a couple of ways to do vectorized element retrieval. Either use str.get or
index into the str attribute:

In [174]: matches = data.str.match(pattern, flags=re.IGNORECASE)

In [175]: matches

Out[175]:

Dave True
Rob True
Steve True
Wes NaN

dtype: object

To access elements in the embedded lists, we can pass an index to either of these
functions:

In [176]: matches.str.get(1)
Out[176]:

7.3 String Manipulation | 217



Dave NaN

Rob NaN
Steve  NaN
Wes NaN

dtype: float64

In [177]: matches.str[0]

out[177]:

Dave NaN
Rob NaN
Steve  NaN
Wes NaN

dtype: float64
You can similarly slice strings using this syntax:

In [178]: data.str[:5]

Out[178]:

Dave dave@
Rob rob
Steve steve
Wes NaN

dtype: object

See Table 7-5 for more pandas string methods.

Table 7-5. Partial listing of vectorized string methods

cat Concatenate strings element-wise with optional delimiter

contains Return boolean array if each string contains pattern/regex

count Count occurrences of pattern

extract Use a regular expression with groups to extract one or more strings from a Series of strings; the result
will be a DataFrame with one column per group

endswith Equivalent to x.endswith(pattern) for each element

startswith Equivalent to x. startswith(pattern) for each element

findall Compute list of all occurrences of pattern/regex for each string

get Index into each element (retrieve i-th element)

isalnum Equivalent to built-in str.alnum

isalpha Equivalent to built-in str.isalpha

isdecimal Equivalent to built-in str.isdecimal

isdigit Equivalent to built-in str.isdigit

islower Equivalent to built-in str.islower

isnumeric Equivalent to built-in str.isnumeric

isupper Equivalent to built-in str.isupper

join Join strings in each element of the Series with passed separator

len Compute length of each string

lower, upper Convert cases; equivalent to x . Lower () or x.upper () for each element
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match Use re.match with the passed regular expression on each element, returning matched groups as list
pad Add whitespace to left, right, or both sides of strings

center Equivalent to pad(side="both")

repeat Duplicate values (e.g., s.str.repeat(3) is equivalent to x * 3 for each string)

replace Replace occurrences of pattern/regex with some other string

slice Slice each string in the Series

split Split strings on delimiter or regular expression

strip Trim whitespace from both sides, including newlines

rstrip Trim whitespace on right side

lstrip Trim whitespace on left side

7.4 Conclusion

Effective data preparation can significantly improve productive by enabling you to
spend more time analyzing data and less time getting it ready for analysis. We have
explored a number of tools in this chapter, but the coverage here is by no means com-
prehensive. In the next chapter, we will explore pandas’s joining and grouping func-
tionality.
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CHAPTER 8

Data Wrangling: Join, Combine,
and Reshape

In many applications, data may be spread across a number of files or databases or be
arranged in a form that is not easy to analyze. This chapter focuses on tools to help
combine, join, and rearrange data.

First, I introduce the concept of hierarchical indexing in pandas, which is used exten-
sively in some of these operations. I then dig into the particular data manipulations.
You can see various applied usages of these tools in Chapter 14.

8.1 Hierarchical Indexing

Hierarchical indexing is an important feature of pandas that enables you to have mul-
tiple (two or more) index levels on an axis. Somewhat abstractly, it provides a way for
you to work with higher dimensional data in a lower dimensional form. Let’s start
with a simple example; create a Series with a list of lists (or arrays) as the index:
In [9]: data = pd.Series(np.random.randn(9),
. :Lndex:[[lav’ |a|’ |av, ‘bl, 'b‘_, ‘C': 'C‘, ‘Cl', 'd‘],
[15 2’ 3) 1! 3) 1) 2’ 2, 3]])

In [10]: data

Out[10]:

a 1 -0.204708
2 0.478943
3 -0.519439

b 1 -0.555730
3 1.965781

c 1 1.393406
2 0.092908

d 2 0.281746

221



3 0.769023
dtype: float64
What you're seeing is a prettified view of a Series with a MultiIndex as its index. The
“gaps” in the index display mean “use the label directly above”:

In [11]: data.index
Out[11]:
MultiIndex(levels=[['a', 'b', 'c', 'd'], [1, 2, 311,
labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 2, 0, 2, 0, 1, 1, 2]])
With a hierarchically indexed object, so-called partial indexing is possible, enabling
you to concisely select subsets of the data:

In [12]: data['b']

Out[12]:
1 -0.555730
3 1.965781

dtype: float64

In [13]: data['b':'c']

Out[13]:

b 1 -0.555730
3 1.965781

c 1 1.393406
2 0.092908

dtype: float64

In [14]: data.loc[['b', 'd']]

Out[14]:

b 1 -0.555730
3 1.965781

d 2 0.281746
3 0.769023

dtype: float64
Selection is even possible from an “inner” level:

In [15]: data.loc[:, 2]
Out[15]:

a 0.478943

C 0.092908

d 0.281746

dtype: float64

Hierarchical indexing plays an important role in reshaping data and group-based
operations like forming a pivot table. For example, you could rearrange the data into
a DataFrame using its unstack method:

In [16]: data.unstack()

Out[16]:

1 2 3
a -0.204708 0.478943 -0.519439
b -0.555730 NaN 1.965781
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c 1.393406 0.092908

d NaN 0.281746 0.769023
The inverse operation of unstack is stack:

In [17]: data.unstack().stack()

Out[17]:

a 1 -0.20470
2 0.47894
3 -0.51943

b 1 -0.55573
3 1.96578

c 1 1.39340
2 0.09290

d 2 0.28174
3 0.76902

dtype: float64

8
3
9
0
1
6
8
6
3

stack and unstack will be explored in more detail later in this chapter.

With a DataFrame, either axis can have a hierarchical index:

In [18]: frame

In [19]: frame

= pd.DataFrame(np.arange(12).reshape((4, 3)),

Out[19]:
Ohio Colorado
Green Red Green
al [0] 1 2
2 3 4 5
b1 6 7 8
2 9 10 11

index=[['a"',

‘b'J 'b‘]’ [1) 2’ 1’ 2]]1
columns=[['Ohio"', 'Ohio', 'Colorado'],
['Green', 'Red', 'Green']l])

The hierarchical levels can have names (as strings or any Python objects). If so, these

will show up in the console output:

In [20]: frame.index.names = ['keyl', 'key2']

In [21]: frame.columns.names = ['state', 'color']

In [22]: frame

out[22]:

state Ohio

color Green

keyl key2

a 1 0
2 3

b 1 6
2 9

Red

10

Colorado
Green

oo v N

11
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Be careful to distinguish the index names 'state' and 'color'
from the row labels.

\

With partial column indexing you can similarly select groups of columns:

In [23]: frame['Ohio']

Out[23]:

color Green Red

keyl key2

a 1 0 1
2 3

b 1 6 7
2 9 10

A MultiIndex can be created by itself and then reused; the columns in the preceding
DataFrame with level names could be created like this:

MultiIndex.from_arrays([['Ohio"', 'Ohio', 'Colorado'], ['Green', 'Red', 'Green']],
names=['state', 'color'])

Reordering and Sorting Levels

At times you will need to rearrange the order of the levels on an axis or sort the data
by the values in one specific level. The swaplevel takes two level numbers or names
and returns a new object with the levels interchanged (but the data is otherwise
unaltered):

In [24]: frame.swaplevel('keyl', 'key2')

Out[24]:

state Ohio Colorado
color Green Red Green
key2 key1l

1 a 0 1 2
2 a 3 4 5
1 b 6 7 8
2 b 9 10 11

sort_index, on the other hand, sorts the data using only the values in a single level.
When swapping levels, it’s not uncommon to also use sort_index so that the result is
lexicographically sorted by the indicated level:

In [25]: frame.sort_index(level=1)

Out[25]:

state Ohio Colorado
color Green Red Green
keyl key2

a 1 0

b 1 6

a 2 3 4
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b 2

9 10 11

In [26]: frame.swaplevel(0, 1).sort_index(level=0)

out[26]:

state Ohio Colorado

color Green Red Green

key2 key1l

1 a 0 1 2
b 6 7 8

2 a 3 4 5
b 9 10 11

Data selection performance is much better on hierarchically
indexed objects if the index is lexicographically sorted starting with
the

sort_index(level=0) or sort_index().

outermost level—that is, the result of calling

Summary Statistics by Level

Many descriptive and summary statistics on DataFrame and Series have a level
option in which you can specify the level you want to aggregate by on a particular
axis. Consider the above DataFrame; we can aggregate by level on either the rows or

columns like so:

In [27]: frame.sum(level='key2")

out[27]:

state Ohio Colorado
color Green Red Green
key2

1 6 8 10
2 12 14 16

In [28]: frame.sum(level='color', axis=1)

Out[28]:

color Green Red

keyl key2

a 1 2 1
2 8 4

b 1 14 7
2 20 10

Under the hood, this utilizes pandas’s groupby machinery, which will be discussed in
more detail later in the book.

Indexing with a DataFrame’s columns

It’s not unusual to want to use one or more columns from a DataFrame as the row
index; alternatively, you may wish to move the row index into the DataFrame’s col-
umns. Here’s an example DataFrame:
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In [29]: frame = pd.DataFrame({'a': range(7), 'b': range(7, 0, -1),
P 'c': ['one', 'one', ' 'two', 'two',
el "two', 'two'],

P '‘d': [0, 1, 2, 0, 1, 2, 31})

one',

In [30]: frame

Out[30]:

a b c d
O 0 7 one 0
1 1 6 one 1
2 2 5 one 2
3 3 4 two 0O
4 4 3 two 1
5 5 2 two 2
6 6 1 two 3

DataFrame’s set_index function will create a new DataFrame using one or more of
its columns as the index:

In [31]: frame2 = frame.set_index(['c', 'd'])

In [32]: frame2
out[32]:
a b
c d
one 0
1

[

=

o
N R ON

0
1
2
3
4
5
6

P N WA UTO N

3

By default the columns are removed from the DataFrame, though you can leave them
in:

In [33]: frame.set_index(['c', 'd'], drop=False)

Out[33]:
a b c d
c d
one ® O 7 one 0
1 1 6 one 1
2 2 5 one 2
two © 3 4 two 0O
1 4 3 two 1
2 5 2 two 2
3 6 1 two 3

reset_index, on the other hand, does the opposite of set_index; the hierarchical
index levels are moved into the columns:
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In [34]: frame2.reset_1index()
Out[34]:
C
one
one
one
two
two
two
two

AU b WN PR O

W NNPRP,ONRE A
AU h wWNRE OO
BN WA UoO N O

8.2 Combining and Merging Datasets

Data contained in pandas objects can be combined together in a number of ways:

 pandas.merge connects rows in DataFrames based on one or more keys. This
will be familiar to users of SQL or other relational databases, as it implements
database join operations.

« pandas.concat concatenates or “stacks” together objects along an axis.
o The combine_first instance method enables splicing together overlapping data

to fill in missing values in one object with values from another.

I will address each of these and give a number of examples. They’ll be utilized in
examples throughout the rest of the book.

Database-Style DataFrame Joins

Merge or join operations combine datasets by linking rows using one or more keys.
These operations are central to relational databases (e.g., SQL-based). The merge
function in pandas is the main entry point for using these algorithms on your data.

Let’s start with a simple example:

In [35]: df1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'a', 'b'],
et 'datal': range(7)})

In [36]: df2 = pd.DataFrame({'key': ['a', 'b', 'd'],
et 'data2': range(3)})

In [37]: df1l

Out[37]:
datal key

0 b

1 1 b

2 2 a

3 3 c

4 4 a

5 5 a
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6 6 b

In [38]: df2
Out[38]:
data2 key
0 0 a
1 1 b
2 2 d

This is an example of a many-to-one join; the data in df1 has multiple rows labeled a
and b, whereas df2 has only one row for each value in the key column. Calling merge
with these objects we obtain:

In [39]: pd.merge(df1, df2)

Out[39]:

datal key data2
0 0 b 1
1 1 b 1
2 6 b 1
3 2 a 0
4 4 a 0
5 5 a 0

Note that I didn’t specify which column to join on. If that information is not speci-
fied, merge uses the overlapping column names as the keys. It’s a good practice to
specify explicitly, though:

In [40]: pd.merge(df1, df2, on='key')

Out[40]:

datal key data2
0 0 b 1
1 1 b 1
2 6 b 1
3 2 a 0
4 4 a 0
5 5 a 0

If the column names are different in each object, you can specify them separately:

In [41]: df3 = pd.DataFrame({'lkey': ['b', 'b', 'a', 'c', 'a', 'a', 'b'],
el 'datal': range(7)})

pd.DataFrame({'rkey': ['a', 'b', 'd'],
..... 'data2': range(3)})

—
pe ]
—
=N
N
—
[=%
=
H
I}

In [43]: pd.merge(df3, df4, left_on='lkey', right_on='rkey')

Out[43]:

datal lkey data2 rkey
0 0 b 1 b
1 1 b 1 b
2 6 b 1 b
3 2 a 0 a
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a 0 a
5 5 a 0 a
You may notice that the 'c' and 'd"' values and associated data are missing from the
result. By default merge does an 'inner' join; the keys in the result are the intersec-
tion, or the common set found in both tables. Other possible options are 'left’,
'right', and 'outer'. The outer join takes the union of the keys, combining the
effect of applying both left and right joins:

In [44]: pd.merge(df1, df2, how='outer')

Out[44]:

datal key data2
0 0.0 b 1.0
1 1.0 b 1.0
2 6.0 b 1.0
3 2.0 a 0.0
4 4.0 a 0.0
5 5.0 a 0.0
6 3.0 C NaN
7 NaN d 2.0

See Table 8-1 for a summary of the options for how.

Table 8-1. Different join types with how argument

Option Behavior

"inner'  Use only the key combinations observed in both tables
"left! Use all key combinations found in the left table

"right'  Use all key combinations found in the right table
"output' Use all key combinations observed in both tables together

Many-to-many merges have well-defined, though not necessarily intuitive, behavior.
Here’s an example:
In [45]: dfl = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'b'],
et 'datal': range(6)})

In [46]: df2 = pd.DataFrame({'key': ['a', 'b', 'a', 'b', 'd'],
et 'data2': range(5)})

In [47]: df1
Out[47]:
datal key

v A WN RO
v A WN PR O
o N o oo
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In [48]: df2

out[48]:
data2 key
0 0 a
1 1 b
2 2 a
3 3 b
4 4 d

In [49]: pd.merge(df1, df2, on="key', how='left"')

Out[49]:

datal key data2
0 0 b 1.0
1 0 b 3.0
2 1 b 1.0
3 1 b 3.0
4 2 a 0.0
5 2 a 2.0
6 3 C NaN
7 4 a 0.0
8 4 a 2.0
9 5 b 1.0
10 5 b 3.0

Many-to-many joins form the Cartesian product of the rows. Since there were three
'b' rows in the left DataFrame and two in the right one, there are six 'b' rows in the
result. The join method only affects the distinct key values appearing in the result:

In [50]: pd.merge(df1, df2, how='inner')

Out[50]:

datal key data2
0 0 b 1
1 0 b 3
2 1 b 1
3 1 b 3
4 5 b 1
5 5 b 3
6 2 a 0
7 2 a 2
8 4 a 0
9 4 a 2

To merge with multiple keys, pass a list of column names:
In [51]: left = pd.DataFrame({'key1l': ['foo', 'foo', 'bar'],
et 'key2': ['one', 'two', 'one'],
et "lval': [1, 2, 31})
In [52]: right = pd.DataFrame({'key1': ['foo', 'foo', 'bar', 'bar'],
et 'key2': ['one', 'one', 'one', 'two'],
P ‘rval': [4, 5, 6, 7]1})

In [53]: pd.merge(left, right, on=['keyl', 'key2'], how='outer')
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Out[53]:

keyl key2 1lval
foo one 1.0
foo one 1.0
foo two 2.0
bar one 3.0
4 bar two NaN

w N =

rval
4.0
5.0
NaN
6.0
7.0

To determine which key combinations will appear in the result depending on the
choice of merge method, think of the multiple keys as forming an array of tuples to
be used as a single join key (even though it’s not actually implemented that way).

\

When youre joining columns-on-columns, the indexes on the
passed DataFrame objects are discarded.

A last issue to consider in merge operations is the treatment of overlapping column
names. While you can address the overlap manually (see the earlier section on
renaming axis labels), merge has a suffixes option for specifying strings to append
to overlapping names in the left and right DataFrame objects:

In [54]: pd.merge(left, right, on='key1')

1

one
one
one
one
one

Out[54]:
keyl key2_x 1lval key2_y

0 foo one
1 foo one
2 foo two
3 foo two
4 bar one
5 bar one

w w NN -

two

In [55]: pd.merge(left, right, on='keyl', suffixes=('_left', ' _right"))

Out[55]:

keyl key2_left
0 foo one
1 foo one
2 foo two
3 foo two
4 bar one
5 bar one

lval key2_right

1

w W NN -

one
one
one
one
one
two

See Table 8-2 for an argument reference on merge. Joining using the DataFrame’s row

index is the subject of the next section.
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Table 8-2. merge function arguments

Argument Description

left DataFrame to be merged on the left side.

right DataFrame to be merged on the right side.

how Oneof 'inner', 'outer', 'left',or 'right'; defaults to 'inner'.

on Column names to join on. Must be found in both DataFrame objects. If not specified and no other join keys
given, will use the intersection of the column names in Left and right as the join keys.

left_on Columns in Lef't DataFrame to use as join keys.

right_on Analogous to Left_on for Left DataFrame.

left_index  Userowindexin left as its join key (or keys, if a Multilndex).
right_index Analogousto left_index.

sort Sort merged data lexicographically by join keys; True by default (disable to get better performance in
some cases on large datasets).

suffixes Tuple of string values to append to column names in case of overlap; defaultsto (' _x', '_y') (e.g., if
'data’ in both DataFrame objects, would appear as 'data_x"' and 'data_y" in result).

copy If False, avoid copying data into resulting data structure in some exceptional cases; by default always
copies.

indicator Adds a special column _merge that indicates the source of each row; values will be ' Lleft_only’,
'right_only', or 'both"' based on the origin of the joined data in each row.

Merging on Index

In some cases, the merge key(s) in a DataFrame will be found in its index. In this
case, you can pass left_index=True or right_index=True (or both) to indicate that
the index should be used as the merge key:

In [56]: leftl = pd.DataFrame({'key': ['a', 'b', 'a', 'a', 'b', 'c'],
P 'value': range(6)})

In [57]: rightl = pd.DataFrame({'group_val': [3.5, 7]}, index=['a', 'b'])

In [58]: left1l

Out[58]:

key value
0 a
1 b 1
2 a 2
3 a 3
4 b 4
5 c 5

In [59]: right1

Out[59]:
group_val

a 3.5

b 7.0
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In [60]: pd.merge(leftl, rightl, left_on='key', right_index=True)

0ut[60]

key wvalue group_val

a

AR, WwWNOO

a
a
b
b

0
2
3
1
4

3.5

~N N W w
o © v un

Since the default merge method is to intersect the join keys, you can instead form the

union of them with an outer join:

In [61]: pd.merge(leftl, rightl, left_on='key', right_index=True, how='outer')

key value group_val

Out[61]
0 a
2 a
3 a
1 b
4 b
5 C

0

v AR WN

3.5

~N N W w
o © v wun

NaN

With hierarchically indexed data, things are more complicated, as joining on index is

implicitly a multiple-key merge:

In [62]

In [64]:

: lefth = pd.DataFrame({'key1': ['Ohio', 'Ohio', 'Ohio',

. righth

lefth

Out[64]:

data
0.0

DWN RO
DWw N R
oo oo

In [65]:

key1
Ohio
Ohio
Ohio
Nevada
Nevada

righth

Out[65]:

Nevada

Ohio

'Nevada', 'Nevada'],
'key2': [2000, 2001, 2002, 2001, 2002],
'data': np.arange(5.)})

= pd.DataFrame(np.arange(12).reshape((6, 2)),

key2
2000
2001
2002
2001
2002

eventl event2

2001
2000
2000
2000

0

2
4
6

1

3
5
7

index=[[ 'Nevada', 'Nevada', 'Ohio', 'Ohio',
'Ohio', 'Ohio'],
[2001, 2000, 2000, 2000, 2001, 2002]],
columns=["'eventl', 'event2'])
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2001
2002

8 9
10 11

In this case, you have to indicate multiple columns to merge on as a list (note the
handling of duplicate index values with how="outer'):

In [66]: pd.merge(lefth, righth, left_on=['key1l', 'key2'], right_index=True)

Out[66]:

data key1
0 0.0 Ohio
0 0.0 Ohio
1 1.0 Ohio
2 2.0 Ohio
3 3.0 Nevada

key2 eventl event2

2000 4 5
2000 6 7
2001 8 9
2002 10 11
2001 0 1

In [67]: pd.merge(lefth, righth, left_on=['keyl', 'key2'],
right_index=True, how='outer")

out[67]

data key1
0 0.0 Ohio
0 0.0 Ohio
1 1.0 Ohio
2 2.0 Ohio
3 3.0 Nevada
4 4.0 Nevada
4 NaN Nevada

key2 eventl event2

2000 4.0 5.0
2000 6.0 7.0
2001 8.0 9.0
2002 10.0 11.0
2001 0.0 1.0
2002 NaN NaN

2000 2.0 3.0

Using the indexes of both sides of the merge is also possible:

In [68]: left2 = pd.DataFrame([[1., 2.], [3., 4.1, [5., 6.]1],
. index=['a', 'c', 'e'l,
columns=['Ohio', 'Nevada'l])

In [69]: right2 = pd.DataFrame([[7., 8.], [9., 10.], [11., 12.], [13, 14]1],

In [70]: left2

out[70]:

Ohio Nevada
a 1.0 2.0
C 3.0 4.0
e 5.0 6.0

In [71]: right2
Out[71]:

index=['b",

ICI’ ‘d', |e|]’

columns=[ 'Missouri', 'Alabama'])

Missouri Alabama

b 7.0
c 9.0
d 11.0
e 13.0

8.0

10.0
12.0
14.0

In [72]: pd.merge(left2, right2, how='outer', left_index=True, right_index=True)
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Out[72]:

Ohio
1.0
NaN
3.0
NaN
5.0

D anNn oow

Nev

ada
2.0
NaN
4.0
NaN
6.0

Missouri Alabama

NaN NaN
7.0 8.0
9.0 10.0
11.0 12.0
13.0 14.0

DataFrame has a convenient join instance for merging by index. It can also be used
to combine together many DataFrame objects having the same or similar indexes but
non-overlapping columns. In the prior example, we could have written:

In [73]: left2.join(right2, how='outer')
Out[73]:

Ohio
1.0
NaN
3.0
NaN
5.0

D anNn oow

Nev

ada
2.0
NaN
4.0
NaN
6.0

Missouri Alabama

NaN NaN
7.0 8.0
9.0 10.0
11.0 12.0
13.0 14.0

In part for legacy reasons (i.e., much earlier versions of pandas), DataFrame’s join
method performs a left join on the join keys, exactly preserving the left frame’s row
index. It also supports joining the index of the passed DataFrame on one of the col-
umns of the calling DataFrame:

In [74]: leftl.join(rightl, on='key')

out[74]

key value group_val

a

v b WN RO
N oo o o

0

v A WN

Lastly, for simple index-on-index merges, you can pass a list of DataFrames to join as
an alternative to using the more general concat function described in the next

section:

In [75]

: another = pd.DataFrame([[7., 8.], [9., 10.], [11., 12.], [16., 17.]1],

index=['a', 'c', 'e', 'f'],
columns=["'New York', 'Oregon'])

In [76]: another

out[76]

New York Oregon

D N o

7.0
9.0
11.0
16.0

8.0
10.0
12.0
17.0
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In [77]: left2.join([right2, another])

Out[77]:

Ohio Nevada Missouri Alabama New York Oregon
a 1.0 2.0 NaN NaN 7.0 8.0
C 3.0 4.0 9.0 10.0 9.0 10.0
e 5.0 6.0 13.0 14.0 11.0 12.0

In [78]: left2.join([right2, another], how='outer')

Out[78]:

Ohio Nevada Missouri Alabama New York Oregon
a 1.0 2.0 NaN NaN 7.0 8.0
b NaN NaN 7.0 8.0 NaN NaN
C 3.0 4.0 9.0 10.0 9.0 10.0
d NaN NaN 11.0 12.0 NaN NaN
e 5.0 6.0 13.0 14.0 11.0 12.0
f NaN NaN NaN NaN 16.0 17.0

Concatenating Along an Axis

Another kind of data combination operation is referred to interchangeably as concat-
enation, binding, or stacking. NumPy’s concatenate function can do this with
NumPy arrays:

In [79]: arr = np.arange(12).reshape((3, 4))

In [80]: arr

Out[80]:

array([[ o, 1, 2, 3],
[ 4, 5, 6, 7],

[ &, 9,10, 111D

In [81]: np.concatenate([arr, arr], axis=1)
Out[81]:
array([[ 0, 1, 2, 3, o, 1, 2, 3],
[ 4) 5 L 6 E 7 E 4} 5’ 6) 7] E
[8 9,10, 11, 8, 9, 10, 11]])
In the context of pandas objects such as Series and DataFrame, having labeled axes
enable you to further generalize array concatenation. In particular, you have a num-
ber of additional things to think about:

o If the objects are indexed differently on the other axes, should we combine the
distinct elements in these axes or use only the shared values (the intersection)?

e Do the concatenated chunks of data need to be identifiable in the resulting
object?

» Does the “concatenation axis” contain data that needs to be preserved? In many
cases, the default integer labels in a DataFrame are best discarded during
concatenation.
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The concat function in pandas provides a consistent way to address each of these
concerns. I'll give a number of examples to illustrate how it works. Suppose we have
three Series with no index overlap:

In [82]: s1 = pd.Series([0, 1], index=['a', 'b'])
In [83]: s2 = pd.Series([2, 3, 4], index=['c', 'd', 'e'])
In [84]: s3 = pd.Series([5, 6], index=['f', 'g'])
Calling concat with these objects in a list glues together the values and indexes:
In [85]: pd.concat([s1, s2, s3])

Out[85]:
0

AU h WN B

a
b
d
d
e
f
9
d

type: int64

By default concat works along axis=0, producing another Series. If you pass axis=1,
the result will instead be a DataFrame (axis=1 is the columns):

In [86]: pd.concat([s1, s2, s3], axis=1)
Out[86]:
0 1 2
0.0 NaN NaN
1.0 NaN NaN

- QAN o ow
=
7]
=
w
(o]
=
7]
=

g NaN NaN 6.0

In this case there is no overlap on the other axis, which as you can see is the sorted
union (the 'outer' join) of the indexes. You can instead intersect them by passing
join="inner':

In [87]: s4 = pd.concat([s1, s3])

In [88]: s4
Out[88]:

a 0

b 1

f 5

g 6

dtype: inté4

In [89]: pd.concat([s1, s4], axis=1)
Out[89]:
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= o
[cl oMo

NaN
NaN

Qo +H o w
[ NNV B O S

In [90]: pd.concat([s1, s4], axis=1, join='inner')
Out[90]:
0 1
a 0 o0
b 1 1

In this last example, the 'f' and 'g' labels disappeared because of the join="{inner'
option.

You can even specify the axes to be used on the other axes with join_axes:

In [91]: pd.concat([s1, s4], axis=1, join_axes=[['a', 'c', 'b', 'e']lD)
Out[91]:
0 1
0.0 0.0
NaN NaN
1.0 1.0
NaN NaN

m o N o

A potential issue is that the concatenated pieces are not identifiable in the result. Sup-
pose instead you wanted to create a hierarchical index on the concatenation axis. To
do this, use the keys argument:

In [92]: result = pd.concat([s1, s1, s3], keys=['one', 'two', 'three'])

In [93]: result

Out[93]:

one a 0
b 1

two a 0
b 1

three f 5
g 6

dtype: int64

In [94]: result.unstack()
Out[94]:

a b f g
one 0.0 1.0 NaN NaN
two 0.0 1.0 NaN NaN
three NaN NaN 5.0 6.0

In the case of combining Series along axis=1, the keys become the DataFrame col-
umn headers:

In [95]: pd.concat([s1, s2, s3], axis=1, keys=['one', 'two', 'three'])
Out[95]:
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one two three
0.0 NaN NaN
1.0 NaN NaN
NaN 2.0 NaN
. NaN
NaN 4.0 NaN
NaN NaN 5.0
NaN NaN 6.0

Qa -~MDo an T o
=
[+7]
=
w
(o}

The same logic extends to DataFrame objects:

In [96]: df1 = pd.DataFrame(np.arange(6).reshape(3, 2), index=['a', 'b', 'c'],
et columns=['one', 'two'])

In [97]: df2 = pd.DataFrame(5 + np.arange(4).reshape(2, 2), index=['a', 'c'],
et columns=[ 'three', 'four'])
In [98]: df1
Out[98]:
one two
a 0 1
b 2 3
C 4 5
In [99]: df2
Out[99]:
three four
a 5 6
C 7 8

In [100]: pd.concat([df1, df2], axis=1, keys=['levell', 'level2'])

Out[100]:
levell level2
one two three four
a 0 1 5.0 6.0
b 2 3 NaN NaN
C 4 5 7.0 8.0

If you pass a dict of objects instead of a list, the dict’s keys will be used for the keys

option:
In [101]: pd.concat({'levell': df1, 'level2': df2}, axis=1)
Out[101]:
levell level2
one two three four
a 0 1 5.0 6.0
b 2 3 NaN NaN
C 4 5 7.0 8.0

There are additional arguments governing how the hierarchical index is created (see
Table 8-3). For example, we can name the created axis levels with the names

argument:
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In [102]: pd.concat([df1, df2], axis=1, keys=['levell', 'level2'],
..... : names=[ 'upper', 'lower'])

Out[102]:

upper levell level?2
lower one two three four
a 0 1 5.0 6.0
b 2 3 NaN NaN
C 4 5 7.0 8.0

A last consideration concerns DataFrames in which the row index does not contain
any relevant data:

In [103]: df1 = pd.DataFrame(np.random.randn(3, 4), columns=['a', 'b', 'c', 'd'])

In [104]: df2 = pd.DataFrame(np.random.randn(2, 3), columns=['b', 'd', 'a'])

In [165]: df1
Out[105]:

a b C d
0 1.246435 1.007189 -1.296221 0.274992
1 0.228913 1.352917 0.886429 -2.001637
2 -0.371843 1.669025 -0.438570 -0.539741

In [106]: df2
Out[106]:
b d a
0 0.476985 3.248944 -1.021228
1 -0.577087 0.124121 0.302614
In this case, you can pass ignore_index=True:

In [107]: pd.concat([df1, df2], ignore_index=True)
Out[107]:

a b C d
1.246435 1.007189 -1.296221 0.274992
0.228913 1.352917 0.886429 -2.001637
-0.371843 1.669025 -0.438570 -0.539741
-1.021228 0.476985 NaN 3.248944
0.302614 -0.577087 NaN ©0.124121

A wWwNRLR O

Table 8-3. concat function arguments

Argument Description

objs List or dict of pandas objects to be concatenated; this is the only required argument

axis Axis to concatenate along; defaults to 0 (along rows)

join Either 'inner' or 'outer' ('outer' by default); whether to intersection (inner) or union
(outer) together indexes along the other axes

join_axes Specific indexes to use for the other n—1 axes instead of performing union/intersection logic

keys Values to associate with objects being concatenated, forming a hierarchical index along the

concatenation axis; can either be a list or array of arbitrary values, an array of tuples, or a list of
arrays (if multiple-level arrays passed in Levels)
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Argument
levels

names

Description
Specific indexes to use as hierarchical index level or levels if keys passed
Names for created hierarchical levels if keys and/or Levels passed

verify_integrity Check new axisin concatenated object for duplicates and raise exception if so; by default (False)

ignore_index

allows duplicates

Do not preserve indexes along concatenation axtis, instead producing a new
range(total_length) index

Combining Data with Overlap

There is another data combination situation that can’t be expressed as either a merge
or concatenation operation. You may have two datasets whose indexes overlap in full
or part. As a motivating example, consider NumPy’s where function, which performs
the array-oriented equivalent of an if-else expression:

In [108]: a

pd.Series([np.nan, 2.5, np.nan, 3.5, 4.5, np.nan],
index=[‘fl, |e|, ‘d', 'C‘, ‘b', |a|])

pd.Series(np.arange(len(a), dtype=np.floaté4),
indeXZ[‘fl, le|, |dl’ 'C‘, |bl’ la|])

In [110]: b[-1] = np.nan

In [111]: a
Out[111]:

f NaN

e 2.5

d NaN

C 3.5

b 4.5

a NaN

d

In [112]: b
Out[112]:

f 0.0

e 1.0

d 2.0

C 3.0

b 4.0

a NaN

d

type: float64

type: float64

In [113]: np.where(pd.isnull(a), b, a)
Out[113]: array([ 0. , 2.5, 2., 3.5, 4.5, nan])

Series has a combine_first method, which performs the equivalent of this operation
along with pandas’s usual data alignment logic:
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In [114]: b[:-2].combine_first(a[2:])
Out[114]:

D anNn oow

.F
dtype:

O R, N WhH

NaN
.5

[cl ool o)

float64

With DataFrames, combine_first does the same thing column by column, so you
can think of it as “patching” missing data in the calling object with data from the
object you pass:

In [115]: df1 = pd.DataFrame({'a': [1., np.nan, 5., np.nan],

—
pe ]
—
Jury
[N
(o))
—
a
-
N
]

.t 'b': [np.nan, 2., np.nan, 6.],

ol c': range(2, 18, 4)})

pd.DataFrame({'a': [5., 4., np.nan, 3., 7.],
. 'b': [np.nan, 3., 4., 6., 8.1})

In [117]: df1

Out[117]:

a b ¢
O 1.0 NaN 2
1 NaN 2.0 6
2 5.0 NaN 10
3 NaN 6.0 14

In [118]: df2
Out[118]:

a
5.0
4.0
NaN
3.0
7.0

A wWwNRER O

b
NaN

oo b w
[clcN oo

In [119]: df1l.combine_first(df2)
Out[119]:

a

A WN RO
N Ww oA
[clcNoNoNO]

8.3 Reshaping and Pivoting

There are a number of basic operations for rearranging tabular data. These are alter-
natingly referred to as reshape or pivot operations.
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Reshaping with Hierarchical Indexing

Hierarchical indexing provides a consistent way to rearrange data in a DataFrame.
There are two primary actions:

stack
This “rotates” or pivots from the columns in the data to the rows

unstack
This pivots from the rows into the columns

I'll illustrate these operations through a series of examples. Consider a small Data-
Frame with string arrays as row and column indexes:

In [120]: data = pd.DataFrame(np.arange(6).reshape((2, 3)),

: index=pd.Index(['Ohio', 'Colorado'], name='state'),
...... columns=pd.Index(['one', 'two', 'three'],
et name="'number "))

In [121]: data

Out[121]:

number one two three
state

Ohio 0 1 2
Colorado 3 4 5

Using the stack method on this data pivots the columns into the rows, producing a
Series:

In [122]: result = data.stack()

In [123]: result

Out[123]:

state number

Ohio one 0
two 1
three 2

Colorado one 3
two 4
three 5

dtype: int64

From a hierarchically indexed Series, you can rearrange the data back into a Data-
Frame with unstack:

In [124]: result.unstack()

out[124]:

number one two three
state

Ohio 0 1 2
Colorado 3 4 5
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By default the innermost level is unstacked (same with stack). You can unstack a dif-
ferent level by passing a level number or name:

In [125]: result.unstack(©)

Out[125]:

state Ohio Colorado
number

one 0 3
two 1

three 2 5

In [126]: result.unstack('state')

Out[126]:

state Ohio Colorado
number

one 0 3
two 1

three 2 5

Unstacking might introduce missing data if all of the values in the level aren’t found
in each of the subgroups:

In [127]: s1 = pd.Series([0, 1, 2, 3], index=['a', 'b', 'c', 'd'])
In [128]: s2 = pd.Series([4, 5, 6], index=['c', 'd', 'e'])
In [129]: data2 = pd.concat([s1, s2], keys=['one', 'two'])

In [130]: data2

Out[130]:

one a 0
b 1
[« 2
d 3

two c 4
d 5
e 6

dtype: int64

In [131]: data2.unstack()

Out[131]:

a b C d e
one 0.0 1.0 2.0 3.0 NaN
two NaN NaN 4.0 5.0 6.0

Stacking filters out missing data by default, so the operation is more easily invertible:

In [132]: data2.unstack()

Out[132]:

a b C d e
one 0.0 1.0 2.0 3.0 NaN
two NaN NaN 4.0 5.0 6.0
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In [133]: data2.unstack().stack()

Out[133]:

one a 0.0
b 1.0
C 2.0
d 3.0

two c 4.0
d 5.0
e 6.0

dtype: float64

In [134]: data2.unstack().stack(dropna=False)

Out[134]:

one a 0.0
b 1.0
C 2.0
d 3.0
e NaN

two a NaN
b NaN
C 4.0
d 5.0
e 6.0

dtype: float64

When you unstack in a DataFrame, the level unstacked becomes the lowest level in
the result:

In [135]: df = pd.DataFrame({'left': result, 'right': result + 5},
..... : columns=pd.Index(['left', 'right'], name='side'))

In [136]: df

Out[136]:

side left right

state number

Ohio one 0 5
two 1 6
three 2 7

Colorado one 3 8
two 4 9
three 5 10

In [137]: df.unstack('state')

Out[137]:

side left right

state Ohio Colorado Ohio Colorado
number

one 0 3 5 8
two 1 4 6 9
three 2 5 7 10

When calling stack, we can indicate the name of the axis to stack:
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In [138]: df.unstack('state').stack('side")

Out[138]:

state Colorado Ohio

number side

one left 3 0
right 8 5

two left 4 1
right 9 6

three left 5 2
right 10 7

Pivoting “Long” to “Wide” Format

A common way to store multiple time series in databases and CSV is in so-called long
or stacked format. Let’s load some example data and do a small amount of time series
wrangling and other data cleaning:

In [139]: data = pd.read_csv('examples/macrodata.csv')

In [140]: data.head()

Out[140]:
year quarter realgdp realcons realinv realgovt realdpi cpt \
0 1959.0 1.0 2710.349 1707.4 286.898 470.045 1886.9 28.98
1 1959.0 2.0 2778.801 1733.7 310.859 481.301 1919.7 29.15
2 1959.0 3.0 2775.488 1751.8 289.226 491.260 1916.4 29.35
3 1959.0 4.0 2785.204 1753.7 299.356 484,052 1931.3 29.37
4 1960.0 1. 2847.699 1770.5 331.722 462.199 1955.5 29.54
ml tbilrate unemp pop 1infl realint
0 139.7 2.82 5.8 177.146 0.00 0.00
1 141.7 3.08 5.1 177.830 2.34 0.74
2 140.5 3.82 5.3 178.657 2.74 1.09
3 140.0 4.33 5.6 179.386 0.27 4.06
4 139.6 3.50 5.2 180.007 2.31 1.19

In [141]: periods = pd.PeriodIndex(year=data.year, quarter=data.quarter,
et name='date")

In [142]: columns = pd.Index(['realgdp', 'infl', 'unemp'], name='item')
In [143]: data = data.reindex(columns=columns)
In [144]: data.index = periods.to_timestamp('D', 'end')

In [145]: ldata = data.stack().reset_index().rename(columns={0: 'value'})

We will look at PeriodIndex a bit more closely in Chapter 11. In short, it combines
the year and quarter columns to create a kind of time interval type.

Now, ldata looks like:

In [146]: ldata[:10]
Out[146]:
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date
1959-03-31
1959-03-31
1959-03-31
1959-06-30
1959-06-30
1959-06-30
1959-09-30
1959-09-30
1959-09-30
1959-12-31

Vo ~NOULD WNRL O

item
realgdp
infl
unemp
realgdp
infl
unemp
realgdp
infl
unemp
realgdp

value

2785.

349

.000
.800

801

.340
.100

488

.740
.300

204

This is the so-called long format for multiple time series, or other observational data
with two or more keys (here, our keys are date and item). Each row in the table repre-
sents a single observation.

Data is frequently stored this way in relational databases like MySQL, as a fixed
schema (column names and data types) allows the number of distinct values in the
item column to change as data is added to the table. In the previous example, date
and item would usually be the primary keys (in relational database parlance), offering
both relational integrity and easier joins. In some cases, the data may be more diffi-
cult to work with in this format; you might prefer to have a DataFrame containing
one column per distinct item value indexed by timestamps in the date column. Data-
Frame’s pivot method performs exactly this transformation:

In [147]: pilvoted = ldata.pivot('date', 'item', 'value')

In [148]: pivoted

Out[148]:
item

date
1959-03-31
1959-06-30
1959-09-30
1959-12-31
1960-03-31
1960-06-30
1960-09-30
1960-12-31
1961-03-31
1961-06-30

P ORPR NONONNO

2007-06-30
2007-09-30
2007-12-31
2008-03-31
2008-06-30
2008-09-30
2008-12-31
2009-03-31
2009-06-30

W o o woonNOwN

infl rea

.00 2710.
.34 2778.
.74 2775,
.27 2785,
.31 2847.
.14 2834.
.70 2839.
.21 2802.
.40 2819.
.47 2872.

.75 13203.
.45 13321.
.38 13391.
.82 13366.
.53 13415.
.16 13324.
.79 13141.
.94 12925.
.37 12901.

lgdp

349
801
488
204
699
390
022
616
264
005
977
109
249
865
266
600
920
410
504

unemp

N O

VR c T N RV, N N N N

©@ 00 WO NNOWRL ®

N R OO A~ WOOLS-NUL -
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2009-09-30 3.56 12990.341 9.6
[203 rows x 3 columns]

The first two values passed are the columns to be used respectively as the row and
column index, then finally an optional value column to fill the DataFrame. Suppose
you had two value columns that you wanted to reshape simultaneously:

In [149]: ldata['value2'] = np.random.randn(len(ldata))

In [150]: ldata[:10]

Out[150]:

date item value value2
0 1959-03-31 realgdp 2710.349 0.523772
1 1959-03-31 infl 0.000 0.000940
2 1959-03-31 unemp 5.800 1.343810
3 1959-06-30 realgdp 2778.801 -0.713544
4 1959-06-30 infl 2.340 -0.831154
5 1959-06-30 unemp 5.100 -2.370232
6 1959-09-30 realgdp 2775.488 -1.860761
7 1959-09-30 infl 2.740 -0.860757
8 1959-09-30 unemp 5.300 0.560145
9 1959-12-31 realgdp 2785.204 -1.265934

By omitting the last argument, you obtain a DataFrame with hierarchical columns:

In [151]: pivoted = ldata.pivot('date', 'item')

In [152]: pilvoted[:5]

Out[152]:

value value2
item infl realgdp unemp infl realgdp unemp
date

1959-03-31 0.00 2710.349
1959-06-30 2.34 2778.801

5.8 0.000940 0.523772 1.343810
5.1 -0.
1959-09-30 2.74 2775.488 5.3 -0.
5.6 0.
5.2 -2.

0

831154 -0.713544 -2.370232
860757 -1.860761 0.560145
119827 -1.265934 -1.063512
359419 0.332883 -0.199543

1959-12-31 0.27 2785.204
1960-03-31 2.31 2847.699

In [153]: pilvoted['value'][:5]
Out[153]:

item infl realgdp unemp
date

1959-03-31 0.00 2710.349
1959-06-30 2.34 2778.801
1959-09-30 2.74 2775.488
1959-12-31 0.27 2785.204
1960-03-31 2.31 2847.699

(V2R V BV RV RV, |
N O W =

Note that pivot is equivalent to creating a hierarchical index using set_index fol-
lowed by a call to unstack:
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In [154]: unstacked = ldata.set_index(['date', 'item']).unstack('item')

In [155]: unstacked[:7]

Out[155]:

item

date

1959-03-31
1959-06-30
1959-09-30
1959-12-31
1960-03-31
1960-06-30
1960-09-30

value
infl

.00
.34
.74
.27
.31
.14
.70

N O NONNO

realgdp unemp

2710.
2778.
2775.
2785.
2847.
2834.
2839.

349
801
488
204
699
390
022

(VA VRV, RV, IV, BV RV, |
NN W~ o

value2
infl

.000940
-0.
-0.
.119827
-2.
-0.
.377984

831154
860757

359419
970736

Pivoting “Wide” to “Long” Format

An inverse operation to pivot for DataFrames is pandas.melt. Rather than trans-
forming one column into many in a new DataFrame, it merges multiple columns into
one, producing a DataFrame that is longer than the input. Let’s look at an example:

In [157]: df =
In [158]: df
Out[158]:

A B C key
0 1 4 7 foo
1 2 5 8 bar
2 3 6 9 baz

-0.
-1.
-1.

-1.

‘A [1y 2: 3]:
'B': [4s 5: 6]:
¢ [7, 08, 91H

realgdp

.523772
713544
860761
265934
.332883
541996
.286350

unemp

1.343810
-2.370232

0.560145
-1.063512
-0.199543
-1.307030
-0.753887

pd.DataFrame({'key': ['foo', 'bar', 'baz'],

The 'key' column may be a group indicator, and the other columns are data values.
When using pandas.melt, we must indicate which columns (if any) are group indica-
tors. Let’s use 'key' as the only group indicator here:

In [159]: melted = pd.melt(df, ['key'])

In [160]: melted

Out[160]:

key variable value

foo
bar
baz
foo
bar
baz
foo
bar
baz

O ~NOUVT A WN RO

A

N NN m®®®>>

O O ~NOUT D WNBRE
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Using pivot, we can reshape back to the original layout:

In [161]:

In [162]:
Out[162]:
variable
key
bar
baz
foo

reshaped

reshaped

A

2
3
1

B

5
6
4

@

7

= melted.pivot('key', 'variable', 'value')

Since the result of pivot creates an index from the column used as the row labels, we
may want to use reset_index to move the data back into a column:

In [163]: reshaped.reset_index()

Out[163]:

variable key

0
1
2

bar
baz
foo

, WwN D>

s Oy U1 @

~l O o N

You can also specify a subset of columns to use as value columns:

In [164]: pd.melt(df, id_vars=['key'], value_vars=['A', 'B'])

out[164]:

key variable value

foo
bar
baz
foo
bar
baz

v A WN RO

A

™ ™ > >

B

AU A WN B

pandas.melt can be used without any group identifiers, too:

In [165]: pd.melt(df, value_vars=['A', 'B', 'C'])

Out[165]:

variable

o~NOTULT D WN RO

A

NN MNP

value

W O ~NOUTDA WNR

In [166]: pd.melt(df, value_vars=['key', 'A', 'B'])

variable value
foo

Out[166]:
0 key
1 key

bar
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2 key baz
3 A 1
4 A 2
5 A 3
6 B 4
7 B 5
8 B 6
8.4 Conclusion

Now that you have some pandas basics for data import, cleaning, and reorganization
under your belt, we are ready to move on to data visualization with matplotlib. We
will return to pandas later in the book when we discuss more advanced analytics.
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CHAPTER9
Plotting and Visualization

Making informative visualizations (sometimes called plots) is one of the most impor-
tant tasks in data analysis. It may be a part of the exploratory process—for example,
to help identify outliers or needed data transformations, or as a way of generating
ideas for models. For others, building an interactive visualization for the web may be
the end goal. Python has many add-on libraries for making static or dynamic visuali-
zations, but I'll be mainly focused on matplotlib and libraries that build on top of it.

matplotlib is a desktop plotting package designed for creating (mostly two-
dimensional) publication-quality plots. The project was started by John Hunter in
2002 to enable a MATLAB-like plotting interface in Python. The matplotlib and IPy-
thon communities have collaborated to simplify interactive plotting from the IPython
shell (and now, Jupyter notebook). matplotlib supports various GUI backends on all
operating systems and additionally can export visualizations to all of the common
vector and raster graphics formats (PDE, SVG, JPG, PNG, BMP, GIF, etc.). With the
exception of a few diagrams, nearly all of the graphics in this book were produced
using matplotlib.

Over time, matplotlib has spawned a number of add-on toolkits for data visualization
that use matplotlib for their underlying plotting. One of these is seaborn, which we
explore later in this chapter.

The simplest way to follow the code examples in the chapter is to use interactive plot-
ting in the Jupyter notebook. To set this up, execute the following statement in a
Jupyter notebook:

%matplotlib notebook

9.1 A Brief matplotlib API Primer

With matplotlib, we use the following import convention:
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In [11]: import as

After running %matplotlib notebook in Jupyter (or simply %matplotlib in IPy-
thon), we can try creating a simple plot. If everything is set up right, a line plot like
Figure 9-1 should appear:

In [12]: import as
In [13]: data = np.arange(10)

In [14]: data
Out[14]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [15]: plt.plot(data)

0 2 4 6 8

Figure 9-1. Simple line plot

While libraries like seaborn and pandas’s built-in plotting functions will deal with
many of the mundane details of making plots, should you wish to customize them
beyond the function options provided, you will need to learn a bit about the matplot-
lib APIL.

There is not enough room in the book to give a comprehensive
treatment to the breadth and depth of functionality in matplotlib. It
should be enough to teach you the ropes to get up and running.
The matplotlib gallery and documentation are the best resource for
learning advanced features.
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Figures and Subplots

Plots in matplotlib reside within a Figure object. You can create a new figure with
plt.figure:

In [16]: fig = plt.figure()

In IPython, an empty plot window will appear, but in Jupyter nothing will be shown
until we use a few more commands. plt.figure has a number of options; notably,
figsize will guarantee the figure has a certain size and aspect ratio if saved to disk.

You can’t make a plot with a blank figure. You have to create one or more subplots
using add_subplot:

In [17]: ax1 = fig.add_subplot(2, 2, 1)

This means that the figure should be 2 x 2 (so up to four plots in total), and were
selecting the first of four subplots (numbered from 1). If you create the next two sub-
plots, you'll end up with a visualization that looks like Figure 9-2:

In [18]: ax2 = fig.add_subplot(2, 2, 2)

In [19]: ax3 = fig.add_subplot(2, 2, 3)
1.0 1.0
0.8 0.8
0.6 0.6
0.4 4 0.4 1
0.2 0.2
0.0 . . . . 0.0 : . : ;
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
1.0
0.8
0.6
0.4 4
0.2 1
0.0 . . . .
0.0 0.2 0.4 0.6 0.8 1.0

Figure 9-2. An empty matplotlib figure with three subplots
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One nuance of using Jupyter notebooks is that plots are reset after
each cell is evaluated, so for more complex plots you must put all of
the plotting commands in a single notebook cell.

Here we run all of these commands in the same cell:

fig = plt.figure()

ax1 = fig.add_subplot(2, 2, 1)
ax2 = fig.add_subplot(2, 2, 2)
ax3 = fig.add_subplot(2, 2, 3)

When you issue a plotting command like plt.plot([1.5, 3.5, -2, 1.6]), mat-
plotlib draws on the last figure and subplot used (creating one if necessary), thus hid-

ing the figure and subplot creation. So if we add the following command, you’ll get
something like Figure 9-3:

In [20]: plt.plot(np.random.randn(50).cumsum(), 'k--')

1.0 1.0
0.8 1 0.8 1
0.6 0.6
0.4 1 0.4 1
0.2 1 0.2 1
0.0 ; ; . . 0.0 ; ; . .

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
10.0 | s
I\_s \
7.5 A A 'l \
TAYRY; '
5.0 A \
/ A
2.5 - M.
1 1
I
001 ~y 5
Y
-2.5 \‘ ;
(WA

-5.0 .

0 10 20 30 40 50

Figure 9-3. Data visualization after single plot

The 'k--' is a style option instructing matplotlib to plot a black dashed line. The
objects returned by fig.add_subplot here are AxesSubplot objects, on which you

can directly plot on the other empty subplots by calling each one’s instance method
(see Figure 9-4):
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In [21]: _

ax1l.hist(np.random.randn(100), bins=20, color='k', alpha=0.3)

In [22]: ax2.scatter(np.arange(30), np.arange(30) + 3 * np.random.randn(30))

15.0 30 1

12.5 251

20
10.0

15
7.5 1
10 1
5.0
5_
2.5 ol
0.0 : ; : : : '

10.0 A
7.5 1
5.0
2.5 1 "~ \
0.0 {

—2.5 A

—5.0 — T T T T T

Figure 9-4. Data visualization after additional plots

You can find a comprehensive catalog of plot types in the matplotlib documentation.

Creating a figure with a grid of subplots is a very common task, so matplotlib
includes a convenience method, plt.subplots, that creates a new figure and returns
a NumPy array containing the created subplot objects:

In [24]: fig, axes = plt.subplots(2, 3)

In [25]: axes
Out[25]:

array([[<matplotlib.
<matplotlib.
<matplotlib.
[<matplotlib.
<matplotlib.
<matplotlib.
=object)

axes

axes

axes

._subplots.AxesSubplot
axes.
axes.
._subplots.AxesSubplot
axes.
._subplots.AxesSubplot

_subplots.AxesSubplot
_subplots.AxesSubplot

_subplots.AxesSubplot

object
object
object
object
object
object

at
at
at
at
at
at

0x7fb626374048>,
0x7fb62625db00>,
0x7fb6262f6c88>],
0x7fb6261a36a0>,
0x7fb626181860>,
0x7fb6260fd4e0>]], dtype

This is very useful, as the axes array can be easily indexed like a two-dimensional
array; for example, axes[0, 1]. You can also indicate that subplots should have the
same X- or y-axis using sharex and sharey, respectively. This is especially useful
when youre comparing data on the same scale; otherwise, matplotlib autoscales plot
limits independently. See Table 9-1 for more on this method.
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Table 9-1. pyplot.subplots options

Argument Description

nrows Number of rows of subplots

ncols Number of columns of subplots

sharex All subplots should use the same x-axis ticks (adjusting the x1im will affect all subplots)
sharey All subplots should use the same y-axis ticks (adjusting the y1im will affect all subplots)

subplot_kw Dict of keywords passed to add_subplot call used to create each subplot

**xfig_kw  Additional keywords to subplots are used when creating the figure, such as plt.subplots(2, 2,
figsize=(8, 6))

Adjusting the spacing around subplots

By default matplotlib leaves a certain amount of padding around the outside of the
subplots and spacing between subplots. This spacing is all specified relative to the
height and width of the plot, so that if you resize the plot either programmatically or
manually using the GUI window, the plot will dynamically adjust itself. You can
change the spacing using the subplots_adjust method on Figure objects, also avail-
able as a top-level function:

subplots_adjust(left=None, bottom=None, right=None, top=None,
wspace=None, hspace=None)

wspace and hspace controls the percent of the figure width and figure height, respec-
tively, to use as spacing between subplots. Here is a small example where I shrink the
spacing all the way to zero (see Figure 9-5):

fig, axes = plt.subplots(2, 2, sharex=True, sharey=True)
for 1 in range(2):
for j in range(2):
axes[i, j].hist(np.random.randn(500), bins=50, color='k', alpha=0.5)
plt.subplots_adjust(wspace=0, hspace=0)
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Figure 9-5. Data visualization with no inter-subplot spacing

You may notice that the axis labels overlap. matplotlib doesn't check whether the
labels overlap, so in a case like this you would need to fix the labels yourself by speci-
fying explicit tick locations and tick labels (we’ll look at how to do this in the follow-
ing sections).

Colors, Markers, and Line Styles

Matplotlib’s main plot function accepts arrays of x and y coordinates and optionally a
string abbreviation indicating color and line style. For example, to plot x versus y
with green dashes, you would execute:

ax.plot(x, y, 'g--')

This way of specifying both color and line style in a string is provided as a conve-
nience; in practice if you were creating plots programmatically you might prefer not
to have to munge strings together to create plots with the desired style. The same plot
could also have been expressed more explicitly as:

ax.plot(x, y, linestyle='--', color='g")

There are a number of color abbreviations provided for commonly used colors, but
you can use any color on the spectrum by specifying its hex code (e.g., '#CECECE').
You can see the full set of line styles by looking at the docstring for plot (use plot? in
IPython or Jupyter).
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Line plots can additionally have markers to highlight the actual data points. Since
matplotlib creates a continuous line plot, interpolating between points, it can occa-
sionally be unclear where the points lie. The marker can be part of the style string,

which must have color followed by marker type and line style (see Figure 9-6):

In [30]: from import randn

In [31]: plt.plot(randn(30).cumsum(), 'ko--")
»
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Figure 9-6. Line plot with markers

This could also have been written more explicitly as:
plot(randn(30).cumsum(), color="k', linestyle='dashed', marker='0")
For line plots, you will notice that subsequent points are linearly interpolated by
default. This can be altered with the drawstyle option (Figure 9-7):

np.random.randn(30).cumsum()

In [33]: data =

In [34]: plt.plot(data, 'k--', label='Default')
Out[34]: [<matplotlib.lines.Line2D at 0x7fb624d86160>]

In [35]: plt.plot(data, 'k-', drawstyle='steps-post', label='steps-post')
Out[35]: [<matplotlib.lines.Line2D at 0x7fb624d869e8>]

In [36]: plt.legend(loc="best")
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——- Default
—— steps-post /7

Figure 9-7. Line plot with different drawstyle options

You may notice output like <matplotlib.lines.Line2D at ...>when you run this.
matplotlib returns objects that reference the plot subcomponent that was just added.
A lot of the time you can safely ignore this output. Here, since we passed the label
arguments to plot, we are able to create a plot legend to identify each line using
plt.legend.

You must call plt.legend (or ax.legend, if you have a reference to
the axes) to create the legend, whether or not you passed the label
options when plotting the data.

Ticks, Labels, and Legends

For most kinds of plot decorations, there are two main ways to do things: using the
procedural pyplot interface (i.e., matplotlib.pyplot) and the more object-oriented
native matplotlib API.

The pyplot interface, designed for interactive use, consists of methods like x1im,
xticks, and xticklabels. These control the plot range, tick locations, and tick labels,
respectively. They can be used in two ways:
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« Called with no arguments returns the current parameter value (e.g., plt.xlim()
returns the current x-axis plotting range)

o Called with parameters sets the parameter value (e.g., plt.xlim([0, 10]), sets
the x-axis range to 0 to 10)

All such methods act on the active or most recently created AxesSubplot. Each of
them corresponds to two methods on the subplot object itself; in the case of xlim
these are ax.get_x1im and ax.set_xlim. I prefer to use the subplot instance methods
myself in the interest of being explicit (and especially when working with multiple
subplots), but you can certainly use whichever you find more convenient.

Setting the title, axis labels, ticks, and ticklabels

To illustrate customizing the axes, I'll create a simple figure and plot of a random
walk (see Figure 9-8):

In [37]: fig = plt.figure()
In [38]: ax = fig.add_subplot(1, 1, 1)

In [39]: ax.plot(np.random.randn(1000).cumsum())

40 4

30 1

20 A

10 4

—10

—20 A

0 200 400 600 800 1000

Figure 9-8. Simple plot for illustrating xticks (with label)

To change the x-axis ticks, it’s easiest to use set_xticks and set_xticklabels. The
former instructs matplotlib where to place the ticks along the data range; by default
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these locations will also be the labels. But we can set any other values as the labels
using set_xticklabels:

In [40]: ticks = ax.set_xticks([0, 250, 500, 750, 1000])

In [41]: labels = ax.set_xticklabels(['one', 'two', 'three', 'four', 'five'],
et rotation=30, fontsize='small')

The rotation option sets the x tick labels at a 30-degree rotation. Lastly, set_xlabel
gives a name to the x-axis and set_title the subplot title (see Figure 9-9 for the
resulting figure):

In [42]: ax.set_title('My first matplotlib plot')
Out[42]: <matplotlib.text.Text at Ox7fb624d055f8>

In [43]: ax.set_xlabel('Stages')

20 My first matplotlib plot
30 A
20 A
10 A
04
~10 A
-20 4 . i
o W - o i
Stages

Figure 9-9. Simple plot for illustrating xticks

Moditying the y-axis consists of the same process, substituting y for x in the above.
The axes class has a set method that allows batch setting of plot properties. From the
prior example, we could also have written:

props = {
"title': 'My first matplotlib plot’,
'xlabel': 'Stages'

}

ax.set(**props)
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Adding legends

Legends are another critical element for identifying plot elements. There are a couple
of ways to add one. The easiest is to pass the label argument when adding each piece

of the plot:
In [44]:
In [45]:

In [46]:
Out[46]:

In [47]:
out[47]:

In [48]:
Out[48]:

from import randn
fig = plt.figure(); ax = fig.add_subplot(1l, 1, 1)

ax.plot(randn(1000).cumsum(), 'k', label='one')
[<matplotlib.lines.Line2D at 0x7fb624bdf860>]

ax.plot(randn(1000).cumsum(), 'k--', label='two')
[<matplotlib.lines.Line2D at 0x7fb624be90f0>]

ax.plot(randn(1000).cumsum(), 'k.', label='three')
[<matplotlib.lines.Line2D at 0x7fb624be9160>]

Once you've done this, you can either call ax.legend() or plt.legend() to automat-
ically create a legend. The resulting plot is in Figure 9-10:

In [49]:

ax.legend(loc="best")

20 A
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—10
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Figure 9-10. Simple plot with three lines and legend

The legend method has several other choices for the location loc argument. See the
docstring (with ax.legend?) for more information.
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The loc tells matplotlib where to place the plot. If you aren’t picky, 'best' is a good
option, as it will choose a location that is most out of the way. To exclude one or more

elements from the legend, pass no label or label='_nolegend_'.

Annotations and Drawing on a Subplot

In addition to the standard plot types, you may wish to draw your own plot annota-
tions, which could consist of text, arrows, or other shapes. You can add annotations
and text using the text, arrow, and annotate functions. text draws text at given
coordinates (x, y) on the plot with optional custom styling:

ax.text(x, y, 'Hello world!',
family="monospace', fontsize=10)

Annotations can draw both text and arrows arranged appropriately. As an example,
let’s plot the closing S&P 500 index price since 2007 (obtained from Yahoo! Finance)
and annotate it with some of the important dates from the 2008-2009 financial crisis.
You can most easily reproduce this code example in a single cell in a Jupyter note-
book. See Figure 9-11 for the result:

from import datetime

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)

data = pd.read_csv('examples/spx.csv', index_col=0, parse_dates=True)
spx = data[ 'SPX']

spx.plot(ax=ax, style='k-")

crisis_data = [
(datetime(2007, 10, 11), 'Peak of bull market'),
(datetime(2008, 3, 12), 'Bear Stearns Fails'),
(datetime(2008, 9, 15), 'Lehman Bankruptcy')

]

for date, label in crisis_data:
ax.annotate(label, xy=(date, spx.asof(date) + 75),
xytext=(date, spx.asof(date) + 225),
arrowprops=dict(facecolor='black', headwidth=4, width=2,
headlength=4),
horizontalalignment="'1left', verticalalignment="'top"')

# Zoom in on 2007-2010
ax.set_xlim(['1/1/2007', '1/1/2011'])
ax.set_ylim([600, 1800])

ax.set_title('Important dates in the 2008-2009 financial crisis')
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Important dates in the 2008-2009 financial crisis
Peak of bull market
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Figure 9-11. Important dates in the 2008-2009 financial crisis

There are a couple of important points to highlight in this plot: the ax.annotate
method can draw labels at the indicated x and y coordinates. We use the set_xlim
and set_ylim methods to manually set the start and end boundaries for the plot
rather than using matplotlibs default. Lastly, ax.set_title adds a main title to the
plot.

See the online matplotlib gallery for many more annotation examples to learn from.

Drawing shapes requires some more care. matplotlib has objects that represent many
common shapes, referred to as patches. Some of these, like Rectangle and Circle, are
found in matplotlib.pyplot, but the full set is located in matplotlib.patches.

To add a shape to a plot, you create the patch object shp and add it to a subplot by
calling ax.add_patch(shp) (see Figure 9-12):

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)

rect = plt.Rectangle((0.2, 0.75), 0.4, 0.15, color="k', alpha=0.3)

circ = plt.Circle((0.7, 0.2), 0.15, color="b"', alpha=0.3)

pgon = plt.Polygon([[0.15, 0.15], [0.35, 0.4], [0.2, 0.6]],
color="'g', alpha=0.5)

ax.add_patch(rect)
ax.add_patch(circ)
ax.add_patch(pgon)
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Figure 9-12. Data visualization composed from three different patches

If you look at the implementation of many familiar plot types, you will see that they
are assembled from patches.

Saving Plots to File

You can save the active figure to file using plt.savefig. This method is equivalent to
the figure object’s savefig instance method. For example, to save an SVG version of a
figure, you need only type:

plt.savefig('figpath.svg')

The file type is inferred from the file extension. So if you used .pdf instead, you
would get a PDE. There are a couple of important options that I use frequently for
publishing graphics: dpi, which controls the dots-per-inch resolution, and
bbox_inches, which can trim the whitespace around the actual figure. To get the
same plot as a PNG with minimal whitespace around the plot and at 400 DPI, you
would do:

plt.savefig('figpath.png', dpi=400, bbox_inches='tight")

savefig doesn't have to write to disk; it can also write to any file-like object, such as a
BytesIO:

from import BytesIO

buffer = BytesIO()

plt.savefig(buffer)
plot_data = buffer.getvalue()

See Table 9-2 for a list of some other options for savefig.
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Table 9-2. Figure.savefig options

Argument Description

fname String containing a filepath or a Python file-like object. The figure format is inferred from the file
extension (e.g., . pdf for PDF or . png for PNG)

dpi The figure resolution in dots per inch; defaults to 100 out of the box but can be configured

facecolor, The color of the figure background outside of the subplots; 'w' (white), by default

edgecolor

format The explicit file format to use (' png*, 'pdf"', 'svg', 'ps', 'eps’,..)

bbox_inches The portion of the figure to save; if ' tight' is passed, will attempt to trim the empty space around
the figure

matplotlib Configuration

matplotlib comes configured with color schemes and defaults that are geared primar-
ily toward preparing figures for publication. Fortunately, nearly all of the default
behavior can be customized via an extensive set of global parameters governing figure
size, subplot spacing, colors, font sizes, grid styles, and so on. One way to modify the
configuration programmatically from Python is to use the rc method; for example, to
set the global default figure size to be 10 x 10, you could enter:

plt.rc('figure', figsize=(10, 10))

The first argument to rc is the component you wish to customize, such as 'figure’',
'axes', 'xtick', 'ytick', 'grid', 'legend’, or many others. After that can follow a
sequence of keyword arguments indicating the new parameters. An easy way to write
down the options in your program is as a dict:

font_options = {'family' : 'monospace’,
'weight' : 'bold',
'size’ : 'small'}

plt.rc('font', **font_options)

For more extensive customization and to see a list of all the options, matplotlib comes
with a configuration file matplotlibrc in the matplotlib/mpl-data directory. If you cus-
tomize this file and place it in your home directory titled .matplotlibre, it will be
loaded each time you use matplotlib.

As we'll see in the next section, the seaborn package has several built-in plot themes
or styles that use matplotlib’s configuration system internally.

9.2 Plotting with pandas and seaborn

matplotlib can be a fairly low-level tool. You assemble a plot from its base compo-
nents: the data display (i.e., the type of plot: line, bar, box, scatter, contour, etc.), leg-
end, title, tick labels, and other annotations.
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In pandas we may have multiple columns of data, along with row and column labels.
pandas itself has built-in methods that simplify creating visualizations from Data-
Frame and Series objects. Another library is seaborn, a statistical graphics library cre-
ated by Michael Waskom. Seaborn simplifies creating many common visualization

types.

Importing seaborn modifies the default matplotlib color schemes
and plot styles to improve readability and aesthetics. Even if you do
not use the seaborn API, you may prefer to import seaborn as a
simple way to improve the visual aesthetics of general matplotlib
plots.

Line Plots

Series and DataFrame each have a plot attribute for making some basic plot types. By
default, plot() makes line plots (see Figure 9-13):

In [60]: s = pd.Series(np.random.randn(10).cumsum(), index=np.arange(0, 100, 10))

In [61]: s.plot()

0 10 20 30 40 50 60 70 80 90

Figure 9-13. Simple Series plot

The Series object’s index is passed to matplotlib for plotting on the x-axis, though you
can disable this by passing use_index=False. The x-axis ticks and limits can be
adjusted with the xticks and x1im options, and y-axis respectively with yticks and
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ylim. See Table 9-3 for a full listing of plot options. I'll comment on a few more of
them throughout this section and leave the rest to you to explore.

Most of pandas’s plotting methods accept an optional ax parameter, which can be a
matplotlib subplot object. This gives you more flexible placement of subplots in a grid
layout.

DataFrame’s plot method plots each of its columns as a different line on the same
subplot, creating a legend automatically (see Figure 9-14):
In [62]: df = pd.DataFrame(np.random.randn(10, 4).cumsum(0),
columns=['A', 'B', 'C', 'D'],
index=np.arange(0, 100, 10))

In [63]: df.plot()

0 10 20 30 40 50 60 70 80 90

Figure 9-14. Simple DataFrame plot

The plot attribute contains a “family” of methods for different plot types. For exam-
ple, df.plot() is equivalent to df .plot.line(). We'll explore some of these methods
next.

Additional keyword arguments to plot are passed through to the
respective matplotlib plotting function, so you can further custom-
ize these plots by learning more about the matplotlib API.
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Table 9-3. Series.plot method arguments

Argument Description

label Label for plot legend

ax matplotlib subplot object to plot on; if nothing passed, uses active matplotlib subplot
style Style string, like 'ko-- ', to be passed to matplotlib

alpha The plot fill opacity (from 0 to 1)

kind (anbe 'area’', 'bar’', 'barh', 'density', 'hist', 'kde', 'line', 'pie’
logy Use logarithmic scaling on the y-axis

use_index Use the object index for tick labels

rot Rotation of tick labels (0 through 360)

xticks Values to use for x-axis ticks

yticks Values to use for y-axis ticks

x1im x-axis limits (e.g., [0, 10])

ylim y-axis limits

grid Display axis grid (on by default)

DataFrame has a number of options allowing some flexibility with how the columns
are handled; for example, whether to plot them all on the same subplot or to create
separate subplots. See Table 9-4 for more on these.

Table 9-4. DataFrame-specific plot arguments

Argument Description

subplots Plot each DataFrame column in a separate subplot

sharex If subplots=True, share the same x-axis, linking ticks and limits
sharey If subplots=True, share the same y-axis

figsize Size of figure to create as tuple

title Plot title as string

legend Add a subplot legend (True by default)

sort_columns Plot columns in alphabetical order; by default uses existing column order

For time series plotting, see Chapter 11.
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Bar Plots

The plot.bar() and plot.barh() make vertical and horizontal bar plots, respec-
tively. In this case, the Series or DataFrame index will be used as the x (bar) or y
(barh) ticks (see Figure 9-15):

In [64]: fig, axes = plt.subplots(2, 1)
In [65]: data = pd.Series(np.random.rand(16), index=1ist('abcdefghijklmnop'))
In [66]: data.plot.bar(ax=axes[0], color="k', alpha=0.7)
Out[66]: <matplotlib.axes._subplots.AxesSubplot at 0x7fb62493d470>
In [67]: data.plot.barh(ax=axes[1], color='k', alpha=0.7)
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Figure 9-15. Horizonal and vertical bar plot

The options color="k' and alpha=0.7 set the color of the plots to black and use par-
tial transparency on the filling.
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With a DataFrame, bar plots group the values in each row together in a group in bars,
side by side, for each value. See Figure 9-16:

In [69]: df = pd.DataFrame(np.random.rand(6, 4),
index=['one', 'two', 'three', 'four', 'five', 'six'],
..... columns=pd.Index(['A"', 'B', 'C', 'D'], name='Genus'))

In [70]: df

Out[70]:

Genus A B C D

one 0.370670 0.602792 0.229159 0.486744

two 0.420082 0.571653 0.049024 0.880592

three 0.814568 0.277160 0.880316 0.431326

four 0.374020 0.899420 0.460304 0.100843

five 0.433270 0.125107 0.494675 0.961825

six 0.601648 0.478576 0.205690 0.560547

In [71]: df.plot.bar()
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Figure 9-16. DataFrame bar plot

Note that the name “Genus” on the DataFrame’s columns is used to title the legend.
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We create stacked bar plots from a DataFrame by passing stacked=True, resulting in
the value in each row being stacked together (see Figure 9-17):

In [73]: df.plot.barh(stacked=True, alpha=0.5)
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Figure 9-17. DataFrame stacked bar plot

A useful recipe for bar plots is to visualize a Series’s value frequency
using value_counts: s.value_counts().plot.bar().

Returning to the tipping dataset used earlier in the book, suppose we wanted to make
a stacked bar plot showing the percentage of data points for each party size on each
day. I load the data using read_csv and make a cross-tabulation by day and party size:

In [75]: tips = pd.read_csv('examples/tips.csv')
In [76]: party_counts = pd.crosstab(tips['day'], tips['size'])

In [77]: party_counts

Out[77]:

size 1 2 3 4 5 6
day

Fri 1 16 1 1 0 0
Sat 2 53 18 13 1 ©
Sun 0 39 15 18 3 1
Thur 1 48 4 51 3
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# Not many 1- and 6-person parties
In [78]: party_counts = party_counts.loc[:, 2:5]

Then, normalize so that each row sums to 1 and make the plot (see Figure 9-18):

# Normalize to sum to 1
In [79]: party_pcts = party_counts.div(party_counts.sum(1), axis=0)

In [80]: party_pcts

Out[80]:

size 2 3 4 5
day

Fri 0.888889 0.055556 0.055556 0.000000
Sat 0.623529 0.211765 0.152941 0.011765
Sun 0.520000 0.200000 0.240000 0.040000
Thur 0.827586 0.068966 0.086207 0.017241

In [81]: party_pcts.plot.bar()
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Figure 9-18. Fraction of parties by size on each day

So you can see that party sizes appear to increase on the weekend in this dataset.

With data that requires aggregation or summarization before making a plot, using the
seaborn package can make things much simpler. Lets look now at the tipping per-
centage by day with seaborn (see Figure 9-19 for the resulting plot):
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In [83]: import seaborn as sns
In [84]: tips['tip_pct'] = tips['tip'] / (tips['total_bill'] - tips['tip'])

In [85]: tips.head()

Out[85]:

total_bill tip smoker day time size tip_pct
0 16.99 1.01 No Sun Dinner 2 0.063204
1 10.34 1.66 No Sun Dinner 3 0.191244
2 21.01 3.50 No Sun Dinner 3 0.199886
3 23.68 3.31 No Sun Dinner 2 0.162494
4 24.59 3.61 No Sun Dinner 4 0.172069

In [86]: sns.barplot(x='tip_pct', y='day', data=tips, orient='h")

Sun
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day

Thur

Fri

0.00 0.05 0.10 0.15 0.20 0.25 0.30
tip_pct

Figure 9-19. Tipping percentage by day with error bars

Plotting functions in seaborn take a data argument, which can be a pandas Data-
Frame. The other arguments refer to column names. Because there are multiple
observations for each value in the day, the bars are the average value of tip_pct. The
black lines drawn on the bars represent the 95% confidence interval (this can be con-
figured through optional arguments).
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seaborn.barplot has a hue option that enables us to split by an additional categorical
value (Figure 9-20):

In [88]: sns.barplot(x='tip_pct', y='day', hue='time', data=tips, orient='h")
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Figure 9-20. Tipping percentage by day and time

Notice that seaborn has automatically changed the aesthetics of plots: the default
color palette, plot background, and grid line colors. You can switch between different
plot appearances using seaborn.set:

In [90]: sns.set(style="whitegrid")

Histograms and Density Plots

A histogram is a kind of bar plot that gives a discretized display of value frequency.
The data points are split into discrete, evenly spaced bins, and the number of data
points in each bin is plotted. Using the tipping data from before, we can make a histo-
gram of tip percentages of the total bill using the plot.hist method on the Series
(see Figure 9-21):

In [92]: tips['tip_pct'].plot.hist(bins=50)
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Figure 9-21. Histogram of tip percentages

A related plot type is a density plot, which is formed by computing an estimate of a
continuous probability distribution that might have generated the observed data. The
usual procedure is to approximate this distribution as a mixture of “kernels”—that is,
simpler distributions like the normal distribution. Thus, density plots are also known
as kernel density estimate (KDE) plots. Using plot.kde makes a density plot using
the conventional mixture-of-normals estimate (see Figure 9-22):

In [94]: tips['tip_pct'].plot.density()
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Figure 9-22. Density plot of tip percentages

Seaborn makes histograms and density plots even easier through its distplot
method, which can plot both a histogram and a continuous density estimate simulta-
neously. As an example, consider a bimodal distribution consisting of draws from
two different standard normal distributions (see Figure 9-23):

In [96]: compl = np.random.normal(0, 1, size=200)
In [97]: comp2 = np.random.normal(10, 2, size=200)
In [98]: values = pd.Series(np.concatenate([compl, comp2]))

In [99]: sns.distplot(values, bins=100, color='k')
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Figure 9-23. Normalized histogram of normal mixture with density estimate

Scatter or Point Plots

Point plots or scatter plots can be a useful way of examining the relationship between
two one-dimensional data series. For example, here we load the macrodata dataset
from the statsmodels project, select a few variables, then compute log differences:

In [160]: macro = pd.read_csv('examples/macrodata.csv')
In [101]: data = macro[['cpi', 'ml', 'tbilrate', 'unemp']]
In [162]: trans_data = np.log(data).diff().dropna()

In [163]: trans_data[-5:]
Out[103]:

cpl ml tbilrate unemp
198 -0.007904 0.045361 -0.396881 0.105361
199 -0.021979 0.066753 -2.277267 0.139762
200 0.002340 0.010286 0.606136 0.160343
201 0.008419 0.037461 -0.200671 0.127339
202 0.008894 0.012202 -0.405465 0.042560
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We can then use seaborn’s regplot method, which makes a scatter plot and fits a lin-
ear regression line (see Figure 9-24):

In [105]: sns.regplot('ml', 'unemp', data=trans_data)
Out[105]: <matplotlib.axes._subplots.AxesSubplot at 0x7fb613720bed>

In [106]: plt.title('Changes in log %s versus log %s' % ('ml', 'unemp'))
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Figure 9-24. A seaborn regression/scatter plot

In exploratory data analysis it’s helpful to be able to look at all the scatter plots among
a group of variables; this is known as a pairs plot or scatter plot matrix. Making such a
plot from scratch is a bit of work, so seaborn has a convenient pairplot function,
which supports placing histograms or density estimates of each variable along the
diagonal (see Figure 9-25 for the resulting plot):

In [107]: sns.pairplot(trans_data, diag_kind='kde', plot_kws={'alpha': 0.2})

9.2 Plotting with pandas and seaborn | 281



0.04

0.02 e i

?
s
:

0.00
—-0.02
—-0.04

0.08

0.06
0.04

T 002 v s pe1
0.00 : 2
s L
-0.02
-0.04

=
w»

4
!
¢

|
[
w

-1.0

tbilrate

|
=
5]

-2.0

i 4 ‘
' ; o
0.0 .5 » &n vy t

—0.02 0.00 0.02 0.04 0.00 0.05 -2 —E 0 0.0 0.2
cpi ml tbilrate unemp

Figure 9-25. Pair plot matrix of statsmodels macro data

You may notice the plot_kws argument. This enables us to pass down configuration
options to the individual plotting calls on the off-diagonal elements. Check out the
seaborn.pairplot docstring for more granular configuration options.
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Facet Grids and Categorical Data

What about datasets where we have additional grouping dimensions? One way to vis-
ualize data with many categorical variables is to use a facet grid. Seaborn has a useful
built-in function factorplot that simplifies making many kinds of faceted plots (see
Figure 9-26 for the resulting plot):

In [108]: sns.factorplot(x='day', y="tip_pct', hue='time', col='smoker',
..... : kind="bar', data=tips[tips.tip_pct < 1])
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Figure 9-26. Tipping percentage by day/time/smoker

Instead of grouping by 'time' by different bar colors within a facet, we can also
expand the facet grid by adding one row per time value (Figure 9-27):
In [109]: sns.factorplot(x='day', y='tip_pct', row='time',

...... col="smoker"',
et kind="bar', data=tips[tips.tip_pct < 1])
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Figure 9-27. tip_pct by day; facet by time/smoker

factorplot supports other plot types that may be useful depending on what you are
trying to display. For example, box plots (which show the median, quartiles, and out-
liers) can be an effective visualization type (Figure 9-28):

In [110]:

sns.factorplot(x="tip_pct', y='day', kind='box',

data=tips[tips.tip_pct < 0.5])
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Figure 9-28. Box plot of tip_pct by day

You can create your own facet grid plots using the more general seaborn.FacetGrid
class. See the seaborn documentation for more.

9.3 Other Python Visualization Tools

As is common with open source, there are a plethora of options for creating graphics
in Python (too many to list). Since 2010, much development effort has been focused
on creating interactive graphics for publication on the web. With tools like Bokeh and
Plotly, it's now possible to specify dynamic, interactive graphics in Python that are
destined for a web browser.

For creating static graphics for print or web, I recommend defaulting to matplotlib
and add-on libraries like pandas and seaborn for your needs. For other data visualiza-
tion requirements, it may be useful to learn one of the other available tools out there.
I encourage you to explore the ecosystem as it continues to involve and innovate into
the future.
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9.4 Conclusion

The goal of this chapter was to get your feet wet with some basic data visualization
using pandas, matplotlib, and seaborn. If visually communicating the results of data
analysis is important in your work, I encourage you to seek out resources to learn
more about effective data visualization. It is an active field of research and you can
practice with many excellent learning resources available online and in print form.

In the next chapter, we turn our attention to data aggregation and group operations
with pandas.
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CHAPTER 10
Data Aggregation and Group Operations

Categorizing a dataset and applying a function to each group, whether an aggregation
or transformation, is often a critical component of a data analysis workflow. After
loading, merging, and preparing a dataset, you may need to compute group statistics
or possibly pivot tables for reporting or visualization purposes. pandas provides a
flexible groupby interface, enabling you to slice, dice, and summarize datasets in a
natural way.

One reason for the popularity of relational databases and SQL (which stands for
“structured query language”) is the ease with which data can be joined, filtered, trans-
formed, and aggregated. However, query languages like SQL are somewhat con-
strained in the kinds of group operations that can be performed. As you will see, with
the expressiveness of Python and pandas, we can perform quite complex group oper-
ations by utilizing any function that accepts a pandas object or NumPy array. In this
chapter, you will learn how to:

« Split a pandas object into pieces using one or more keys (in the form of func-
tions, arrays, or DataFrame column names)

o Calculate group summary statistics, like count, mean, or standard deviation, or a
user-defined function

o Apply within-group transformations or other manipulations, like normalization,
linear regression, rank, or subset selection

« Compute pivot tables and cross-tabulations

o Perform quantile analysis and other statistical group analyses
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Aggregation of time series data, a special use case of groupby, is
referred to as resampling in this book and will receive separate
treatment in Chapter 11.

10.1 GroupBy Mechanics

Hadley Wickham, an author of many popular packages for the R programming lan-
guage, coined the term split-apply-combine for describing group operations. In the
first stage of the process, data contained in a pandas object, whether a Series, Data-
Frame, or otherwise, is split into groups based on one or more keys that you provide.
The splitting is performed on a particular axis of an object. For example, a DataFrame
can be grouped on its rows (axis=0) or its columns (axis=1). Once this is done, a
function is applied to each group, producing a new value. Finally, the results of all
those function applications are combined into a result object. The form of the result-
ing object will usually depend on what’s being done to the data. See Figure 10-1 for a
mockup of a simple group aggregation.

Split Apply Combine

key data
A|O
A 0
A5
B 5 sum
A [0 \
C 10
A 5 B|5 A |15
sum
B 10 Bl[10| —» B |30
C 15 B |15 C |45
A 10
c|10
B 15 um
C|15
C 20
c|20

Figure 10-1. Illustration of a group aggregation

Each grouping key can take many forms, and the keys do not have to be all of the
same type:

o A list or array of values that is the same length as the axis being grouped

o A value indicating a column name in a DataFrame
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o A dict or Series giving a correspondence between the values on the axis being
grouped and the group names

« A function to be invoked on the axis index or the individual labels in the index

Note that the latter three methods are shortcuts for producing an array of values to be
used to split up the object. Don’t worry if this all seems abstract. Throughout this
chapter, I will give many examples of all these methods. To get started, here is a small
tabular dataset as a DataFrame:
In [10]: df = pd.DataFrame({'key1' : ['a', 'a', 'b', 'b', 'a'],

P 'key2' : ['one', 'two', 'one', 'two', 'one'],

R 'datal' : np.random.randn(5),

el 'data2' : np.random.randn(5)})

In [11]: df
Out[11]:

datal data2 keyl key2
0 -0.204708 1.393406 a one
1 0.478943 0.092908 a two
2 -0.519439 0.281746 b one
3 -0.555730 0.769023 b two
4 1.965781 1.246435 a one

Suppose you wanted to compute the mean of the datal column using the labels from
key1. There are a number of ways to do this. One is to access datal and call groupby
with the column (a Series) at key1:

In [12]: grouped = df['datal'].groupby(df['key1'])

In [13]: grouped

Out[13]: <pandas.core.groupby.SeriesGroupBy object at 0x7faa31537390>
This grouped variable is now a GroupBy object. It has not actually computed anything
yet except for some intermediate data about the group key df[ 'key1']. The idea is
that this object has all of the information needed to then apply some operation to
each of the groups. For example, to compute group means we can call the GroupBy’s
mean method:

In [14]: grouped.mean()
out[14]:

key1

a 0.746672

b -0.537585

Name: datal, dtype: float64

Later, I'll explain more about what happens when you call .mean(). The important
thing here is that the data (a Series) has been aggregated according to the group key,
producing a new Series that is now indexed by the unique values in the key1 column.
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The result index has the name 'key1' because the DataFrame column df[ 'key1']

did.

If instead we had passed multiple arrays as a list, we'd get something different:

In [15]: means = df['datal'].groupby([df['key1l'], df['key2']]).mean()

In [16]: means

out[16]:

keyl key2

a one 0.880536
two 0.478943

b one -0.519439
two -0.555730

Name: datal, dtype: float64

Here we grouped the data using two keys, and the resulting Series now has a hier-
archical index consisting of the unique pairs of keys observed:

In [17]: means.unstack()
Out[17]:

key2 one two
key1

a 0.880536 0.478943
b -0.519439 -0.555730

In this example, the group keys are all Series, though they could be any arrays of the
right length:

In [18]: states = np.array(['Ohio', 'California', 'California', 'Ohio', 'Ohio'])
In [19]: years = np.array([2005, 2005, 2006, 2005, 2006])

In [20]: df['datal'].groupby([states, years]).mean()
Out[20]:
California 2005 0.478943
2006 -0.519439
Ohtio 2005 -0.380219
2006 1.965781
Name: datal, dtype: float64

Frequently the grouping information is found in the same DataFrame as the data you
want to work on. In that case, you can pass column names (whether those are strings,
numbers, or other Python objects) as the group keys:

In [21]: df.groupby('keyl').mean()
Out[21]:
datal data2
key1
a 0.746672 0.910916
b -0.537585 0.525384

In [22]: df.groupby(['keyl', 'key2']).mean()
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Out[22]:
datal dataz
keyl key2
a one 0.880536 1.319920
two 0.478943 0.092908
b one -0.519439 0.281746
two -0.555730 0.769023

You may have noticed in the first case df .groupby('key1').mean() that there is no
key2 column in the result. Because df[ 'key2'] is not numeric data, it is said to be a
nuisance column, which is therefore excluded from the result. By default, all of the

numeric columns are aggregated, though it is possible to filter down to a subset, as
you’ll see soon.

Regardless of the objective in using groupby, a generally useful GroupBy method is
size, which returns a Series containing group sizes:

In [23]: df.groupby(['keyl', 'key2']).size()

Out[23]:

keyl key2

a one 2
two 1

b one 1
two 1

dtype: int64

Take note that any missing values in a group key will be excluded from the result.

Iterating Over Groups

The GroupBy object supports iteration, generating a sequence of 2-tuples containing
the group name along with the chunk of data. Consider the following:

In [24]: for name, group in df.groupby('keyl'):
cealt print(name)
et print(group)

datal data2 keyl key2
-0.204708 1.393406 a one
0.478943 0.092908 a two
1.965781 1.246435 a one

o~ O

datal data2 keyl key2
2 -0.519439 0.281746 b one
3 -0.555730 0.769023 b two

In the case of multiple keys, the first element in the tuple will be a tuple of key values:

In [25]: for (k1, k2), group in df.groupby(['keyl', 'key2']):
cealt print((k1, k2))
et print(group)
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(|a|, ‘One‘)
datal data2 keyl key2

0 -0.204708 1.393406 a one
4 1.965781 1.246435 a one
('a'", "two')

datal data2 keyl key2
1 0.478943 0.092908 a two
('b', 'one'")

datal data2 keyl key2
2 -0.519439 0.281746 b one
('b', "two')

datal data2 keyl key2
3 -0.55573 0.769023 b two

Of course, you can choose to do whatever you want with the pieces of data. A recipe
you may find useful is computing a dict of the data pieces as a one-liner:

In [26]: pieces = dict(list(df.groupby('key1')))

In [27]: pieces['b']
out[27]:

datal data2 keyl key2
2 -0.519439 0.281746 b one
3 -0.555730 0.769023 b two

By default groupby groups on axis=0, but you can group on any of the other axes.
For example, we could group the columns of our example df here by dtype like so:

In [28]: df.dtypes
Out[28]:

datal float64
dataz float64
key1 object
key2 object
dtype: object

In [29]: grouped = df.groupby(df.dtypes, axis=1)
We can print out the groups like so:

In [30]: for dtype, group in grouped:
et print(dtype)
P print(group)

datal data2
-0.204708 1.393406
0.478943 0.092908
-0.519439 0.281746
-0.555730 0.769023
1.965781 1.246435
object

keyl key2

A wWwNRER O
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Selecting a Column or Subset of Columns

Indexing a GroupBy object created from a DataFrame with a column name or array
of column names has the effect of column subsetting for aggregation. This means
that:

df.groupby('key1')['datal']
df.groupby('key1')[['data2']]

are syntactic sugar for:

df['datal'].groupby(df[ 'key1'])

df[['data2']].groupby(df[ 'key1'])
Especially for large datasets, it may be desirable to aggregate only a few columns. For
example, in the preceding dataset, to compute means for just the data2 column and
get the result as a DataFrame, we could write:

In [31]: df.groupby(['key1l', 'key2'])[['data2']].mean()
Out[31]:
data2

keyl key2
a one 1.319920

two 0.092908
b one 0.281746

two 0.769023

The object returned by this indexing operation is a grouped DataFrame if a list or
array is passed or a grouped Series if only a single column name is passed as a scalar:

In [32]: s_grouped = df.groupby(['keyl', 'key2'])['data2']

In [33]: s_grouped
Out[33]: <pandas.core.groupby.SeriesGroupBy object at Ox7faa30c78da0>

In [34]: s_grouped.mean()

Out[34]:

keyl key2

a one 1.319920
two 0.092908

b one 0.281746
two 0.769023

Name: data2, dtype: float64
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Grouping with Dicts and Series

Grouping information may exist in a form other than an array. Let’s consider another
example DataFrame:

In [35]: people = pd.DataFrame(np.random.randn(5, 5),
cealt columns=['a', 'b', 'c', 'd', 'e'],
e index=['Joe', 'Steve', 'Wes', 'Jim', 'Travis'])

In [36]: people.iloc[2:3, [1, 2]] = np.nan # Add a few NA values

In [37]: people

Out[37]:

a b [« d e
Joe 1.007189 -1.296221 0.274992 0.228913 1.352917
Steve 0.886429 -2.001637 -0.371843 1.669025 -0.438570
Wes -0.539741 NaN NaN -1.021228 -0.577087
Jim 0.124121 0.302614 0.523772 0.000940 1.343810

Travis -0.713544 -0.831154 -2.370232 -1.860761 -0.860757

Now, suppose I have a group correspondence for the columns and want to sum
together the columns by group:

In [38]: mapping = {'a': 'red', 'b': 'red', 'c': 'blue',
et 'd': 'blue', 'e': 'red', 'f' : 'orange'}

Now, you could construct an array from this dict to pass to groupby, but instead we

can just pass the dict (I included the key 'f' to highlight that unused grouping keys
are OK):

In [39]: by_column = people.groupby(mapping, axis=1)

In [40]: by_column.sum()

Out[40]:

blue red
Joe 0.503905 1.063885
Steve 1.297183 -1.553778
Wes -1.021228 -1.116829
Jim 0.524712 1.770545

Travis -4.230992 -2.405455
The same functionality holds for Series, which can be viewed as a fixed-size mapping:

In [41]: map_series = pd.Series(mapping)

In [42]: map_series

out[42]:

a red
b red
C blue
d blue
e red
f orange
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dtype: object

In [43]: people.groupby(map_series, axis=1).count()
Oout[43]:
blue red

Joe
Steve
Wes
Jim
Travis

NN P, NN
w wnNnN ww

Grouping with Functions

Using Python functions is a more generic way of defining a group mapping compared
with a dict or Series. Any function passed as a group key will be called once per index
value, with the return values being used as the group names. More concretely, con-
sider the example DataFrame from the previous section, which has people’s first
names as index values. Suppose you wanted to group by the length of the names;
while you could compute an array of string lengths, it's simpler to just pass the len
function:

In [44]: people.groupby(len).sum()
Out[44]:

a b C d e
3 0.591569 -0.993608 0.798764 -0.791374 2.119639
5 0.886429 -2.001637 -0.371843 1.669025 -0.438570
6 -0.713544 -0.831154 -2.370232 -1.860761 -0.860757

Mixing functions with arrays, dicts, or Series is not a problem as everything gets con-
verted to arrays internally:

In [45]: key_list = ['one', 'one', 'one', 'two', 'two']

In [46]: people.groupby([len, key_list]).min()
Out[46]:
a b C d e
3 one -0.539741 -1.296221 0.274992 -1.021228 -0.577087
two 0.124121 0.302614 0.523772 0.000940 1.343810
5 one 0.886429 -2.001637 -0.371843 1.669025 -0.438570
6 two -0.713544 -0.831154 -2.370232 -1.860761 -0.860757

Grouping by Index Levels

A final convenience for hierarchically indexed datasets is the ability to aggregate
using one of the levels of an axis index. Let’s look at an example:
In [47]: columns = pd.MultilIndex.from_arrays([['US', 'US', 'US', 'JP', 'JP'],

----- [1) 3} 5’ 1) 3]]-’
et names=['cty', 'tenor'])

In [48]: hier_df = pd.DataFrame(np.random.randn(4, 5), columns=columns)
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In [49]: hier_df

Out[49]:

cty us Jp

tenor 1 3 5 1 3
0 0.560145 -1.265934 0.119827 -1.063512 0.332883
1 -2.359419 -0.199543 -1.541996 -0.970736 -1.307030
2 0.286350 0.377984 -0.753887 0.331286 1.349742
3 0.069877 0.246674 -0.011862 1.004812 1.327195

To group by level, pass the level number or name using the level keyword:

In [50]: hier_df.groupby(level='cty', axis=1).count()
Out[50]:
cty JP U
0 2

w wwwwnm

1 2
2 2
3 2

10.2 Data Aggregation

Aggregations refer to any data transformation that produces scalar values from
arrays. The preceding examples have used several of them, including mean, count,
min, and sum. You may wonder what is going on when you invoke mean() on a
GroupBy object. Many common aggregations, such as those found in Table 10-1,
have optimized implementations. However, you are not limited to only this set of
methods.

Table 10-1. Optimized groupby methods

Function name  Description

count Number of non-NA values in the group

sum Sum of non-NA values

mean Mean of non-NA values

median Arithmetic median of non-NA values

std, var Unbiased (n — 1 denominator) standard deviation and variance
min, max Minimum and maximum of non-NA values

prod Product of non-NA values

first, last First and last non-NA values

You can use aggregations of your own devising and additionally call any method that
is also defined on the grouped object. For example, you might recall that quantile
computes sample quantiles of a Series or a DataFrame’s columns.

While quantile is not explicitly implemented for GroupBy, it is a Series method and
thus available for use. Internally, GroupBy efficiently slices up the Series, calls
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pilece.quantile(0.9) for each piece, and then assembles those results together into
the result object:

In [51]: df
Out[51]:

datal data2 keyl key2
0 -0.204708 1.393406 a one
1 0.478943 0.092908 a two
2 -0.519439 0.281746 b one
3 -0.555730 0.769023 b two
4 1.965781 1.246435 a one

In [52]: grouped = df.groupby('key1')

In [53]: grouped['datal'].quantile(0.9)
Out[53]:

key1

a 1.668413

b -0.523068

Name: datal, dtype: float64

To use your own aggregation functions, pass any function that aggregates an array to
the aggregate or agg method:

In [54]: def peak_to_peak(arr):
et return arr.max() - arr.min()

In [55]: grouped.agg(peak_to_peak)

Out[55]:

datal data2
key1
a 2.170488 1.300498

b 0.036292 0.487276

You may notice that some methods like describe also work, even though they are not
aggregations, strictly speaking:

In [56]: grouped.describe()
Out[56]:
datal \
count mean std min 25% 50% 75%
key1
a
b

.0 0.746672 1.109736 -0.204708 0.137118 0.478943 1.222362

.0 -0.537585 0.025662 -0.555730 -0.546657 -0.537585 -0.528512
data2 \

max count mean std min 25% 50%

N W

key1
a 1.965781 3.
b -0.519439 2.

0 0.910916 0.712217 0.092908 0.669671 1.246435
0 0.525384 0.344556 0.281746 0.403565 0.525384

75% max
key1
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a 1.319920 1.393406
b 0.647203 0.769023

I will explain in more detail what has happened here in Section 10.3, “Apply: General
split-apply-combine,” on page 302.

Custom aggregation functions are generally much slower than the
optimized functions found in Table 10-1. This is because there is
some extra overhead (function calls, data rearrangement) in con-
structing the intermediate group data chunks.

Column-Wise and Multiple Function Application

Let’s return to the tipping dataset from earlier examples. After loading it with
read_csv, we add a tipping percentage column tip_pct:

In [57]: tips = pd.read_csv('examples/tips.csv')

# Add tip percentage of total bill
In [58]: tips['tip_pct'] = tips['tip'] / tips['total bill']

In [59]: tips[:6]

Out[59]:

total_bill tip smoker day time size tip_pct
0 16.99 1.01 No Sun Dinner 2 0.059447
1 10.34 1.66 No Sun Dinner 3 0.160542
2 21.01 3.50 No Sun Dinner 3 0.166587
3 23.68 3.31 No Sun Dinner 2 0.139780
4 24.59 3.61 No Sun Dinner 4 0.146808
5 25.29 4.71 No Sun Dinner 4 0.186240

As you've already seen, aggregating a Series or all of the columns of a DataFrame is a
matter of using aggregate with the desired function or calling a method like mean or
std. However, you may want to aggregate using a different function depending on the
column, or multiple functions at once. Fortunately, this is possible to do, which T’ll
illustrate through a number of examples. First, I'll group the tips by day and smoker:

In [60]: grouped = tips.groupby(['day', 'smoker'])

Note that for descriptive statistics like those in Table 10-1, you can pass the name of
the function as a string:

In [61]: grouped_pct = grouped['tip_pct']

In [62]: grouped_pct.agg('mean')

Out[62]:

day  smoker

Fri No 0.151650
Yes 0.174783

Sat No 0.158048
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Yes 0.147906

Sun No 0.160113
Yes 0.187250
Thur No 0.160298
Yes 0.163863

Name: tip_pct, dtype: float64

If you pass a list of functions or function names instead, you get back a DataFrame
with column names taken from the functions:

In [63]: grouped_pct.agg(['mean', 'std', peak_to_peak])

Out[63]:
mean std peak_to_peak
day smoker
Fri No 0.151650 0.028123 0.067349
Yes 0.174783 0.051293 0.159925
Sat No 0.158048 0.039767 0.235193
Yes 0.147906 0.061375 0.290095
Sun No 0.160113 0.042347 0.193226
Yes 0.187250 0.154134 0.644685
Thur No 0.160298 0.038774 0.193350
Yes 0.163863 0.039389 0.151240

Here we passed a list of aggregation functions to agg to evaluate indepedently on the
data groups.

You don’t need to accept the names that GroupBy gives to the columns; notably,
lambda functions have the name '<lambda>', which makes them hard to identify
(you can see for yourself by looking at a function’s __name__ attribute). Thus, if you
pass a list of (name, function) tuples, the first element of each tuple will be used as
the DataFrame column names (you can think of a list of 2-tuples as an ordered
mapping):

In [64]: grouped_pct.agg([('foo', 'mean'), ('bar', np.std)])

out[64]:
foo bar
day smoker
Fri No 0.151650 0.028123
Yes 0.174783 0.051293
Sat No 0.158048 0.039767
Yes 0.147906 0.061375
Sun No 0.160113 0.042347
Yes 0.187250 0.154134
Thur No 0.160298 0.038774
Yes 0.163863 0.039389

With a DataFrame you have more options, as you can specify a list of functions to
apply to all of the columns or different functions per column. To start, suppose we
wanted to compute the same three statistics for the tip_pct and total_bill
columns:
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In [65]: functions = ['count', 'mean', 'max']
In [66]: result = grouped['tip_pct', 'total_bill'].agg(functions)

In [67]: result

Out[67]:
tip_pct total_bill
count mean max count mean max
day smoker
Fri No 4 0.151650 0.187735 4 18.420000 22.75
Yes 15 0.174783 0.263480 15 16.813333 40.17
Sat No 45 0.158048 0.291990 45 19.661778 48.33
Yes 42 0.147906 0.325733 42 21.276667 50.81
Sun No 57 0.160113 0.252672 57 20.506667 48.17
Yes 19 0.187250 0.710345 19 24.120000 45.35
Thur No 45 0.160298 0.266312 45 17.113111 41.19
Yes 17 0.163863 0.241255 17 19.190588 43.11

As you can see, the resulting DataFrame has hierarchical columns, the same as you
would get aggregating each column separately and using concat to glue the results
together using the column names as the keys argument:

In [68]: result['tip_pct']

Out[68]:
count mean max
day smoker
Fri No 4 0.151650 0.187735
Yes 15 0.174783 0.263480
Sat No 45 0.158048 0.291990
Yes 42 0.147906 0.325733
Sun No 57 0.160113 0.252672
Yes 19 0.187250 0.710345
Thur No 45 0.160298 0.266312
Yes 17 0.163863 0.241255

As before, a list of tuples with custom names can be passed:

In [69]: ftuples = [('Durchschnitt', 'mean'), ('Abweichung', np.var)]

In [70]: grouped['tip_pct', 'total bill'].agg(ftuples)
Out[70]:
tip_pct total_bill
Durchschnitt Abweichung Durchschnitt Abweichung
day smoker

Fri No 0.151650 0.000791 18.420000  25.596333
Yes 0.174783  0.002631 16.813333  82.562438
Sat No 0.158048 0.001581 19.661778  79.908965
Yes 0.147906  0.003767 21.276667 101.387535
Sun  No 0.160113 0.001793 20.506667  66.099980
Yes 0.187250  0.023757 24.120000 109.046044
Thur No 0.160298 0.001503 17.113111  59.625081
Yes 0.163863  0.001551 19.190588  69.808518
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Now, suppose you wanted to apply potentially different functions to one or more of
the columns. To do this, pass a dict to agg that contains a mapping of column names
to any of the function specifications listed so far:

In [71]: grouped.agg({'tip' : np.max, 'size' : 'sum'})
Out[71]:
tip size
day smoker
Fri No 3.50 9
Yes 4.73 31
Sat No 9.00 115
Yes 10.00 104
Sun No 6.00 167
Yes 6.50 49
Thur No 6.70 112
Yes 5.00 40

In [72]: grouped.agg({'tip_pct' : ['min', 'max', 'mean', 'std'],

..... 'size' : 'sum'})
out[72]:

tip_pct size
min max mean std sum

day smoker
Fri No 0.120385 0.187735 0.151650 0.028123 9
Yes 0.103555 0.263480 0.174783 0.051293 31
Sat No 0.056797 0.291990 0.158048 0.039767 115
Yes 0.035638 0.325733 0.147906 0.061375 104
Sun No 0.059447 0.252672 0.160113 0.042347 167
Yes 0.065660 0.710345 0.187250 0.154134 49
Thur No 0.072961 0.266312 0.160298 0.038774 112
Yes 0.090014 0.241255 0.163863 0.039389 40

A DataFrame will have hierarchical columns only if multiple functions are applied to
at least one column.

Returning Aggregated Data Without Row Indexes

In all of the examples up until now, the aggregated data comes back with an index,
potentially hierarchical, composed from the unique group key combinations. Since
this isn’t always desirable, you can disable this behavior in most cases by passing
as_1index=False to groupby:

In [73]: tips.groupby(['day', 'smoker'], as_index=False).mean()

Out[73]:

day smoker total_bill tip size tip_pct
0 Fri No 18.420000 2.812500 2.250000 0.151650
1 Fri Yes 16.813333 2.714000 2.066667 0.174783
2 Sat No 19.661778 3.102889 2.555556 0.158048
3 Sat Yes 21.276667 2.875476 2.476190 0.147906
4 Sun No 20.506667 3.167895 2.929825 0.160113
5 Sun Yes 24.120000 3.516842 2.578947 0.187250
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6 Thur No
7 Thur Yes

Of course, it's always possible to obtain the result in this format by calling
reset_index on the result. Using the as_index=False method avoids some unneces-

sary computations.

17.113111 2.673778
19.190588 3.030000

2.488889 0.160298
2.352941 0.163863

10.3 Apply: General split-apply-combine

The most general-purpose GroupBy method is apply, which is the subject of the rest
of this section. As illustrated in Figure 10-2, apply splits the object being manipulated
into pieces, invokes the passed function on each piece, and then attempts to concate-

nate the pieces together.
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Figure 10-2. Illustration of a group aggregation

Returning to the tipping dataset from before, suppose you wanted to select the top
five tip_pct values by group. First, write a function that selects the rows with the

largest values in a particular column:

In [74]: def top(df, n=5, column="tip_pct'):
et return df.sort_values(by=column)[-n:]

In [75]: top(tips, n=6)

Out[75]:
total_bill
109 14.31
183 23.17
232 11.61

tip smoker
4.00 Yes
6.50 Yes
3.39 No

day
Sat
Sun
Sat

time
Dinner
Dinner
Dinner

size tip_pct
2 0.279525
4 0.280535
2 0.291990
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67 3.07 1.00 Yes Sat Dinner 1 0.325733
178 9.60 4.00 Yes Sun Dinner 2 0.416667
172 7.25 5.15 Yes Sun Dinner 2 0.710345

Now, if we group by smoker, say, and call apply with this function, we get the
following:

In [76]: tips.groupby('smoker').apply(top)

out[76]:
total_bill tip smoker day time size tip_pct
smoker
No 88 24.71 5.85 No Thur Lunch 2 0.236746
185 20.69 5.00 No Sun Dinner 5 0.241663
51 10.29 2.60 No Sun Dinner 2 0.252672
149 7.51 2.00 No Thur Lunch 2 0.266312
232 11.61 3.39 No Sat Dinner 2 0.291990
Yes 109 14.31 4.00 Yes Sat Dinner 2 0.279525
183 23.17 6.50 Yes Sun Dinner 4 0.280535
67 3.07 1.00 Yes Sat Dinner 1 0.325733
178 9.60 4.00 Yes Sun Dinner 2 0.416667
172 7.25 5.15 Yes Sun Dinner 2 0.710345

What has happened here? The top function is called on each row group from the
DataFrame, and then the results are glued together using pandas.concat, labeling the
pieces with the group names. The result therefore has a hierarchical index whose
inner level contains index values from the original DataFrame.

If you pass a function to apply that takes other arguments or keywords, you can pass
these after the function:

In [77]: tips.groupby(['smoker', 'day']).apply(top, n=1, column='total bill")

Out[77]:
total_bill tip smoker day time size  tip_pct
smoker day
No Fri 94 22.75 3.25 No Fri Dinner 2 0.142857
Sat 212 48.33 9.00 No Sat Dinner 4 0.186220
Sun 156 48.17 5.00 No  Sun Dinner 6 0.103799
Thur 142 41.19 5.00 No Thur Lunch 5 0.121389
Yes Fri 95 40.17 4,73 Yes Fri Dinner 4 0.117750
Sat 170 50.81 10.00 Yes Sat Dinner 3 0.196812
Sun 182 45,35 3.50 Yes Sun Dinner 3 0.077178
Thur 197 43.11 5.00 Yes Thur Lunch 4 0.115982

Beyond these basic usage mechanics, getting the most out of apply
may require some creativity. What occurs inside the function
passed is up to you; it only needs to return a pandas object or a
scalar value. The rest of this chapter will mainly consist of examples
showing you how to solve various problems using groupby.
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You may recall that I earlier called describe on a GroupBy object:

In [78]: result = tips.groupby( 'smoker')['tip_pct'].describe()

In [79]: result

out[79]:
count mean std min 25% 50% 75% \
smoker
No 151.0 0.159328 0.039910 0.056797 0.136906 0.155625 0.185014
Yes 93.0 0.163196 0.085119 0.035638 0.106771 0.153846 0.195059
max
smoker
No 0.291990
Yes 0.710345

In [80]: result.unstack('smoker")

Out[80]:
smoker
count No 151.000000
Yes 93.000000
mean No 0.159328
Yes 0.163196
std No 0.039910
Yes 0.085119
min No 0.056797
Yes 0.035638
25% No 0.136906
Yes 0.106771
50% No 0.155625
Yes 0.153846
75% No 0.185014
Yes 0.195059
max No 0.291990
Yes 0.710345

dtype: float64

Inside GroupBy, when you invoke a method like describe, it is actually just a short-
cut for:

f = lambda x: x.describe()
grouped.apply(f)

Suppressing the Group Keys

In the preceding examples, you see that the resulting object has a hierarchical index
formed from the group keys along with the indexes of each piece of the original
object. You can disable this by passing group_keys=False to groupby:
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In [81]: tips.groupby('smoker', group_keys=False).apply(top)

Out[81]:
total_bill
88 24.71
185 20.69
51 10.29
149 7.51
232 11.61
109 14.31
183 23.17
67 3.07
178 9.60
172 7.25

tip
.85
.00
.60
.00
.39
.00
.50
.00
.00
.15

v AP OP, WNDNULWL

smoker
No
No
No
No
No
Yes
Yes
Yes
Yes
Yes

day
Thur
Sun
Sun
Thur
Sat
Sat
Sun
Sat
Sun
Sun

Quantile and Bucket Analysis

As you may recall from Chapter 8, pandas has some tools, in particular cut and qcut,
for slicing data up into buckets with bins of your choosing or by sample quantiles.
Combining these functions with groupby makes it convenient to perform bucket or
quantile analysis on a dataset. Consider a simple random dataset and an equal-length
bucket categorization using cut:

In [82]:

time
Lunch
Dinner
Dinner
Lunch
Dinner
Dinner
Dinner
Dinner
Dinner
Dinner

size tip_pct

.236746
.241663
.252672
.266312
.291990
.279525
.280535
.325733
.416667
.710345

NN, BRANNNNDON
[clcNoNoNoNoNoNoNoNol

frame = pd.DataFrame({'datal': np.random.randn(16000),
'data2': np.random.randn(1000)})

In [83]: quartiles =

In [84]: quartiles[:10]
Out[84]:

VWoOoO~NOULLD WNRLR O

(-1.23,
(-2.956,
(-1.23,
(0.489,
(-1.23,
(0.489,
(-1.23,
(-1.23,
(0.489,
(0.489,

0.

2.

489]

Name: datal, dtype: category
Categories (4, interval[float64]): [(-2.956, -1.23] < (-1.23, 0.489] < (0.489, 2.
208] < (2.208, 3.928]]

pd.cut(frame.datal, 4)

The Categorical object returned by cut can be passed directly to groupby. So we
could compute a set of statistics for the data2 column like so:

In [85]: def get_stats(group):
return {'min':
'count': group.count(), 'mean': group.mean()}

group.min(), 'max

: group.max(),

In [86]: grouped = frame.data2.groupby(quartiles)
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In [87]: grouped.apply(get_stats).unstack()
Out[87]:

count max mean min
datail
(-2.956, -1.23] 95.0 1.670835 -0.039521 -3.399312
(-1.23, 0.489] 598.0 3.260383 -0.002051 -2.989741
(0.489, 2.208] 297.0 2.954439 0.081822 -3.745356
(2.208, 3.928] 10.0 1.765640 0.024750 -1.929776

These were equal-length buckets; to compute equal-size buckets based on sample
quantiles, use gcut. I'll pass labels=False to just get quantile numbers:

# Return quantile numbers
In [88]: grouping = pd.qcut(frame.datal, 10, labels=False)

In [89]: grouped = frame.data2.groupby(grouping)

In [90]: grouped.apply(get_stats).unstack()

Out[90]:

count max mean min
datail
0 100.0 1.670835 -0.049902 -3.399312
1 100.0 2.628441 0.030989 -1.950098
2 100.0 2.527939 -0.067179 -2.925113
3 100.0 3.260383 0.065713 -2.315555
4 100.0 2.074345 -0.111653 -2.047939
5 100.0 2.184810 0.052130 -2.989741
6 100.0 2.458842 -0.021489 -2.223506
7 100.0 2.954439 -0.026459 -3.056990
8 100.0 2.735527 0.103406 -3.745356
9 100.0 2.377020 0.220122 -2.064111

We will take a closer look at pandas’s Categorical type in Chapter 12.

Example: Filling Missing Values with Group-Specific Values

When cleaning up missing data, in some cases you will replace data observations
using dropna, but in others you may want to impute (fill in) the null (NA) values
using a fixed value or some value derived from the data. fillna is the right tool to
use; for example, here I fill in NA values with the mean:

In [91]: s = pd.Series(np.random.randn(6))
In [92]: s[::2] = np.nan

In [93]: s
Out[93]:

0 NaN
1 -0.125921
2 NaN
3 -0.884475
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4 NaN
5 0.227290
dtype: float64

In [94]: s.fillna(s.mean())
out[94]:

0 -0.261035
1 -0.125921
2 -0.261035
3 -0.884475
4 -0.261035
5 0.227290
dtype: float64

Suppose you need the fill value to vary by group. One way to do this is to group the
data and use apply with a function that calls fillna on each data chunk. Here is
some sample data on US states divided into eastern and western regions:

In [95]: states = ['Ohio', 'New York', 'Vermont', 'Florida',
Cealt 'Oregon', 'Nevada', 'California', 'Idaho']

In [96]: group_key = ['East'] * 4 + ['West'] * 4
In [97]: data = pd.Series(np.random.randn(8), index=states)

In [98]: data

out[98]:

Ohio 0.922264
New York -2.153545
Vermont -0.365757
Florida -0.375842
Oregon 0.329939
Nevada 0.981994
California 1.105913
Idaho -1.613716

dtype: float64

Note that the syntax [ 'East'] * 4 produces a list containing four copies of the ele-
ments in [ 'East']. Adding lists together concatenates them.

Let’s set some values in the data to be missing:

In [99]: data[['Vermont', 'Nevada', 'Idaho']] = np.nan

In [100]: data

Out[100]:

Ohtio 0.922264
New York -2.153545
Vermont NaN
Florida -0.375842
Oregon 0.329939
Nevada NaN

California 1.105913
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Idaho

dtype: float64

NaN

In [101]: data.groupby(group_key).mean()

Out[101]:
East -0.
West 0.

535707
717926

dtype: float64

We can fill the NA values using the group means like so:

In [102]:

fill_mean = lambda g: g.fillna(g.mean())

In [103]: data.groupby(group_key).apply(fill_mean)

Out[103]:
Ohio

New York
Vermont
Florida
Oregon
Nevada
California
Idaho
dtype: flo

0.
-2.
-0.
-0.

(ol N o)

at64

922264
153545
535707
375842

.329939
. 717926
.105913
. 717926

In another case, you might have predefined fill values in your code that vary by
group. Since the groups have a name attribute set internally, we can use that:

In [104]: fill_values = {'East': 0.5, 'West': -1}

In [105]:

fill_func = lambda g: g.fillna(fill_values[g.name])

In [106]: data.groupby(group_key).apply(fill_func)

Out[106]:
Ohio

New York
Vermont
Florida
Oregon
Nevada
California
Idaho

0.922264

0.
-0.
0.
-1.
1.
-1.

dtype: float64

2.153545

500000
375842
329939
000000
105913
000000

Example: Random Sampling and Permutation

Suppose you wanted to draw a random sample (with or without replacement) from a
large dataset for Monte Carlo simulation purposes or some other application. There
are a number of ways to perform the “draws”; here we use the sample method for

Series.

To demonstrate, here’s a way to construct a deck of English-style playing cards:
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# Hearts, Spades, Clubs, Diamonds
suits = ['H', 'S', 'C', 'D']
card_val = (list(range(1l, 11)) + [10] * 3) * 4
base_names = ['A'] + list(range(2, 11)) + ['J', 'K', 'Q']
cards = []
for suit in ['H', 'S", 'C', 'D']:

cards.extend(str(num) + suit for num in base_names)

deck = pd.Series(card_val, index=cards)

So now we have a Series of length 52 whose index contains card names and values are
the ones used in Blackjack and other games (to keep things simple, I just let the ace
'A' be 1):

In [108]: deck[:13]
Out[108]:

AH
2H
3H
4H
SH
6H
7H
8H
9H
10H 10

JH 10

KH 10

QH 10
dtype: int64

0N U A WN R

O

Now, based on what I said before, drawing a hand of five cards from the deck could
be written as:

In [109]: def draw(deck, n=5):
et return deck.sample(n)

In [110]: draw(deck)

Out[110]:
AD 1
8C 8
5H 5
KC 10
2C 2

dtype: int64

Suppose you wanted two random cards from each suit. Because the suit is the last
character of each card name, we can group based on this and use apply:

In [111]: get_suit = lambda card: card[-1] # last letter is suit

In [112]: deck.groupby(get_suit).apply(draw, n=2)
Out[112]:
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Cc 2C 2

3C 3
D KD 10
8D 8
H KH 10
3H 3
S 25 2
45 4

dtype: int64
Alternatively, we could write:

In [113]: deck.groupby(get_suit, group_keys=False).apply(draw, n=2)

Out[113]:
KC 10
JC 10
AD 1
5D 5
SH 5
6H 6
7S 7
KS 10

dtype: inté64

Example: Group Weighted Average and Correlation

Under the split-apply-combine paradigm of groupby, operations between columns in
a DataFrame or two Series, such as a group weighted average, are possible. As an
example, take this dataset containing group keys, values, and some weights:

In [114]: df = pd.DataFrame({'category': ['a', 'a', 'a', 'a',
..... : 'b', 'b', 'b', 'b'],
et 'data': np.random.randn(8),
et 'weights': np.random.rand(8)})

In [115]: df
Out[115]:

category data weights
0 a 1.561587 0.957515
1 a 1.219984 0.347267
2 a -0.482239 0.581362
3 a 0.315667 0.217091
4 b -0.047852 0.894406
5 b -0.454145 0.918564
6 b -0.556774 0.277825
7 b 0.253321 0.955905

The group weighted average by category would then be:

In [116]: grouped = df.groupby('category"')

In [117]: get_wavg = lambda g: np.average(g['data'], weights=g['weights'])
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In [118]: grouped.apply(get_wavg)
Out[118]:

category

a 0.811643

b -0.122262

dtype: float64

As another example, consider a financial dataset originally obtained from Yahoo!
Finance containing end-of-day prices for a few stocks and the S&P 500 index (the SPX
symbol):

In [119]: close_px = pd.read_csv('examples/stock_px_2.csv', parse_dates=True,
..... : index_col=0)

In [120]: close_px.info()

<class 'pandas.core.frame.DataFrame'>

DatetimelIndex: 2214 entries, 2003-01-02 to 2011-10-14
Data columns (total 4 columns):

AAPL 2214 non-null float64

MSFT 2214 non-null float64

XOM 2214 non-null float64

SPX 2214 non-null float64

dtypes: float64(4)

memory usage: 86.5 KB

In [121]: close_px[-4:]
out[121]:
AAPL  MSFT  XOM SPX

2011-10-11 400.29 27.00 76.27 1195.54

2011-10-12 402.19 26.96 77.16 1207.25

2011-10-13 408.43 27.18 76.37 1203.66

2011-10-14 422.00 27.27 78.11 1224.58
One task of interest might be to compute a DataFrame consisting of the yearly corre-
lations of daily returns (computed from percent changes) with SPX. As one way to do
this, we first create a function that computes the pairwise correlation of each column

with the 'SPX' column:
In [122]: spx_corr = lambda x: x.corrwith(x['SPX'])

Next, we compute percent change on close_px using pct_change:
In [123]: rets = close_px.pct_change().dropna()

Lastly, we group these percent changes by year, which can be extracted from each row
label with a one-line function that returns the year attribute of each datetime label:

In [124]: get_year = lambda x: x.year
In [125]: by_year = rets.groupby(get_year)

In [126]: by_year.apply(spx_corr)
Out[126]:
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AAPL MSFT XOM SPX

2003 0.541124 0.745174 0.661265 1.0
2004 0.374283 0.588531 0.557742 1.0
2005 0.467540 0.562374 0.631010 1.0
2006 0.428267 0.406126 0.518514 1.0
2007 0.508118 0.658770 0.786264 1.0
2008 0.681434 0.804626 0.828303 1.0
2009 0.707103 0.654902 0.797921 1.0
2010 0.710105 0.730118 0.839057 1.0
2011 0.691931 0.80099 0.859975 1.0

You could also compute inter-column correlations. Here we compute the annual cor-
relation between Apple and Microsoft:

In [127]: by_year.apply(lambda g: g['AAPL'].corr(g['MSFT']))

Out[127]:

2003 0.480868
2004 0.259024
2005 0.300093
2006 0.161735
2007 0.417738
2008 0.611901
2009 0.432738
2010 0.571946

2011 0.581987
dtype: float64

Example: Group-Wise Linear Regression

In the same theme as the previous example, you can use groupby to perform more
complex group-wise statistical analysis, as long as the function returns a pandas
object or scalar value. For example, I can define the following regress function
(using the statsmodels econometrics library), which executes an ordinary least
squares (OLS) regression on each chunk of data:

import statsmodels.api as sm
def regress(data, yvar, xvars):
Y = data[yvar]
X = data[xvars]
X['intercept'] = 1.
result = sm.OLS(Y, X).fit()
return result.params

Now, to run a yearly linear regression of AAPL on SPX returns, execute:

In [129]: by_year.apply(regress, 'AAPL', ['SPX'])
Out[129]:
SPX 1intercept
2003 1.195406 0.000710
2004 1.363463 0.004201
2005 1.766415 0.003246
2006 1.645496 0.000080
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2007 1.198761 0.003438
2008 0.968016 -0.001110
2009 0.879103 0.002954
2010 1.052608 0.001261
2011 0.806605 0.001514

10.4 Pivot Tables and Cross-Tabulation

A pivot table is a data summarization tool frequently found in spreadsheet programs
and other data analysis software. It aggregates a table of data by one or more keys,
arranging the data in a rectangle with some of the group keys along the rows and
some along the columns. Pivot tables in Python with pandas are made possible
through the groupby facility described in this chapter combined with reshape opera-
tions utilizing hierarchical indexing. DataFrame has a pivot_table method, and
there is also a top-level pandas.pivot_table function. In addition to providing a
convenience interface to groupby, pivot_table can add partial totals, also known as
margins.

Returning to the tipping dataset, suppose you wanted to compute a table of group
means (the default pivot_table aggregation type) arranged by day and smoker on
the rows:

In [130]: tips.pivot_table(index=['day', 'smoker'])

Out[130]:
size tip tip_pct total bill
day smoker
Fri No 2.250000 2.812500 0.151650 18.420000
Yes 2.066667 2.714000 0.174783 16.813333
Sat No 2.555556 3.102889 0.158048 19.661778
Yes 2.476190 2.875476 0.147906 21.276667
Sun No 2.929825 3.167895 0.160113 20.506667
Yes 2.578947 3.516842 0.187250 24.120000
Thur No 2.488889 2.673778 0.160298 17.113111
Yes 2.352941 3.030000 0.163863 19.190588

This could have been produced with groupby directly. Now, suppose we want to
aggregate only tip_pct and size, and additionally group by time. I'll put smoker in
the table columns and day in the rows:

In [131]: tips.pivot_table(['tip_pct', 'size'], index=['time', 'day'],
..... : columns="smoker")

Out[131]:

size tip_pct
smoker No Yes No Yes
time day

Dinner Fri  2.000000 2.222222 0.139622 0.165347
Sat  2.555556 2.476190 0.158048 0.147906
Sun  2.929825 2.578947 0.160113 0.187250
Thur 2.000000 NaN 0.159744 NaN
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Lunch Fri 3.000000 1.833333 0.187735 0.188937
Thur 2.500000 2.352941 0.160311 0.163863
We could augment this table to include partial totals by passing margins=True. This
has the effect of adding A1l row and column labels, with corresponding values being
the group statistics for all the data within a single tier:

In [132]: tips.pivot_table(['tip_pct', 'size'], index=['time', 'day'],
..... : columns="smoker', margins=True)

Out[132]:
size tip_pct
smoker No Yes All No Yes All
time day
Dinner Fri 2.000000 2.222222 2.166667 0.139622 0.165347 0.158916
Sat 2.555556 2.476190 2.517241 0.158048 0.147906 0.153152
Sun 2.929825 2.578947 2.842105 0.160113 0.187250 0.166897
Thur 2.000000 NaN 2.000000 ©0.159744 NaN ©0.159744
Lunch Fri 3.000000 1.833333 2.000000 0.187735 0.188937 0.188765
Thur 2.500000 2.352941 2.459016 0.160311 0.163863 0.161301
All 2.668874 2.408602 2.569672 0.159328 0.163196 0.160803

Here, the A1l values are means without taking into account smoker versus non-
smoker (the A1l columns) or any of the two levels of grouping on the rows (the A1l
row).

To use a different aggregation function, pass it to aggfunc. For example, 'count' or
len will give you a cross-tabulation (count or frequency) of group sizes:

In [133]: tips.pivot_table('tip_pct', index=['time', 'smoker'], columns='day',
..... : aggfunc=len, margins=True)

Out[133]:

day Fri Sat Sun Thur All

time  smoker

Dinner No 3.0 45.0 57.0 1.0 106.0
Yes 9.0 42.0 19.0 NaN 70.0

Lunch No 1.0 NaN NaN 44.0 45.0
Yes 6.0 NaN NaN 17.0 23.0

All 19.0 87.0 76.0 62.0 244.0

If some combinations are empty (or otherwise NA), you may wish to pass a
fill_value:

In [134]: tips.pivot_table('tip_pct', index=['time', 'size', 'smoker'],
..... : columns="'day', aggfunc='mean', fill_value=0)

out[134]:
day Fri Sat Sun Thur
time size smoker
Dinner 1 No 0.000000 0.137931 0.000000 0.000000
Yes 0.000000 0.325733 0.000000 0.000000
2 No 0.139622 0.162705 0.168859 0.159744
Yes 0.171297 0.148668 0.207893 0.000000
3 No 0.000000 0.154661 0.152663 0.000000
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Lunch 1

5
6

[21 rows x 4 columns

Yes
No
Yes
No
Yes

No
Yes
No
Yes
No
Yes
No
Yes
No
No

[clcoNoNoNO]

.000000
.000000
.117750
.000000
.000000
0.000000
0.223776
0.000000
0.181969
0.187735
0.
0
0
0
0
1

000000

.000000
.000000
.000000
.000000

[clcoNoNoNO]

[cloNoNoNoNoNoNoNoNol

.144995
.150096
.124515
.000000
.106572
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000

[cloNoNoNO]

[clolNoNoNoNoNoNoNoNol

.152660
.148143
.193370
.206928
.065660
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000

[cloNoNoNO]

[clolNoNoNoNoNoNoNoNol

See Table 10-2 for a summary of pivot_table methods.

Table 10-2. pivot_table options

Function name Description

values
index
columns

aggfunc

fill_value
dropna

margins

Column name or names to aggregate; by default aggregates all numeric columns

Column names or other group keys to group on the rows of the resulting pivot table

Column names or other group keys to group on the columns of the resulting pivot table

Aggregation function or list of functions (' mean ' by default); can be any function valid in a groupby

context

Replace missing values in result table
If True, do not include columns whose entries are all NA
Add row/column subtotals and grand total (False by default)

.000000
.000000
.000000
.000000
.000000
.181728
.000000
.166005
.158843
.084246
.204952
.138919
.155410
.121389
.173706

Cross-Tabulations: Crosstab

A cross-tabulation (or crosstab for short) is a special case of a pivot table that com-
putes group frequencies. Here is an example:

In [138]: data

Sample Nationality

Out[138]:
0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10

USA
Japan
USA
Japan
Japan
Japan
USA
USA
Japan
USA

Handedness
Right-handed
Left-handed
Right-handed
Right-handed
Left-handed
Right-handed
Right-handed
Left-handed
Right-handed
Right-handed

10.4 Pivot Tables and Cross-Tabulation
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As part of some survey analysis, we might want to summarize this data by nationality
and handedness. You could use pivot_table to do this, but the pandas.crosstab
function can be more convenient:

In [139]: pd.crosstab(data.Nationality, data.Handedness, margins=True)

Out[139]:

Handedness Left-handed Right-handed All
Nationality

Japan 2 3 5
USA 1 4 5
All 3 7 10

The first two arguments to crosstab can each either be an array or Series or a list of
arrays. As in the tips data:

In [140]: pd.crosstab([tips.time, tips.day], tips.smoker, margins=True)

Out[140]:

smoker No Yes All
time day

Dinner Fri 3 9 12

Sat 45 42 87
Sun 57 19 76
Thur 1 0 1

Lunch Fri 1 6 7

Thur 44 17 61

All 151 93 244
10.5 Conclusion

Mastering pandas’s data grouping tools can help both with data cleaning as well as
modeling or statistical analysis work. In Chapter 14 we will look at several more
example use cases for groupby on real data.

In the next chapter, we turn our attention to time series data.
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CHAPTER 11
Time Series

Time series data is an important form of structured data in many different fields, such
as finance, economics, ecology, neuroscience, and physics. Anything that is observed
or measured at many points in time forms a time series. Many time series are fixed
frequency, which is to say that data points occur at regular intervals according to some
rule, such as every 15 seconds, every 5 minutes, or once per month. Time series can
also be irregular without a fixed unit of time or offset between units. How you mark
and refer to time series data depends on the application, and you may have one of the
following:

o Timestamps, specific instants in time
« Fixed periods, such as the month January 2007 or the full year 2010

o Intervals of time, indicated by a start and end timestamp. Periods can be thought
of as special cases of intervals

« Experiment or elapsed time; each timestamp is a measure of time relative to a
particular start time (e.g., the diameter of a cookie baking each second since
being placed in the oven)

In this chapter, I am mainly concerned with time series in the first three categories,
though many of the techniques can be applied to experimental time series where the
index may be an integer or floating-point number indicating elapsed time from the
start of the experiment. The simplest and most widely used kind of time series are
those indexed by timestamp.
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pandas also supports indexes based on timedeltas, which can be a
useful way of representing experiment or elapsed time. We do not
explore timedelta indexes in this book, but you can learn more in
the pandas documentation.

pandas provides many built-in time series tools and data algorithms. You can effi-
ciently work with very large time series and easily slice and dice, aggregate, and
resample irregular- and fixed-frequency time series. Some of these tools are especially
useful for financial and economics applications, but you could certainly use them to
analyze server log data, too.

11.1 Date and Time Data Types and Tools

The Python standard library includes data types for date and time data, as well as
calendar-related functionality. The datetime, time, and calendar modules are the
main places to start. The datetime.datetime type, or simply datetime, is widely
used:

In [10]: from import datetime
In [11]: now = datetime.now()

In [12]: now
Out[12]: datetime.datetime(2017, 9, 25, 14, 5, 52, 72973)

In [13]: now.year, now.month, now.day
Out[13]: (2017, 9, 25)

datetime stores both the date and time down to the microsecond. timedelta repre-
sents the temporal difference between two datetime objects:

In [14]: delta = datetime(2011, 1, 7) - datetime(2008, 6, 24, 8, 15)

In [15]: delta
Out[15]: datetime.timedelta(926, 56700)

In [16]: delta.days
Out[16]: 926

In [17]: delta.seconds
Out[17]: 56700

You can add (or subtract) a timedelta or multiple thereof to a datetime object to
yield a new shifted object:

In [18]: from import timedelta

In [19]: start = datetime(2011, 1, 7)
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In [20]: start + timedelta(12)
Out[20]: datetime.datetime(2011, 1, 19, 0, 0)

In [21]: start - 2 * timedelta(12)

Out[21]: datetime.datetime(2010, 12, 14, 0, 0)
Table 11-1 summarizes the data types in the datetime module. While this chapter is
mainly concerned with the data types in pandas and higher-level time series manipu-
lation, you may encounter the datetime-based types in many other places in Python
in the wild.

Table 11-1. Types in datetime module

Type Description

date Store calendar date (year, month, day) using the Gregorian calendar

time Store time of day as hours, minutes, seconds, and microseconds

datetime  Stores both date and time

timedelta Represents the difference between two datetime values (as days, seconds, and microseconds)
tzinfo Base type for storing time zone information

Converting Between String and Datetime

You can format datetime objects and pandas Timestamp objects, which I'll introduce
later, as strings using str or the strftime method, passing a format specification:

In [22]: stamp = datetime(2011, 1, 3)

In [23]: str(stamp)
Out[23]: '2011-01-03 00:00:00"

In [24]: stamp.strftime('%Y-%m-%d')
Out[24]: '2011-01-03"

See Table 11-2 for a complete list of the format codes (reproduced from Chapter 2).

Table 11-2. Datetime format specification (ISO C89 compatible)

Type Description

%Y  Four-digit year

%y  Two-digit year

%m  Two-digit month [01, 12]

%d  Two-digit day [01, 31]

%H  Hour (24-hour clock) [00, 23]

%I Hour (12-hour clock) [01, 12]

%M Two-digit minute [00, 59]

%S Second [00, 61] (seconds 60, 61 account for leap seconds)
%w  Weekday as integer [0 (Sunday), 6]
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Type Description

%U  Week number of the year [00, 53]; Sunday is considered the first day of the week, and days before the first Sunday of
the year are “week 0"

%W  Week number of the year [00, 53]; Monday is considered the first day of the week, and days before the first Monday of
the year are “week 0”

%z UTCtime zone offset as +HHMM or -HHMM; empty if time zone naive
%F  Shortcut for %Y -%m-%d (e.g., 2012-4-18)
%D Shortcut for %m/%d /%y (e.g., 04/18/12)

You can use these same format codes to convert strings to dates using date
time.strptime:

In [25]: value = '2011-01-03'

In [26]: datetime.strptime(value, '%Y-%m-%d')
Out[26]: datetime.datetime(2011, 1, 3, 0, 0)

In [27]: datestrs = ['7/6/2011"', '8/6/2011']

In [28]: [datetime.strptime(x, '%m/%d/%Y') for x in datestrs]

out[28]:

[datetime.datetime(2011, 7, 6, 0, 0),

datetime.datetime(2011, 8, 6, 0, 0)]
datetime.strptime is a good way to parse a date with a known format. However, it
can be a bit annoying to have to write a format spec each time, especially for common
date formats. In this case, you can use the parser.parse method in the third-party
dateutil package (this is installed automatically when you install pandas):

In [29]: from dateutil.parser import parse
In [30]: parse('2011-01-03")
Out[30]: datetime.datetime(2011, 1, 3, 0, 0)
dateutil is capable of parsing most human-intelligible date representations:

In [31]: parse('Jan 31, 1997 10:45 PM')

Out[31]: datetime.datetime(1997, 1, 31, 22, 45)
In international locales, day appearing before month is very common, so you can pass
dayfirst=True to indicate this:

In [32]: parse('6/12/2011"', dayfirst=True)

Out[32]: datetime.datetime(2011, 12, 6, 0, 0)
pandas is generally oriented toward working with arrays of dates, whether used as an
axis index or a column in a DataFrame. The to_datetime method parses many dif-
ferent kinds of date representations. Standard date formats like ISO 8601 can be
parsed very quickly:
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In [33]: datestrs = ['2011-07-06 12:00:00', '2011-08-06 00:00:00"]

In [34]: pd.to_datetime(datestrs)
Out[34]: DatetimeIndex(['2011-07-06 12:00:00', '2011-08-06 00:00:00'], dtype='dat
etime64[ns]', freg=None)

It also handles values that should be considered missing (None, empty string, etc.):

In [35]: idx = pd.to_datetime(datestrs + [None])

In [36]: idx
Out[36]: DatetimeIndex(['2011-07-06 12:00:00', '2011-08-06 00:00:00', 'NaT'], dty
pe='datetime64[ns]', freq=None)

In [37]: idx[2]
Out[37]: NaT

In [38]: pd.isnull(idx)
Out[38]: array([False, False, True], dtype=bool)

NaT (Not a Time) is pandas’s null value for timestamp data.

dateutil.parser is a useful but imperfect tool. Notably, it will rec-
ognize some strings as dates that you might prefer that it didn’t—
for example, '42' will be parsed as the year 2042 with today’s cal-
endar date.

datetime objects also have a number of locale-specific formatting options for systems
in other countries or languages. For example, the abbreviated month names will be
different on German or French systems compared with English systems. See
Table 11-3 for a listing.

Table 11-3. Locale-specific date formatting

Type Description

%a  Abbreviated weekday name

%A Full weekday name

%b  Abbreviated month name

%B  Full month name

%c  Full date and time (e.g., ‘Tue 01 May 2012 04:20:57 PM’)

%p  Locale equivalent of AM or PM

%x  Locale-appropriate formatted date (e.g., in the United States, May 1, 2012 yields '05/01/2012')
%X Locale-appropriate time (e.g., '04:24:12 PM)
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11.2 Time Series Basics

A basic kind of time series object in pandas is a Series indexed by timestamps, which
is often represented external to pandas as Python strings or datetime objects:

In [39]: from datetime import datetime

In [40]: dates = [datetime(2011, 1, 2), datetime(2011, 1, 5),
et datetime(2011, 1, 7), datetime(2011, 1, 8),
el datetime(2011, 1, 10), datetime(2011, 1, 12)]

In [41]: ts = pd.Series(np.random.randn(6), index=dates)

In [42]: ts

Out[42]:

2011-01-02 -0.204708
2011-01-05 0.478943
2011-01-07 -0.519439
2011-01-08 -0.555730
2011-01-10 1.965781
2011-01-12 1.393406
dtype: float64

Under the hood, these datetime objects have been put in a DatetimeIndex:

In [43]: ts.index
Out[43]:
DatetimeIndex(['2011-01-02', '2011-01-05', '2011-01-07', '2011-01-08"',
'2011-01-10', '2011-01-12'],
dtype='datetime64[ns]', freq=None)

Like other Series, arithmetic operations between differently indexed time series auto-
matically align on the dates:

In [44]: ts + ts[::2]

Out[44]:

2011-01-02 -0.409415
2011-01-05 NaN
2011-01-07 -1.038877
2011-01-08 NaN
2011-01-10 3.931561
2011-01-12 NaN

dtype: float64

Recall that ts[::2] selects every second element in ts.

pandas stores timestamps using NumPy’s datetime64 data type at the nanosecond
resolution:

In [45]: ts.index.dtype
Out[45]: dtype('<M8[ns]')

Scalar values from a DatetimeIndex are pandas Timestamp objects:
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In [46]: stamp = ts.index[0]

In [47]: stamp
Out[47]: Timestamp('2011-01-02 00:00:00")

A Timestamp can be substituted anywhere you would use a datetime object. Addi-
tionally, it can store frequency information (if any) and understands how to do time
zone conversions and other kinds of manipulations. More on both of these things
later.

Indexing, Selection, Subsetting

Time series behaves like any other pandas.Series when you are indexing and select-
ing data based on label:

In [48]: stamp = ts.index[2]

In [49]: ts[stamp]
Out[49]: -0.51943871505673811

As a convenience, you can also pass a string that is interpretable as a date:

In [50]: ts['1/10/2011']
Out[50]: 1.9657805725027142

In [51]: ts['20110110"]
Out[51]: 1.9657805725027142

For longer time series, a year or only a year and month can be passed to easily select
slices of data:

In [52]: longer_ts = pd.Series(np.random.randn(1000),
el index=pd.date_range('1/1/2000', periods=1000))

In [53]: longer_ts

Out[53]:

2000-01-01 0.092908
2000-01-02 0.281746
2000-01-03 0.769023
2000-01-04 1.246435
2000-01-05 1.007189
2000-01-06 -1.296221
2000-01-07 0.274992
2000-01-08 0.228913
2000-01-09 1.352917
2000-01-10 0.886429

2002-09-17 -0.139298
2002-09-18 -1.159926
2002-09-19 0.618965
2002-09-20 1.373890
2002-09-21 -0.983505
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2002-09-22 0.930944
2002-09-23 -0.811676
2002-09-24 -1.830156
2002-09-25 -0.138730
2002-09-26 0.334088
Freq: D, Length: 1000, dtype: float64

In [54]: longer_ts['2001"']
Out[54]:

2001-01-01 1.599534
2001-01-02 0.474071
2001-01-03 0.151326
2001-01-04 -0.542173
2001-01-05 -0.475496
2001-01-06 0.106403
2001-01-07 -1.308228
2001-01-08 2.173185
2001-01-09 0.564561
2001-01-10 -0.190481

2001-12-22 0.000369
2001-12-23 0.900885
2001-12-24 -0.454869
2001-12-25 -0.864547
2001-12-26 1.129120
2001-12-27 0.057874
2001-12-28 -0.433739
2001-12-29 0.092698
2001-12-30 -1.397820
2001-12-31 1.457823
Freq: D, Length: 365, dtype: float64

Here, the string '2001' is interpreted as a year and selects that time period. This also
works if you specify the month:

In [55]: longer_ts['2001-05']

Out[55]:

2001-05-01 -0.622547
2001-05-02 0.936289
2001-05-03 0.750018
2001-05-04 -0.056715
2001-05-05 2.300675
2001-05-06 0.569497
2001-05-07 1.489410
2001-05-08 1.264250
2001-05-09 -0.761837
2001-05-10 -0.331617
2001-05-22 0.503699
2001-05-23 -1.387874
2001-05-24 0.204851
2001-05-25 0.603705
2001-05-26 0.545680
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2001-05-27 0.235477
2001-05-28 0.111835
2001-05-29 -1.251504
2001-05-30 -2.949343
2001-05-31 0.634634
Freq: D, Length: 31, dtype: float64

Slicing with datetime objects works as well:

In [56]: ts[datetime(2011, 1, 7):]
Out[56]:

2011-01-07 -0.519439

2011-01-08 -0.555730

2011-01-10 1.965781

2011-01-12 1.393406

dtype: float64

Because most time series data is ordered chronologically, you can slice with time-
stamps not contained in a time series to perform a range query:

In [57]: ts

Out[57]:

2011-01-02 -0.204708
2011-01-05 0.478943
2011-01-07 -0.519439
2011-01-08 -0.555730
2011-01-10 1.965781
2011-01-12 1.393406
dtype: float64

In [58]: ts['1/6/2011':'1/11/2011']
Out[58]:

2011-01-07 -0.519439

2011-01-08 -0.555730

2011-01-10 1.965781

dtype: float64

As before, you can pass either a string date, datetime, or timestamp. Remember that
slicing in this manner produces views on the source time series like slicing NumPy
arrays. This means that no data is copied and modifications on the slice will be reflec-
ted in the original data.

There is an equivalent instance method, truncate, that slices a Series between two
dates:

In [59]: ts.truncate(after='1/9/2011")
Out[59]:

2011-01-02 -0.204708

2011-01-05 0.478943

2011-01-07 -0.519439

2011-01-08 -0.555730

dtype: float64
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All of this holds true for DataFrame as well, indexing on its rows:

In [60]: dates = pd.date_range('1/1/2000', periods=100, freq='W-WED')

In [61]: long_df = pd.DataFrame(np.random.randn(100, 4),
et index=dates,
cealt columns=[ 'Colorado', 'Texas',
et 'New York', 'Ohio'])

In [62]: long_df.loc['5-2001"]
out[62]:

Colorado Texas New York Ohio
2001-05-02 -0.006045 0.490094 -0.277186 -0.707213
2001-05-09 -0.560107 2.735527 0.927335 1.513906
2001-05-16 0.538600 1.273768 0.667876 -0.969206
2001-05-23 1.676091 -0.817649 0.050188 1.951312
2001-05-30 3.260383 0.963301 1.201206 -1.852001

Time Series with Duplicate Indices

In some applications, there may be multiple data observations falling on a particular
timestamp. Here is an example:

In [63]: dates = pd.DatetimeIndex(['1/1/2000', '1/2/2000', '1/2/26000"',
'1/2/2000', '1/3/2000'])

In [64]: dup_ts = pd.Series(np.arange(5), index=dates)

In [65]: dup_ts
Out[65]:
2000-01-01
2000-01-02
2000-01-02
2000-01-02
2000-01-03
dtype: int64

A wNERL O

We can tell that the index is not unique by checking its is_unique property:

In [66]: dup_ts.index.is_unique
Out[66]: False

Indexing into this time series will now either produce scalar values or slices depend-
ing on whether a timestamp is duplicated:

In [67]: dup_ts['1/3/2000'] # not duplicated
Out[67]: 4

In [68]: dup_ts['1/2/2000'] # duplicated
Out[68]:

2000-01-02 1

2000-01-02 2
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2000-01-02 3
dtype: int64

Suppose you wanted to aggregate the data having non-unique timestamps. One way
to do this is to use groupby and pass level=0:

In [69]: grouped = dup_ts.groupby(level=0)

In [70]: grouped.mean()
Out[70]:

2000-01-01 0
2000-01-02 2
2000-01-03 4

dtype: int64

In [71]: grouped.count()
Out[71]:

2000-01-01 1
2000-01-02 3
2000-01-03 1

dtype: int64

11.3 Date Ranges, Frequencies, and Shifting

Generic time series in pandas are assumed to be irregular; that is, they have no fixed
frequency. For many applications this is sufficient. However, it’s often desirable to
work relative to a fixed frequency, such as daily, monthly, or every 15 minutes, even if
that means introducing missing values into a time series. Fortunately pandas has a
full suite of standard time series frequencies and tools for resampling, inferring fre-
quencies, and generating fixed-frequency date ranges. For example, you can convert
the sample time series to be fixed daily frequency by calling resample:

In [72]: ts

Out[72]:

2011-01-02  -0.204708

2011-01-05  0.478943

2011-01-07  -0.519439

2011-01-08  -0.555730

2011-01-10  1.965781

2011-01-12  1.393406

dtype: float64

In [73]: resampler = ts.resample('D')
The string 'D' is interpreted as daily frequency.

Conversion between frequencies or resampling is a big enough topic to have its own
section later (Section 11.6, “Resampling and Frequency Conversion,” on page 348).
Here I'll show you how to use the base frequencies and multiples thereof.
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Generating Date Ranges

While I used it previously without explanation, pandas.date_range is responsible for
generating a DatetimeIndex with an indicated length according to a particular
frequency:

In [74]: index = pd.date_range('2012-04-01', '2012-06-01")

In [75]: index

Out[75]:

DatetimeIndex(['2012-04-01', '2012-04-02', '2012-04-03', '2012-04-04"',
'2012-04-05', '2012-04-06', '2012-04-07', '2012-04-08',
'2012-04-09', '2012-04-10', '2012-04-11', '2012-04-12',
'2012-04-13"', '2012-04-14', '2012-04-15', '2012-04-16"',
'2012-04-17"', '2012-04-18', '2012-04-19', '2012-04-20',
'2012-04-21"', '2012-04-22', '2012-04-23', '2012-04-24"',
'2012-04-25"', '2012-04-26', '2012-04-27', '2012-04-28',
'2012-04-29', '2012-04-30', '2012-05-01', '2012-05-02',
'2012-05-03', '2012-05-04', '2012-05-05', '2012-05-06',
'2012-05-07"', '2012-05-08', '2012-05-09', '2012-05-10',
'2012-05-11"', '2012-05-12', '2012-05-13', '2012-05-14',
'2012-05-15"', '2012-05-16', '2012-05-17', '2012-05-18',
'2012-05-19', '2012-05-20', '2012-05-21', '2012-05-22',
'2012-05-23"', '2012-05-24', '2012-05-25', '2012-05-26',
'2012-05-27"', '2012-05-28', '2012-05-29', '2012-05-30',
'2012-05-31"', '2012-06-01'],

dtype='datetime64[ns]', freq='D")

By default, date_range generates daily timestamps. If you pass only a start or end
date, you must pass a number of periods to generate:

In [76]: pd.date_range(start='2012-04-01', periods=20)

Out[76]:

DatetimeIndex(['2012-04-01', '2012-04-02', '2012-04-03', '2012-04-04"',
'2012-04-05', '2012-04-06', '2012-04-07', '2012-04-08',
'2012-04-09', '2012-04-10', '2012-04-11', '2012-04-12',
'2012-04-13"', '2012-04-14', '2012-04-15', '2012-04-16"',
'2012-04-17"', '2012-04-18', '2012-04-19', '2012-04-20'],

dtype='datetime64[ns]', freq='D")

In [77]: pd.date_range(end='2012-06-01', periods=20)

out[77]:

DatetimeIndex(['2012-05-13"', '2012-05-14', '2012-05-15', '2012-05-16",
'2012-05-17"', '2012-05-18"', '2012-05-19', '2012-05-20',
'2012-05-21"', '2012-05-22', '2012-05-23', '2012-05-24',
'2012-05-25', '2012-05-26"', '2012-05-27', '2012-05-28',
'2012-05-29', '2012-05-30', '2012-05-31', '2012-06-01'],

dtype='datetime64[ns]', freq='D")

The start and end dates define strict boundaries for the generated date index. For
example, if you wanted a date index containing the last business day of each month,
you would pass the 'BM' frequency (business end of month; see more complete listing
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of frequencies in Table 11-4) and only dates falling on or inside the date interval will

be included:

In [78]: pd.date_range('2000-01-01', '2000-12-01', freq='BM")

out[78]:

DatetimeIndex(['2000-01-31', '2000-02-29', '2000-03-31', '2000-04-28',

'2000-05-31"', '2000-06-30',

'2000-09-29', '2000-10-31', '2000-11-30'],
dtype='datetime64[ns]', freq='BM')

'2000-07-31", '2000-08-31',

Table 11-4. Base time series frequencies (not comprehensive)

Alias
D
B
H

Tormin

L orms

U

M

BM

MS

BMS

W-MON, W-TUE, ...

WOM-1MON, WOM-2MON, ...

Q-JAN, Q-FEB, ...

BQ-JAN, BQ-FEB, ...

QS-JAN, QS-FEB, ...

BQS-JAN, BQS-FEB, ...

A-JAN, A-FEB, ...

BA-JAN, BA-FEB, ...

AS-JAN, AS-FEB, ...

BAS-JAN, BAS-FEB, ...

Offset type

Day

BusinessDay

Hour

Minute

Second

Milli

Micro

MonthEnd
BusinessMonthEnd
MonthBegin
BusinessMonthBegin
Week

WeekOfMonth

QuarterEnd

BusinessQuarterknd
QuarterBegin
BusinessQuarterBegin

YearEnd

BusinessYearEnd

YearBegin

BusinessYearBegin

Description

Calendar daily

Business daily

Hourly

Minutely

Secondly

Millisecond (1/1,000 of 1 second)
Microsecond (1/1,000,000 of 1 second)
Last calendar day of month

Last business day (weekday) of month
First calendar day of month

First weekday of month

Weekly on given day of week (MON, TUE, WED, THU,
FRI, SAT, or SUN)

Generate weekly dates in the first, second, third, or
fourth week of the month (e.g., WOM- 3FRI for the
third Friday of each month)

Quarterly dates anchored on last calendar day of each
month, for year ending in indicated month (JAN, FEB,
MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, or DEC)
Quarterly dates anchored on last weekday day of each
month, for year ending in indicated month

Quarterly dates anchored on first calendar day of each
month, for year ending in indicated month

Quarterly dates anchored on first weekday day of each
month, for year ending in indicated month

Annual dates anchored on last calendar day of given
month (JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP,
0CT, NOV, or DEC)

Annual dates anchored on last weekday of given
month

Annual dates anchored on first day of given month
Annual dates anchored on first weekday of given
month
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date_range by default preserves the time (if any) of the start or end timestamp:
In [79]: pd.date_range('2012-05-02 12:56:31"', periods=5)
out[79]:
DatetimeIndex(['2012-05-02 12:56:31', '2012-05-03 12:56:31",
'2012-05-04 12:56:31', '2012-05-05 12:56:31",
'2012-05-06 12:56:31'1,
dtype='datetime64[ns]', freq='D")
Sometimes you will have start or end dates with time information but want to gener-
ate a set of timestamps normalized to midnight as a convention. To do this, there is a
normalize option:
In [80]: pd.date_range('2012-05-02 12:56:31', periods=5, normalize=True)
out[80]:
DatetimeIndex(['2012-05-02', '2012-05-03', '2012-05-04', '2012-05-05',
'2012-05-06'],
dtype='datetime64[ns]', freq='D")

Frequencies and Date Offsets

Frequencies in pandas are composed of a base frequency and a multiplier. Base fre-
quencies are typically referred to by a string alias, like 'M' for monthly or 'H' for
hourly. For each base frequency, there is an object defined generally referred to as a
date offset. For example, hourly frequency can be represented with the Hour class:

In [81]: from pandas.tseries.offsets import Hour, Minute
In [82]: hour = Hour()

In [83]: hour
Out[83]: <Hour>

You can define a multiple of an offset by passing an integer:

In [84]: four_hours = Hour(4)

In [85]: four_hours
Out[85]: <4 * Hours>

In most applications, you would never need to explicitly create one of these objects,
instead using a string alias like 'H' or '4H'. Putting an integer before the base fre-
quency creates a multiple:

In [86]: pd.date_range('2000-01-01', '2000-01-03 23:59', freg='4h")

Out[86]:

DatetimeIndex(['2000-01-01 00:00:00', '2000-01-01 04:00:00"',
'2000-01-01 08:00:00', '2000-01-01 12:00:00',
'2000-01-01 16:00:00', '2000-01-01 20:00:00',
'2000-01-02 00:00:00', '2000-01-02 04:00:00',
'2000-01-02 08:00:00', '2000-01-02 12:00:00',
'2000-01-02 16:00:00', '2000-01-02 20:00:00',
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'2000-01-03 00:00:00', '2000-01-03 04:00:00',

'2000-01-03 08:00:00', '2000-01-03 12:00:00',

'2000-01-03 16:00:00', '2000-01-03 20:00:00'],
dtype='datetime64[ns]', freq="4H")

Many offsets can be combined together by addition:

In [87]: Hour(2) + Minute(30)

Out[87]: <150 * Minutes>

Similarly, you can pass frequency strings, like '1h36min', that will effectively be
parsed to the same expression:

In [88]: pd.date_range('2000-01-01', periods=10, freq='1h30min')

out[88]:

DatetimeIndex(['2000-01-01 00:00:00', '2000-01-01 01:30:00',

'2000-01-01 03:00:00', '2000-01-01 04:30:00',

'2000-01-01 06:00:00', '2000-01-01 07:30:00',

'2000-01-01 09:00:00', '2000-01-01 10:30:00',

'2000-01-01 12:00:00', '2000-01-01 13:30:00'],
dtype='datetime64[ns]', freq='90T")

Some frequencies describe points in time that are not evenly spaced. For example, 'M'
(calendar month end) and 'BM' (last business/weekday of month) depend on the
number of days in a month and, in the latter case, whether the month ends on a
weekend or not. We refer to these as anchored offsets.

Refer back to Table 11-4 for a listing of frequency codes and date offset classes avail-

able in pandas.

Week of month dates

Users can define their own custom frequency classes to provide
date logic not available in pandas, though the full details of that are
outside the scope of this book.

One useful frequency class is “week of month,” starting with WOM. This enables you to
get dates like the third Friday of each month:

In [89]: rng = pd.date_range('2012-01-01"', '2012-09-01', freq='WOM-3FRI")

In [90]: list(rng)
Out[90]:
[Timestamp('2012-01-20
Timestamp('2012-02-17
Timestamp('2012-03-16
Timestamp('2012-04-20
Timestamp('2012-05-18
Timestamp('2012-06-15

00:
00:
00:
00:
00:
00:

00:
00:
00:
00:
00:

00

00',
00",
00',
00",
00',

:00',

freq="WOM-3FRI"),
freq="WOM-3FRI"),
freq="WOM-3FRI"),
freq="WOM-3FRI"),
freq="WOM-3FRI"),
freq="WOM-3FRI"),
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Timestamp('2012-07-20 00:00:00', freq='WOM-3FRI'),
Timestamp('2012-08-17 00:00:00', freq='WOM-3FRI')]

Shifting (Leading and Lagging) Data

“Shifting” refers to moving data backward and forward through time. Both Series and
DataFrame have a shift method for doing naive shifts forward or backward, leaving
the index unmodified:

In [91]: ts = pd.Series(np.random.randn(4),
el index=pd.date_range('1/1/2000', periods=4, freq='M'))

In [92]: ts

Out[92]:

2000-01-31 -0.066748
2000-02-29 0.838639
2000-03-31 -0.117388
2000-04-30 -0.517795
Freq: M, dtype: float64

In [93]: ts.shift(2)

Out[93]:
2000-01-31 NaN
2000-02-29 NaN

2000-03-31 -0.066748
2000-04-30 0.838639
Freq: M, dtype: float64

In [94]: ts.shift(-2)
Out[94]:

2000-01-31 -0.117388
2000-02-29 -0.517795
2000-03-31 NaN
2000-04-30 NaN
Freq: M, dtype: float64

When we shift like this, missing data is introduced either at the start or the end of the
time series.

A common use of shift is computing percent changes in a time series or multiple
time series as DataFrame columns. This is expressed as:

ts / ts.shift(1) - 1

Because naive shifts leave the index unmodified, some data is discarded. Thus if the
frequency is known, it can be passed to shift to advance the timestamps instead of
simply the data:

In [95]: ts.shift(2, freq="M")
Out[95]:

2000-03-31 -0.066748
2000-04-30 0.838639

332 | Chapter 11: Time Series



2000-05-31 -0.117388
2000-06-30 -0.517795
Freq: M, dtype: float64

Other frequencies can be passed, too, giving you some flexibility in how to lead and
lag the data:

In [96]: ts.shift(3, freq='D")
Out[96]:

2000-02-03 -0.066748
2000-03-03 0.838639
2000-04-03 -0.117388
2000-05-03 -0.517795

dtype: float64

In [97]: ts.shift(1l, freq='90T")
Out[97]:

2000-01-31 01:30:00 -0.066748
2000-02-29 01:30:00 0.838639
2000-03-31 01:30:00 -0.117388
2000-04-30 01:30:00 -0.517795
Freq: M, dtype: float64

The T here stands for minutes.

Shifting dates with offsets
The pandas date offsets can also be used with datetime or Timestamp objects:

In [98]: from pandas.tseries.offsets import Day, MonthEnd
In [99]: now = datetime(2011, 11, 17)

In [160]: now + 3 * Day()
Out[100]: Timestamp('2011-11-20 00:00:00')

If you add an anchored offset like MonthEnd, the first increment will “roll forward” a
date to the next date according to the frequency rule:

In [101]: now + MonthEnd()
Out[101]: Timestamp('2011-11-30 00:00:00")

In [162]: now + MonthEnd(2)
Out[102]: Timestamp('2011-12-31 00:00:00"')

Anchored offsets can explicitly “roll” dates forward or backward by simply using their
rollforward and rollback methods, respectively:

In [103]: offset = MonthEnd()

In [104]: offset.rollforward(now)
Out[104]: Timestamp('2011-11-30 00:00:00")
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In [105]: offset.rollback(now)
Out[105]: Timestamp('2011-10-31 00:00:00')

A creative use of date offsets is to use these methods with groupby:

In [106]: ts = pd.Series(np.random.randn(20),

In [107]: ts
Out[107]:
2000-01-15 -
2000-01-19
2000-01-23 -
2000-01-27 -
2000-01-31 -
2000-02-04
2000-02-08
2000-02-12
2000-02-16
2000-02-20
2000-02-24
2000-02-28
2000-03-03
2000-03-07
2000-03-11
2000-03-15
2000-03-19
2000-03-23
2000-03-27
2000-03-31
Freq: 4D, dtyp

P OO O0OORr OO0 O

0.
.389645
0.
0.
1.
0.
.823758
.520930
.350282
.204395
.133445
.327905
.072153
.131678
.297459
.997747
.870955
.991253
.151699
.266151
e:

[cloo]

116696

932454
229331
140330
439920

float64

index=pd.date_range('1/15/2000', periods=20, freq='4d"))

In [108]: ts.groupby(offset.rollforward).mean()

Out[108]:

2000-01-31  -0.005833

2000-02-29
2000-03-31
dtype: float64

0.
0.

015894
150209

Of course, an easier and faster way to do this is using resample (we'll discuss this in
much more depth in Section 11.6, “Resampling and Frequency Conversion,” on page
348):

In [109]: ts.resample('M').mean()

Out[109]:

2000-01-31  -0.005833

2000-02-29
2000-03-31

0.
0.

015894
150209

Freq: M, dtype: float64
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11.4 Time Zone Handling

Working with time zones is generally considered one of the most unpleasant parts of
time series manipulation. As a result, many time series users choose to work with
time series in coordinated universal time or UTC, which is the successor to Greenwich
Mean Time and is the current international standard. Time zones are expressed as
offsets from UTC; for example, New York is four hours behind UTC during daylight
saving time and five hours behind the rest of the year.

In Python, time zone information comes from the third-party pytz library (installa-
ble with pip or conda), which exposes the Olson database, a compilation of world
time zone information. This is especially important for historical data because the
daylight saving time (DST) transition dates (and even UTC offsets) have been
changed numerous times depending on the whims of local governments. In the Uni-
ted States, the DST transition times have been changed many times since 1900!

For detailed information about the pytz library, you'll need to look at that library’s
documentation. As far as this book is concerned, pandas wraps pytz’s functionality so
you can ignore its API outside of the time zone names. Time zone names can be
found interactively and in the docs:

In [110]: import

In [111]: pytz.common_timezones[-5:]
Out[111]: ['US/Eastern', 'US/Hawaii', 'US/Mountain', 'US/Pacific', 'UTC']

To get a time zone object from pytz, use pytz.timezone:

In [112]: tz = pytz.timezone('America/New_York')

In [113]: tz
Out[113]: <DstTzInfo 'America/New_York' LMT-1 day, 19:04:00 STD>

Methods in pandas will accept either time zone names or these objects.

Time Zone Localization and Conversion

By default, time series in pandas are time zone naive. For example, consider the fol-
lowing time series:

In [114]: rng = pd.date_range('3/9/2012 9:30', periods=6, freq='D")
In [115]: ts = pd.Series(np.random.randn(len(rng)), index=rng)

In [116]: ts

Out[116]:

2012-03-09 09:30:00 -0.202469
2012-03-10 09:30:00 0.050718
2012-03-11 09:30:00 0.639869
2012-03-12 09:30:00 0.597594
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2012-03-13 09:30:00
2012-03-14 09:30:00
Freq: D, dtype: float64

-0.797246
0.472879

The index’s tz field is None:

In [117]: print(ts.index.tz)

None

Date ranges can be generated with a time zone set:

In [118]: pd.date_range('3/9/2012 9:30', periods=10, freg='D', tz='UTC")

Out[118]:

DatetimeIndex(['2012-03-09 09:30:00+00:00', '2012-03-10 09:30:00+00:00',
'2012-03-11 09:30:00+00:00', '2012-03-12 09:30:00+00:00',
'2012-03-13 09:30:00+00:00', '2012-03-14 09:30:00+00:00',
'2012-03-15 09:30:00+00:00', '2012-03-16 09:30:00+00:00',
'2012-03-17 09:30:00+00:00', '2012-03-18 09:30:00+00:00'],

dtype='datetime64[ns, UTC]', freq='D")

Conversion from naive to localized is handled by the tz_localize method:

In [119]: t

Out[119]:

2012-03-09
2012-03-10
2012-03-11
2012-03-12
2012-03-13
2012-03-14

S

09:
09:
09:
09:
09:
09:

30:
30:
30:
30:
30:
30:

00
00
00
00
00
00

-0.202469
0.050718
0.639869
0.597594

-0.797246
0.472879

Freq: D, dtype: float64

In [120]: ts_utc

In [121]: ts_utc

Out[121]:

2012-03-09
2012-03-10
2012-03-11
2012-03-12
2012-03-13
2012-03-14

09:
09:
09:
09:
09:
09:

30:
30:
30:
30:
30:
30:

= ts.tz_localize('UTC")

00+00:
00+00:
00+00:
00+00:
00+00:
00+00:

00
00
00
00
00
00

Freq: D, dtype: float64

In [122]: ts_utc.index

Out[122]:

-0.202469
0.050718
0.639869
0.597594

-0.797246
0.472879

DatetimeIndex(['2012-03-09 09:30:00+00:00', '2012-03-10 09:30:00+00:00"',
'2012-03-11 09:30:00+00:00', '2012-03-12 09:30:00+00:00',
'2012-03-13 09:30:00+00:00', '2012-03-14 09:30:00+00:00'],

dtype='datetime64[ns, UTC]', freq='D")

Once a time series has been localized to a particular time zone, it can be converted to
another time zone with tz_convert:
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In [123]: ts_utc.tz_convert('America/New_York')
Out[123]:

2012-03-09 04:30:00-05:00 -0.202469
2012-03-10 04:30:00-05:00 0.050718
2012-03-11 05:30:00-04:00 0.639869
2012-03-12 05:30:00-04:00 0.597594
2012-03-13 05:30:00-04:00 -0.797246
2012-03-14 05:30:00-04:00 0.472879

Freq: D, dtype: float64

In the case of the preceding time series, which straddles a DST transition in the Amer
ica/New_York time zone, we could localize to EST and convert to, say, UTC or Berlin
time:

In [124]: ts_eastern = ts.tz_localize('America/New_York")

In [125]: ts_eastern.tz_convert('UTC')
Out[125]:

2012-03-09 14:30:00+00:00 -0.202469
2012-03-10 14:30:00+00:00 0.050718
2012-03-11 13:30:00+00:00 0.639869
2012-03-12 13:30:00+00:00 0.597594
2012-03-13 13:30:00+00:00 -0.797246
2012-03-14 13:30:00+00:00 0.472879
Freq: D, dtype: float64

In [126]: ts_eastern.tz_convert('Europe/Berlin')
Out[126]:

2012-03-09 15:30:00+01:00 -0.202469

2012-03-10 15:30:00+01:00 0.050718

2012-03-11 14:30:00+01:00 0.639869

2012-03-12 14:30:00+01:00 0.597594
2012-03-13 14:30:00+01:00 -0.797246
2012-03-14 14:30:00+01:00 0.472879

Freq: D, dtype: float64

tz_localize and tz_convert are also instance methods on DatetimeIndex:

In [127]: ts.index.tz_localize('Asia/Shanghai')
Out[127]:
DatetimeIndex(['2012-03-09 09:30:00+08:00', '2012-03-10 09:30:00+08:00"',
'2012-03-11 09:30:00+08:00', '2012-03-12 09:30:00+08:00',
'2012-03-13 09:30:00+08:00', '2012-03-14 09:30:00+08:00'],
dtype='datetime64[ns, Asia/Shanghai]', freq='D")

Localizing naive timestamps also checks for ambiguous or non-
existent times around daylight saving time transitions.

\
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Operations with Time Zone—Aware Timestamp Objects

Similar to time series and date ranges, individual Timestamp objects similarly can be
localized from naive to time zone-aware and converted from one time zone to
another:

In [128]: stamp = pd.Timestamp('2011-03-12 04:00")
In [129]: stamp_utc = stamp.tz_localize('utc')

In [130]: stamp_utc.tz_convert('America/New_York")
Out[130]: Timestamp('2011-03-11 23:00:00-0500', tz='America/New_York')

You can also pass a time zone when creating the Timestamp:

In [131]: stamp_moscow = pd.Timestamp('2011-03-12 04:00', tz='Europe/Moscow')

In [132]: stamp_moscow
Out[132]: Timestamp('2011-03-12 04:00:00+0300', tz='Europe/Moscow')

Time zone—aware Timestamp objects internally store a UTC timestamp value as nano-
seconds since the Unix epoch (January 1, 1970); this UTC value is invariant between
time zone conversions:

In [133]: stamp_utc.value
Out[133]: 1299902400000000000

In [134]: stamp_utc.tz_convert('America/New_York').value
Out[134]: 1299902400000000000

When performing time arithmetic using pandass DateOffset objects, pandas
respects daylight saving time transitions where possible. Here we construct time-
stamps that occur right before DST transitions (forward and backward). First, 30
minutes before transitioning to DST:

In [135]: from pandas.tseries.offsets import Hour
In [136]: stamp = pd.Timestamp('2012-03-12 01:30', tz='US/Eastern')

In [137]: stamp
Out[137]: Timestamp('2012-03-12 01:30:00-0400', tz='US/Eastern')

In [138]: stamp + Hour()
Out[138]: Timestamp('2012-03-12 02:30:00-0400', tz='US/Eastern')

Then, 90 minutes before transitioning out of DST:

In [139]: stamp = pd.Timestamp('2012-11-04 00:30', tz='US/Eastern')

In [140]: stamp
Out[140]: Timestamp('2012-11-04 00:30:00-0400', tz='US/Eastern')
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In [141]: stamp + 2 * Hour()
Out[141]: Timestamp('2012-11-04 01:30:00-0500', tz='US/Eastern')

Operations Between Different Time Zones

If two time series with different time zones are combined, the result will be UTC.
Since the timestamps are stored under the hood in UTC, this is a straightforward

operation and requires no conversion to happen:

In [142]: rng = pd.date_range('3/7/2012 9:30', periods=10, freq='B")

In [143]: ts = pd.Series(np.random.randn(len(rng)), index=rng)

In [144]: t
Out[144]:

2012-03-07
2012-03-08
2012-03-09
2012-03-12
2012-03-13
2012-03-14
2012-03-15
2012-03-16
2012-03-19
2012-03-20

S

09:
09:
09:
09:
09:
09:
09:
09:
09:
09:

30:
30:
30:
30:
30:
30:
30:
30:
30:
30:

00
00
00
00
00
00
00
00
00
00

-0.

0.
-1.
-0.

Freq: B, dtype: float64

In [145]: t

In [146]: t

sl

s2

.522356
.546348
. 733537
.302736
.022199
.364287

922839
312656
128497
333488

ts[:7].tz_localize('Europe/London')

ts1[2:].tz_convert('Europe/Moscow')

In [147]: result = ts1 + ts2

In [148]: result.index

Out[148]:

DatetimeIndex(['2012-03-07 09:30:00+00:00', '2012-03-08 09:30:00+00:00"',
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'2012-03-09 09:30:00+00:00',
'2012-03-13 09:30:00+00:00',
'2012-03-15 09:30:00+00:00'],

'2012-03-12 09:30:00+00:00",
'2012-03-14 09:30:00+00:00"',

dtype="datetime64[ns, UTC]', freq='B')

Periods represent timespans, like days, months, quarters, or years. The Period class
represents this data type, requiring a string or integer and a frequency from

Table 11-4:

In [149]: p = pd.Period(2007, freq='A-DEC")

In [150]: p

Out[150]: Period('2007', 'A-DEC')
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In this case, the Period object represents the full timespan from January 1, 2007, to
December 31, 2007, inclusive. Conveniently, adding and subtracting integers from
periods has the effect of shifting by their frequency:

In [151]: p + 5
Out[151]: Period('2012', "A-DEC')

In [152]: p - 2

Out[152]: Period('2005', 'A-DEC')
If two periods have the same frequency, their difference is the number of units
between them:

In [153]: pd.Period('2014', freq="'A-DEC') - p
Out[153]: 7

Regular ranges of periods can be constructed with the period_range function:
In [154]: rng = pd.period_range('2000-01-01', '2000-06-30', freq='M")

In [155]: rng
Out[155]: PeriodIndex(['2000-01', '2000-02', '2000-03', '2000-04', '2000-05', '20
00-06"'], dtype='period[M]', freq="M'")

The PeriodIndex class stores a sequence of periods and can serve as an axis index in
any pandas data structure:

In [156]: pd.Series(np.random.randn(6), index=rng)
Out[156]:

2000-01 -0.514551

2000-02 -0.559782

2000-03 -0.783408

2000-04 -1.797685

2000-05 -0.172670

2000-06 0.680215

Freq: M, dtype: float64

If you have an array of strings, you can also use the PeriodIndex class:
In [157]: values = ['2001Q3', '2002Q2', '2003Q1']
In [158]: index = pd.PeriodIndex(values, freq='Q-DEC')
In [159]: index
Out[159]: PeriodIndex(['2001Q3', '2002Q2', '2003Q1'], dtype='period[Q-DEC]', freq
='Q-DEC')

Period Frequency Conversion

Periods and PeriodIndex objects can be converted to another frequency with their
asfreq method. As an example, suppose we had an annual period and wanted to
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convert it into a monthly period either at the start or end of the year. This is fairly
straightforward:

In [160]: p = pd.Period('2007', freq='A-DEC")

In [161]: p
Out[161]: Period('2007', "A-DEC')

In [162]: p.asfreq('M', how='start')
Out[162]: Period('2007-01', 'M")

In [163]: p.asfreq('M', how='end")

Out[163]: Period('2007-12"', 'M")
You can think of Period('2007', 'A-DEC') as being a sort of cursor pointing to a
span of time, subdivided by monthly periods. See Figure 11-1 for an illustration of
this. For a fiscal year ending on a month other than December, the corresponding
monthly subperiods are different:

In [164]: p = pd.Period('2007', freq='A-JUN")

In [165]: p
Out[165]: Period('2007', 'A-JUN")

In [166]: p.asfreq('M', 'start')
Out[166]: Period('2006-07"', 'M")

In [167]: p.asfreq('M', 'end')
Out[167]: Period('2007-06', 'M'")

Period('2011-06,'M’)
Stirt T Eid

Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec

Period(2011', 'A-DEC")

Figure 11-1. Period frequency conversion illustration

When you are converting from high to low frequency, pandas determines the super-
period depending on where the subperiod “belongs” For example, in A-JUN fre-
quency, the month Aug-2007 is actually part of the 2008 period:

In [168]: p = pd.Period('Aug-2007', 'M')

In [169]: p.asfreq('A-JUN")
Out[169]: Period('2008', "A-JUN')
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Whole PeriodIndex objects or time series can be similarly converted with the same
semantics:

In [170]: rng = pd.period_range('2006', '2009', freq="A-DEC')

In [171]: ts = pd.Series(np.random.randn(len(rng)), index=rng)

In [172]: ts

Out[172]:

2006 1.607578

2007 0.200381

2008 0.834068

2009 -0.302988

Freq: A-DEC, dtype: float64

In [173]: ts.asfreq('M', how='start')
Out[173]:

2006-01 1.607578

2007-01 0.200381

2008-01 -0.834068

2009-01 -0.302988

Freq: M, dtype: float64

Here, the annual periods are replaced with monthly periods corresponding to the first
month falling within each annual period. If we instead wanted the last business day of
each year, we can use the 'B' frequency and indicate that we want the end of the
period:

In [174]: ts.asfreq('B', how='end')
Out[174]:

2006-12-29 1.607578

2007-12-31 0.200381

2008-12-31 -0.834068

2009-12-31 -0.302988

Freq: B, dtype: float64

Quarterly Period Frequencies

Quarterly data is standard in accounting, finance, and other fields. Much quarterly
data is reported relative to a fiscal year end, typically the last calendar or business day
of one of the 12 months of the year. Thus, the period 201204 has a different meaning
depending on fiscal year end. pandas supports all 12 possible quarterly frequencies as
Q- JAN through Q-DEC:

In [175]: p = pd.Period('2012Q4', freq='Q-JAN")

In [176]: p
Out[176]: Period('2012Q4', 'Q-JAN")

342

| Chapter 11: Time Series



In the case of fiscal year ending in January, 2012Q4 runs from November through Jan-
uary, which you can check by converting to daily frequency. See Figure 11-2 for an

illustration.
Year 2012
M [ JAN | FeB | MAR] APR | MAY | JUN | JuL | Aua | sep | ocT | Nov | DEC |
Q-DEC | 201201 [ 201202 | 201203 [ 201204 |
Q-SEP | 2012Q2 [ 201203 | 201204 | 2013Q1 |
Q-FEB [ 201204 | 2013Q1 [ 2013Q2 [ 20133 | 4}

Figure 11-2. Different quarterly frequency conventions

In [177]:
Out[177]:

In [178]:
Out[178]:

p.asfreq('D', 'start')
Period('2011-11-01', 'D')

p.asfreq('D', 'end")
Period('2012-01-31', 'D")

Thus, it’s possible to do easy period arithmetic; for example, to get the timestamp at 4
PM on the second-to-last business day of the quarter, you could do:

In [179]:

In [180]:
Out[180]:

In [181]:
Out[181]:

p4pm = (p.asfreq('B', 'e') - 1).asfreq('T', 's') + 16 * 60

p4pm
Period('2012-01-30 16:00', 'T")

p4pm. to_timestamp()
Timestamp('2012-01-30 16:00:00')

You can generate quarterly ranges using period_range. Arithmetic is identical, too:

In [182]:
In [183]:

In [184]:
out[1847]:
201103
201104
201201
2012Q2
201203
201204

rng = pd.period_range('2011Q3', '2012Q4', fregq='Q-JAN")
ts = pd.Series(np.arange(len(rng)), index=rng)

ts

A WNERO

5

Freq: Q-JAN, dtype: int64

In [185]:

In [186]:

new_rng = (rng.asfreq('B', 'e') - 1).asfreq('T', 's') + 16 * 60

ts.index = new_rng.to_timestamp()
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In [187]:

Out[187]:

2010-10-28
2011-01-28
2011-04-28
2011-07-28
2011-10-28
2012-01-30

ts

16:
16:
16:
16:
16:
16:

dtype: int64

00:
00:
00:
00:
00:
00:

00 0
00 1
00 2
00 3
00 4
00 5

Converting Timestamps to Periods (and Back)

Series and DataFrame objects indexed by timestamps can be converted to periods
with the to_period method:

In [188]: rng = pd.date_range('2000-01-01', periods=3, freq='M")

In [189]: ts = pd.Series(np.random.randn(3), index=rng)

In [190]:
Out[190]:
2000-01-31
2000-02-29
2000-03-31

ts

1.
-0.
1.

663261
996206
521760

Freq: M, dtype: float64

In [191]: pts

In [192]: pts

Out[192]:
2000-01
2000-02
2000-03

ts.to_period()

1.663261
-0.996206
1.521760
Freq: M, dtype: float64

Since periods refer to non-overlapping timespans, a timestamp can only belong to a
single period for a given frequency. While the frequency of the new PeriodIndex is
inferred from the timestamps by default, you can specify any frequency you want.
There is also no problem with having duplicate periods in the result:

In [193]:

rng

In [194]: ts2

In [195]: ts2

Out[195]:

2000-01-29
2000-01-30
2000-01-31
2000-02-01
2000-02-02

0.
0.
-0.
2.
-0.

pd.date_range('1/29/2000', periods=6, freq='D")

pd.Series(np.random.randn(6), index=rng)

244175
423331
654040
089154
060220
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2000-02-03 -0.167933
Freq: D, dtype: float64

In [196]: ts2.to_period('M')
Out[196]:

2000-01 0.244175

2000-01 0.423331

2000-01 -0.654040

2000-02 2.089154

2000-02 -0.060220

2000-02 -0.167933

Freq: M, dtype: float64

To convert back to timestamps, use to_timestamp:

In [197]: pts = ts2.to_period()

In [198]: pts

Out[198]:

2000-01-29 0.244175

2000-01-30 0.423331

2000-01-31 -0.654040

2000-02-01 2.089154

2000-02-02 -0.060220

2000-02-03 -0.167933

Freq: D, dtype: float64

In [199]: pts.to_timestamp(how='end')
Out[199]:

2000-01-29 0.244175

2000-01-30 0.423331

2000-01-31 -0.654040

2000-02-01 2.089154

2000-02-02 -0.060220

2000-02-03 -0.167933

Freq: D, dtype: float64

Creating a PeriodIndex from Arrays

Fixed frequency datasets are sometimes stored with timespan information spread
across multiple columns. For example, in this macroeconomic dataset, the year and
quarter are in different columns:

In [200]: data = pd.read_csv('examples/macrodata.csv')

In [201]: data.head(5)

Out[201]:
year quarter realgdp realcons realinv realgovt realdpi cpt \
0 1959.0 1.0 2710.349 1707.4 286.898 470.045 1886.9 28.98
1 1959.0 2.0 2778.801 1733.7 310.859 481.301 1919.7 29.15
2 1959.0 3.0 2775.488 1751.8 289.226 491.260 1916.4 29.35
3 1959.0 4.0 2785.204 1753.7 299.356 484.052 1931.3 29.37
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In [202]: data.year

Out[202]:

0 1959.
1 1959.
2 1959.
3 1959.
4 1960.
5 1960.
6 1960.
7 1960.
8 1961.
9 1961.
193 2007.
194 2007.
195 2007.
196 2008.
197 2008.
198 2008.
199 2008.
200 2009.
201 2009.
202 2009.
Name: year,
In

Out[203]:

0 1.0

1 2.0
2 3.0
3 4.0
4 1.0
5 2.0
6 3.0
7 4.0
8 1.0
9 2.0
193 2.0
194 3.0
195 4.0
196 1.0
197 2.0
198 3.0

1960.0 1.0 2847.699
ml1 tbilrate unemp
139.7 2.82 5.8 177.
141.7 3.08 5.1 177.
140.5 3.82 5.3 178.
140.0 4.33 5.6 179.
139.6 3.50 5.2 180.

[cloNoNoNoNoNoNoNoNol

[clcoNoNoNoNoNoNoNoNol

1770.5 331.722

pop
146
830
657
386
007

infl
0.00
2.34
2.74
0.27
2.31

Length: 203, dtype: float64

[263]: data.quarter

realint
0.00
0.74
1.09
4.06
1.19

462.199

1955.5 29.54
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199 4.
200 1.
201 2.
202 3.

Name: quarter, Length: 203, dtype: float64

[cl oMo

By passing these arrays to PeriodIndex with a frequency, you can combine them to
form an index for the DataFrame:

In [204]:

In [205]: index

Out[205]:

PeriodIndex(['1959Q1",
196003 ",

index = pd.PeriodIndex(year=data.year, quarter=data.quarter,
freq="'Q-DEC")

'2007Q2",
'2008Q4",

'1959Q2",
196004,

1200703,
'200901",

'1959Q3",
'196101",

'200704",
'2009Q2",

'195904', '1960Q1', '1960Q2',
'1961Q2',

'2008Q1', '2008Q2', '2008Q3',
'2009Q3'],

dtype='period[Q-DEC]"', length=203, freq='Q-DEC')

In [206]: data.index = index

In [207]: data.infl

out[207]:
1959Q1
1959Q2
1959Q3
195904
1960Q1
1960Q2
1960Q3
1960Q4
1961Q1
1961Q2

2007Q2
200703
200704
200801
2008Q2
200803
2008Q4
200901
2009Q2
200903

P O FRLP NONONNOG

W O 0 WooNOGO WN -

.00
.34
.74
.27
.31

14

.70
.21
.40
.47
.75
.45
.38
.82

.53
.16

79

.94
.37
3.

56

Freq: Q-DEC, Name: infl, Length: 203, dtype: float64
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11.6 Resampling and Frequency Conversion

Resampling refers to the process of converting a time series from one frequency to
another. Aggregating higher frequency data to lower frequency is called downsam-
pling, while converting lower frequency to higher frequency is called upsampling. Not
all resampling falls into either of these categories; for example, converting W-WED
(weekly on Wednesday) to W-FRI is neither upsampling nor downsampling.

pandas objects are equipped with a resample method, which is the workhorse func-
tion for all frequency conversion. resample has a similar API to groupby; you call
resample to group the data, then call an aggregation function:

In [208]: rng = pd.date_range('2000-01-01"', periods=100, freq='D")
In [209]: ts = pd.Series(np.random.randn(len(rng)), index=rng)

In [210]: ts

Out[210]:

2000-01-01 0.631634
2000-01-02 -1.594313
2000-01-03 -1.519937
2000-01-04 1.108752
2000-01-05 1.255853
2000-01-06 -0.024330
2000-01-07 -2.047939
2000-01-08 -0.272657
2000-01-09 -1.692615
2000-01-10 1.423830

2000-03-31 -0.007852
2000-04-01 -1.638806
2000-04-02 1.401227
2000-04-03 1.758539
2000-04-04 0.628932
2000-04-05 -0.423776
2000-04-06 0.789740
2000-04-07 0.937568
2000-04-08 -2.253294
2000-04-09 -1.772919
Freq: D, Length: 100, dtype: float64

In [211]: ts.resample('M').mean()
Out[211]:

2000-01-31 -0.165893

2000-02-29 0.078606

2000-03-31 0.223811

2000-04-30 -0.063643

Freq: M, dtype: float64

In [212]: ts.resample('M', kind='period').mean()
Out[212]:
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2000-01 -0.165893
2000-02 0.078606
2000-03 0.223811
2000-04 -0.063643
Freq: M, dtype: float64

resample is a flexible and high-performance method that can be used to process very
large time series. The examples in the following sections illustrate its semantics and
use. Table 11-5 summarizes some of its options.

Table 11-5. Resample method arguments

Argument Description

freq String or DateOffset indicating desired resampled frequency (e.g., ‘M', "5min’, or Second (15))

axis Axis to resample on; default axis=0

fill_method How to interpolate when upsampling, asin ' ffill"' or 'bfil1"; by default does no interpolation

closed In downsampling, which end of each interval is closed (inclusive), ' right' or 'left'

label In downsampling, how to label the aggregated result, with the ' right' or ' Left" bin edge (e.g., the
9:30 to 9:35 five-minute interval could be labeled 9: 30 or 9:35)

loffset Time adjustment to the bin labels, such as ' -1s' / Second( - 1) to shift the aggregate labels one
second earlier

limit When forward or backward filling, the maximum number of periods to fill

kind Aggregate to periods (' period') or timestamps (' timestamp'); defaults to the type of index the

time series has

convention  When resampling periods, the convention ('start' or 'end") for converting the low-frequency period
to high frequency; defaults to 'end’

Downsampling

Aggregating data to a regular, lower frequency is a pretty normal time series task. The
data youre aggregating doesn’t need to be fixed frequently; the desired frequency
defines bin edges that are used to slice the time series into pieces to aggregate. For
example, to convert to monthly, 'M' or 'BM', you need to chop up the data into one-
month intervals. Each interval is said to be half-open; a data point can only belong to
one interval, and the union of the intervals must make up the whole time frame.
There are a couple things to think about when using resample to downsample data:

o Which side of each interval is closed

« How to label each aggregated bin, either with the start of the interval or the end

To illustrate, let’s look at some one-minute data:

In [213]: rng = pd.date_range('2000-01-01', periods=12, freq='T")

In [214]: ts = pd.Series(np.arange(12), index=rng)
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In [215]: ts
Out[215]:
2000-01-01 00:00:00
2000-01-01 00:01:00
2000-01-01 00:02:00
2000-01-01 00:03:00
2000-01-01 00:04:00
2000-01-01 00:05:00
2000-01-01 00:06:00
2000-01-01 00:07:00
2000-01-01 00:08:00
2000-01-01 00:09:00
2000-01-01 00:10:00
2000-01-01 00:11:00
Freq: T, dtype: int64

Vo ~NOULTP, WNRLR O

(RS
= o

Suppose you wanted to aggregate this data into five-minute chunks or bars by taking
the sum of each group:

In [216]: ts.resample('5min', closed='right').sum()
Out[216]:

1999-12-31 23:55:00 0

2000-01-01 00:00:00 15

2000-01-01 00:05:00 40

2000-01-01 00:10:00 11

Freq: 5T, dtype: int64

The frequency you pass defines bin edges in five-minute increments. By default,
the left bin edge is inclusive, so the 00:00 value is included in the 60:00 to 00:05
interval.! Passing closed="right' changes the interval to be closed on the right:

In [217]: ts.resample('5min', closed='right').sum()
Out[217]:

1999-12-31 23:55:00 0

2000-01-01 00:00:00 15

2000-01-01 00:05:00 40

2000-01-01 00:10:00 11

Freq: 5T, dtype: int64

The resulting time series is labeled by the timestamps from the left side of each bin.
By passing label="right' you can label them with the right bin edge:

In [218]: ts.resample('5min', closed='right', label='right').sum()
Out[218]:

2000-01-01 00:00:00 0

2000-01-01 00:05:00 15

1 The choice of the default values for closed and label might seem a bit odd to some users. In practice the

choice is somewhat arbitrary; for some target frequencies, closed="'1left" is preferable, while for others

closed="'right' makes more sense. The important thing is that you keep in mind exactly how you are seg-
menting the data.
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2000-01-01 00:10:00 40

2000-01-01 00:15:00 11

Freq: 5T, dtype: int64
See Figure 11-3 for an illustration of minute frequency data being resampled to five-
minute frequency.

closed="1left' [ 9:00 [ 9:01 [ 9:02 | 9:03 [ 9:04 | 95 |

closed="right' | 9:00 | 9:01 | 9:02 | 9:03 | 9:04 | 9:05 |

label="left' label="right"

Figure 11-3. Five-minute resampling illustration of closed, label conventions

Lastly, you might want to shift the result index by some amount, say subtracting one
second from the right edge to make it more clear which interval the timestamp refers
to. To do this, pass a string or date offset to loffset:

In [219]: ts.resample('5min', closed='right',
..... : label="'right', loffset='-1s").sum()
Out[219]:
1999-12-31 23:59:59 0
2000-01-01 00:04:59 15
2000-01-01 00:09:59 40
2000-01-01 00:14:59 11
Freq: 5T, dtype: int64

You also could have accomplished the effect of loffset by calling the shift method
on the result without the loffset.

Open-High-Low-Close (OHLC) resampling

In finance, a popular way to aggregate a time series is to compute four values for each
bucket: the first (open), last (close), maximum (high), and minimal (low) values. By
using the ohlc aggregate function you will obtain a DataFrame having columns con-
taining these four aggregates, which are efficiently computed in a single sweep of the
data:

In [220]: ts.resample('5min').ohlc()

Out[220]:

open high low close
2000-01-01 00:00:00 0 4 0 4
2000-01-01 00:05:00 5 9 5 9
2000-01-01 00:10:00 10 11 10 11
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Upsampling and Interpolation

When converting from a low frequency to a higher frequency, no aggregation is
needed. Let’s consider a DataFrame with some weekly data:

In [221]: frame = pd.DataFrame(np.random.randn(2, 4),
..... : index=pd.date_range('1/1/2000', periods=2,
el freq="W-WED"),
et columns=['Colorado', 'Texas', 'New York', 'Ohio'])

In [222]: frame
out[222]:

Colorado Texas New York Ohio
2000-01-05 -0.896431 0.677263 0.036503 0.087102
2000-01-12 -0.046662 0.927238 0.482284 -0.867130

When you are using an aggregation function with this data, there is only one value
per group, and missing values result in the gaps. We use the asfreq method to con-
vert to the higher frequency without any aggregation:

In [223]: df_daily = frame.resample('D').asfreq()

In [224]: df_daily

Out[224]:

Colorado Texas New York Ohio
2000-01-05 -0.896431 0.677263 0.036503 0.087102
2000-01-06 NaN NaN NaN NaN
2000-01-07 NaN NaN NaN NaN
2000-01-08 NaN NaN NaN NaN
2000-01-09 NaN NaN NaN NaN
2000-01-10 NaN NaN NaN NaN
2000-01-11 NaN NaN NaN NaN

2000-01-12 -0.046662 0.927238 0.482284 -0.867130

Suppose you wanted to fill forward each weekly value on the non-Wednesdays. The
same filling or interpolation methods available in the fillna and reindex methods
are available for resampling:

In [225]: frame.resample('D").ffill()

Out[225]:

Colorado Texas New York Ohio
2000-01-05 -0.896431 0.677263 0.036503 0.087102
2000-01-06 -0.896431 0.677263 0.036503 0.087102
2000-01-07 -0.896431 0.677263 0.036503 0.087102
2000-01-08 -0.896431 0.677263 0.036503 0.087102
2000-01-09 -0.896431 0.677263 0.036503 0.087102
2000-01-10 -0.896431 0.677263 0.036503 0.087102
2000-01-11 -0.896431 0.677263 0.036503 0.087102
2000-01-12 -0.046662 0.927238 0.482284 -0.867130

You can similarly choose to only fill a certain number of periods forward to limit how
far to continue using an observed value:
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In [226]: frame.resample('D"').ffill(limit=2)
Out[226]:

Colorado Texas New York Ohio
2000-01-05 -0.896431 0.677263 0.036503 0.087102
2000-01-06 -0.896431 0.677263 0.036503 0.087102
2000-01-07 -0.896431 0.677263 0.036503 0.087102

2000-01-08 NaN NaN NaN NaN
2000-01-09 NaN NaN NaN NaN
2000-01-10 NaN NaN NaN NaN
2000-01-11 NaN NaN NaN NaN

2000-01-12 -0.046662 0.927238 0.482284 -0.867130
Notably, the new date index need not overlap with the old one at all:

In [227]: frame.resample('W-THU').ffill()
Out[227]:

Colorado Texas New York Ohio
2000-01-06 -0.896431 0.677263 0.036503 0.087102
2000-01-13 -0.046662 0.927238 0.482284 -0.867130

Resampling with Periods
Resampling data indexed by periods is similar to timestamps:

In [228]: frame = pd.DataFrame(np.random.randn(24, 4),
..... : index=pd.period_range('1-2000', '12-2001',
et freq="M"),
el columns=['Colorado', 'Texas', 'New York', 'Ohio'])

In [229]: frame[:5]
Out[229]:

Colorado Texas New York Ohio
2000-01 0.493841 -0.155434 1.397286 1.507055
2000-02 -1.179442 0.443171 1.395676 -0.529658
2000-03 0.787358 0.248845 0.743239 1.267746
2000-04 1.302395 -0.272154 -0.051532 -0.467740
2000-05 -1.040816 0.426419 0.312945 -1.115689

In [230]: annual_frame = frame.resample('A-DEC').mean()

In [231]: annual_frame
Out[231]:

Colorado Texas New York Ohio
2000 0.556703 0.016631 0.111873 -0.027445
2001 0.046303 0.163344 0.251503 -0.157276

Upsampling is more nuanced, as you must make a decision about which end of the

timespan in the new frequency to place the values before resampling, just like the

asfreq method. The convention argument defaults to 'start' but can also be 'end':
# Q-DEC: Quarterly, year ending in December

In [232]: annual_frame.resample('Q-DEC').ffil1()
Out[232]:
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Colorado Texas New York Ohio

2000Q1 0.556703 0.016631 0.111873 -0.027445
2000Q2 0.556703 0.016631 0.111873 -0.027445
2000Q3 0.556703 0.016631 0.111873 -0.027445
2000Q4 0.556703 0.016631 0.111873 -0.027445
2001Q1 0.046303 0.163344 0.251503 -0.157276
2001Q2 0.046303 0.163344 0.251503 -0.157276
2001Q3 0.046303 0.163344 0.251503 -0.157276
2001Q4 0.046303 0.163344 0.251503 -0.157276

In [233]: annual_frame.resample('Q-DEC', convention='end').ffill()
Out[233]:
Colorado Texas New York Ohio
2000Q4 0.556703 0.016631 0.111873 -0.027445
2001Q1 0.556703 0.016631 0.111873 -0.027445
2001Q2 0.556703 0.016631 0.111873 -0.027445
2001Q3 0.556703 0.016631 0.111873 -0.027445
2001Q4 0.046303 0.163344 0.251503 -0.157276
Since periods refer to timespans, the rules about upsampling and downsampling are

more rigid:
« In downsampling, the target frequency must be a subperiod of the source
frequency.
o In upsampling, the target frequency must be a superperiod of the source

frequency.

If these rules are not satisfied, an exception will be raised. This mainly affects the
quarterly, annual, and weekly frequencies; for example, the timespans defined by Q-
MAR only line up with A-MAR, A-JUN, A-SEP, and A-DEC:

In [234]: annual_frame.resample('Q-MAR").ffil1()

Out[234]:

Colorado Texas New York Ohio
2000Q4 0.556703 0.016631 0.111873 -0.027445
2001Q1 0.556703 0.016631 0.111873 -0.027445
2001Q2 0.556703 0.016631 0.111873 -0.027445
2001Q3 0.556703 0.016631 0.111873 -0.027445
2001Q4 0.046303 0.163344 0.251503 -0.157276
2002Q1 0.046303 0.163344 0.251503 -0.157276
2002Q2 0.046303 0.163344 0.251503 -0.157276
2002Q3 0.046303 0.163344 0.251503 -0.157276

11.7 Moving Window Functions

An important class of array transformations used for time series operations are statis-
tics and other functions evaluated over a sliding window or with exponentially decay-
ing weights. This can be useful for smoothing noisy or gappy data. I call these moving
window functions, even though it includes functions without a fixed-length window
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like exponentially weighted moving average. Like other statistical functions, these
also automatically exclude missing data.

Before digging in, we can load up some time series data and resample it to business
day frequency:

In [235]: close_px_all = pd.read_csv('examples/stock_px_2.csv',
..... : parse_dates=True, index_col=0)

In [236]: close_px = close_px_all[['AAPL', "MSFT', 'XOM']]

In [237]: close_px = close_px.resample('B"').ffill()

I now introduce the rolling operator, which behaves similarly to resample and
groupby. It can be called on a Series or DataFrame along with a window (expressed as
a number of periods; see Figure 11-4 for the plot created):

In [238]: close_px.AAPL.plot()
Out[238]: <matplotlib.axes._subplots.AxesSubplot at 0x7f2f2570cf98>

In [239]: close_px.AAPL.rolling(250).mean().plot()

400 1

300 1

200 1

100 A

2004 2005 2006 2007 2008 2009 2010 2011

Figure 11-4. Apple Price with 250-day MA

The expression rolling(250) is similar in behavior to groupby, but instead of group-
ing it creates an object that enables grouping over a 250-day sliding window. So here
we have the 250-day moving window average of Apple’s stock price.
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By default rolling functions require all of the values in the window to be non-NA.
This behavior can be changed to account for missing data and, in particular, the fact
that you will have fewer than window periods of data at the beginning of the time
series (see Figure 11-5):

In [241]: appl_std250 = close_px.AAPL.rolling(250, min_periods=10).std()

In [242]: appl_std250[5:12]
Out[242]:

2003-
2003-
2003-
2003-
2003-
2003-
2003-
Freq:

01-
01-
01-
01-
01-
01-
01-

09
10
13
14
15
16
17

NaN
NaN
NaN
NaN
0.077496
0.074760
0.112368

B, Name: AAPL, dtype: float64

In [243]: appl_std250.plot()
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2005 2006 2007 2008 2009 2010 2011

Figure 11-5. Apple 250-day daily return standard deviation

In order to compute an expanding window mean, use the expanding operator instead
of rolling. The expanding mean starts the time window from the beginning of the
time series and increases the size of the window until it encompasses the whole series.
An expanding window mean on the apple_std250 time series looks like this:

In [244]: expanding_mean = appl_std250.expanding().mean()
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Calling a moving window function on a DataFrame applies the transformation to
each column (see Figure 11-6):

In [246]: close_px.rolling(60).mean().plot(logy=True)

—— AAPL
—— MSFT
— XOM
107
101 4
2004 2005 2006 2007 2008 2009 2010 2011

Figure 11-6. Stocks prices 60-day MA (log Y-axis)

The rolling function also accepts a string indicating a fixed-size time offset rather
than a set number of periods. Using this notation can be useful for irregular time ser-
ies. These are the same strings that you can pass to resample. For example, we could

compute a 20-day rolling mean like so:

In [247]: close_px.rolling('26D").mean()

Out[247]:

2003-01-02
2003-01-03
2003-01-06
2003-01-07
2003-01-08
2003-01-09
2003-01-10
2003-01-13
2003-01-14
2003-01-15

NN NNNNNNN

2011-10-03 398.
2011-10-04 396.
2011-10-05 395.

AAPL

.400000
.425000
.433333
.432500
.402000
.391667
.387143
.378750
.370000
.355000

002143
802143
751429

21.

21

21.
21.
21.
21.
21.

21

21.
21.

25.
25.
25.

MSFT
110000
.125000
256667
425000
402000
490000
558571
.633750
717778
757000
890714
807857
729286

29.
29.
29.
29.
29.
29.
29.
29.
29.
29.

XOM
220000
230000
473333
342500
240000
273333
238571
197500
194444
152000

.413571
72.
72.

427143
422857
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2011-10-06
2011-10-07
2011-10-10
2011-10-11
2011-10-12
2011-10-13
2011-10-14
[2292 rows

Exponentially Weighted Functions

An alternative to using a static window size with equally weighted observations is to
specify a constant decay factor to give more weight to more recent observations.
There are a couple of ways to specify the decay factor. A popular one is using a span,
which makes the result comparable to a simple moving window function with win-
dow size equal to the span.

Since an exponentially weighted statistic places more weight on more recent observa-
tions, it “adapts” faster to changes compared with the equal-weighted version.

pandas has the ewm operator to go along with rolling and expanding. Here’s an
example comparing a 60-day moving average of Apple’s stock price with an EW mov-

394.
392.
389.
388.
388.
388.
391.
x 3 columns]

099286
479333
351429
505000
531429
826429
038000

25.
25.
25.
25.
25.
25.
26.

673571
712000
602143
674286
810000
961429
048667

72.
72.
72.
72.
73.
73.
74.

375714
454667
527857
835000
400714
905000
185333

ing average with span=60 (see Figure 11-7):

In [249]: aapl_px = close_px.AAPL['2006':'2007']

In [250]:
In [251]:

In [252]:
Out[252]:

In [253]:
Out[253]:

In [254]:

ma6d = aapl_px.rolling(30, min_periods=20).mean()
ewmab0 = aapl_px.ewm(span=30).mean()

ma60.plot(style="k--"', label='Simple MA')
<matplotlib.axes._subplots.AxesSubplot at 0x7f2f252161d0>

ewma60.plot(style="k-', label="EW MA')
<matplotlib.axes._subplots.AxesSubplot at 0x7f2f252161d0>

plt.legend()
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Figure 11-7. Simple moving average versus exponentially weighted

Binary Moving Window Functions

Some statistical operators, like correlation and covariance, need to operate on two
time series. As an example, financial analysts are often interested in a stock’s correla-
tion to a benchmark index like the S&P 500. To have a look at this, we first compute
the percent change for all of our time series of interest:

In [256]: spx_px = close_px_all['SPX']
In [257]: spx_rets = spx_px.pct_change()
In [258]: returns = close_px.pct_change()

The corr aggregation function after we call rolling can then compute the rolling
correlation with spx_rets (see Figure 11-8 for the resulting plot):

In [259]: corr = returns.AAPL.rolling(125, min_periods=100).corr(spx_rets)

In [260]: corr.plot()
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Figure 11-8. Six-month AAPL return correlation to S&P 500

Suppose you wanted to compute the correlation of the S&P 500 index with many
stocks at once. Writing a loop and creating a new DataFrame would be easy but might
get repetitive, so if you pass a Series and a DataFrame, a function like rolling_corr
will compute the correlation of the Series (spx_rets, in this case) with each column
in the DataFrame (see Figure 11-9 for the plot of the result):

In [262]: corr = returns.rolling(125, min_periods=100).corr(spx_rets)

In [263]: corr.plot()
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Figure 11-9. Six-month return correlations to S&»P 500

User-Defined Moving Window Functions

The apply method on rolling and related methods provides a means to apply an
array function of your own devising over a moving window. The only requirement is
that the function produce a single value (a reduction) from each piece of the array.
For example, while we can compute sample quantiles using rolling(...).quan
tile(q), we might be interested in the percentile rank of a particular value over the
sample. The scipy.stats.percentileofscore function does just this (see
Figure 11-10 for the resulting plot):

In [265]: from scipy.stats import percentileofscore
In [266]: score_at_2percent = lambda x: percentileofscore(x, 0.02)
In [267]: result = returns.AAPL.rolling(250).apply(score_at_2percent)

In [268]: result.plot()
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Figure 11-10. Percentile rank of 2% AAPL return over one-year window

If you don't have SciPy installed already, you can install it with conda or pip.

11.8 Conclusion

Time series data calls for different types of analysis and data transformation tools
than the other types of data we have explored in previous chapters.

In the following chapters, we will move on to some advanced pandas methods and
show how to start using modeling libraries like statsmodels and scikit-learn.
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CHAPTER 12
Advanced pandas

The preceding chapters have focused on introducing different types of data wrangling
workflows and features of NumPy, pandas, and other libraries. Over time, pandas has
developed a depth of features for power users. This chapter digs into a few more
advanced feature areas to help you deepen your expertise as a pandas user.

12.1 Categorical Data

This section introduces the pandas Categorical type. I will show how you can ach-
ieve better performance and memory use in some pandas operations by using it. I
also introduce some tools for using categorical data in statistics and machine learning
applications.

Background and Motivation

Frequently, a column in a table may contain repeated instances of a smaller set of dis-
tinct values. We have already seen functions like unique and value_counts, which
enable us to extract the distinct values from an array and compute their frequencies,
respectively:

In [10]: import as np; import as

In [11]: values = pd.Series(['apple', 'orange', 'apple',
‘apple'] * 2)

In [12]: values

Out[12]:

0 apple
1 orange
2 apple
3 apple
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4 apple
5 orange
6 apple
7 apple
dtype: object

In [13]: pd.unique(values)
Out[13]: array(['apple', 'orange'], dtype=object)

In [14]: pd.value_counts(values)

out[14]:
apple 6
orange 2

dtype: int64

Many data systems (for data warehousing, statistical computing, or other uses) have
developed specialized approaches for representing data with repeated values for more
efficient storage and computation. In data warehousing, a best practice is to use so-
called dimension tables containing the distinct values and storing the primary obser-
vations as integer keys referencing the dimension table:

In [15]: values = pd.Series([0, 1, 0, 0] * 2)
In [16]: dim = pd.Series(['apple', 'orange'])
In [17]: values

out[17]:
0

OO Fr OO0 O K

0
1
2
3
4
5
6
7
d

type: int64

In [18]: dim
Out[18]:

0 apple

1 orange
dtype: object

We can use the take method to restore the original Series of strings:

In [19]: dim.take(values)
Out[19]:

apple

orange

apple

apple

apple

orange

P OO0 O RrOo

364 | Chapter 12: Advanced pandas



0 apple

0 apple

dtype: object
This representation as integers is called the categorical or dictionary-encoded repre-
sentation. The array of distinct values can be called the categories, dictionary, or levels
of the data. In this book we will use the terms categorical and categories. The integer
values that reference the categories are called the category codes or simply codes.

The categorical representation can yield significant performance improvements when
you are doing analytics. You can also perform transformations on the categories while
leaving the codes unmodified. Some example transformations that can be made at
relatively low cost are:

« Renaming categories

« Appending a new category without changing the order or position of the existing
categories

Categorical Type in pandas

pandas has a special Categorical type for holding data that uses the integer-based
categorical representation or encoding. Let’s consider the example Series from before:

In [20]: fruits = ['apple', 'orange', 'apple', 'apple'] * 2
In [21]: N = len(fruits)

In [22]: df = pd.DataFrame({'fruit': fruits,
et 'basket_id': np.arange(N),
et 'count': np.random.randint(3, 15, size=N),
et 'weight': np.random.uniform(0, 4, size=N)},
el columns=[ 'basket_id', 'fruit', 'count', 'weight'])

In [23]: df
Out[23]:

basket_id fruit count weight
0 apple 5 3.858058
1 1 orange 8 2.612708
2 2 apple 4 2.995627
3 3 apple 7 2.614279
4 4 apple 12 2.990859
5 5 orange 8 3.845227
6 6 apple 5 0.033553
7 7  apple 4 0.425778

Here, df[ ' fruit'] is an array of Python string objects. We can convert it to categori-
cal by calling:
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In [24]: fruit_cat = df['fruit'].astype('category')

In [25]: fruit_cat
Out[25]:

apple
orange

apple

apple

apple

orange

apple

apple

Name: fruit, dtype: category
Categories (2, object): [apple, orange]

N vk, WwWN RO

The values for fruit_cat are not a NumPy array, but an instance of pandas.Catego
rical:

In [26]: c = fruit_cat.values

In [27]: type(c)
Out[27]: pandas.core.categorical.Categorical

The Categorical object has categories and codes attributes:

In [28]: c.categories
Out[28]: Index(['apple', 'orange'], dtype='object')

In [29]: c.codes
Out[29]: array([0, 1, 0, 0, 0, 1, 0, 0], dtype=int8)

You can convert a DataFrame column to categorical by assigning the converted result:

In [30]: df['fruit'] = df['fruit'].astype('category')

In [31]: df.fruit

Out[31]:

apple

orange

apple

apple

apple

orange

apple

apple

Name: fruit, dtype: category
Categories (2, object): [apple, orange]

~Noauv kA wWwWN RO

You can also create pandas.Categorical directly from other types of Python
sequences:

In [32]: my_categories = pd.Categorical(['foo', 'bar', 'baz', 'foo', 'bar'])

In [33]: my_categories
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Out[33]:

[foo, bar, baz, foo, bar]

Categories (3, object): [bar, baz, foo]
If you have obtained categorical encoded data from another source, you can use the
alternative from_codes constructor:

In [34]: categories = ['foo', 'bar', 'baz']
In [35]: codes = [0, 1, 2, 0, 0, 1]
In [36]: my_cats_2 = pd.Categorical.from_codes(codes, categories)

In [37]: my_cats_2

Out[37]:

[foo, bar, baz, foo, foo, bar]

Categories (3, object): [foo, bar, baz]
Unless explicitly specified, categorical conversions assume no specific ordering of the
categories. So the categories array may be in a different order depending on the
ordering of the input data. When using from_codes or any of the other constructors,
you can indicate that the categories have a meaningful ordering:

In [38]: ordered_cat = pd.Categorical.from_codes(codes, categories,
P ordered=True)

In [39]: ordered_cat

Out[39]:

[foo, bar, baz, foo, foo, bar]

Categories (3, object): [foo < bar < baz]
The output [foo < bar < baz] indicates that 'foo' precedes 'bar' in the ordering,
and so on. An unordered categorical instance can be made ordered with as_ordered:

In [40]: my_cats_2.as_ordered()

Out[40]:

[foo, bar, baz, foo, foo, bar]

Categories (3, object): [foo < bar < baz]
As a last note, categorical data need not be strings, even though I have only showed
string examples. A categorical array can consist of any immutable value types.

Computations with Categoricals

Using Categorical in pandas compared with the non-encoded version (like an array
of strings) generally behaves the same way. Some parts of pandas, like the groupby
function, perform better when working with categoricals. There are also some func-
tions that can utilize the ordered flag.
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Let’s consider some random numeric data, and use the pandas.qcut binning func-
tion. This return pandas.Categorical; we used pandas.cut earlier in the book but
glossed over the details of how categoricals work:

In [41]: np.random.seed(12345)
In [42]: draws = np.random.randn(1000)

In [43]: draws[:5]
out[43]: array([-0.2047, ©.4789, -0.5194, -0.5557, 1.9658])

Let’s compute a quartile binning of this data and extract some statistics:

In [44]: bins = pd.qcut(draws, 4)

In [45]: bins
Out[45]:
[(-0.684, -0.0101], (-0.0101, 0.63], (-0.684, -0.0101], (-0.684, -0.0101], (0.63,
3.928], ..., (-0.0101, 0.63], (-0.684, -0.0101], (-2.95, -0.684], (-0.0101, 0.63
1, (0.63, 3.928]]
Length: 1000
Categories (4, interval[float64]): [(-2.95, -0.684] < (-0.684, -0.0101] < (-0.010
1, 0.63] <
(0.63, 3.928]]

While useful, the exact sample quartiles may be less useful for producing a report
than quartile names. We can achieve this with the labels argument to qcut:

In [46]: bins = pd.qcut(draws, 4, labels=['Q1', 'Q2', 'Q3', 'Q4'])

In [47]: bins

Out[47]:

[02, 03, Q2, Q2, 04, ..., 03, Q2, Q1, 03, 04]
Length: 1000

Categories (4, object): [Q1 < Q2 < Q3 < Q4]

In [48]: bins.codes[:10]
Oout[48]: array([1, 2, 1, 1, 3, 3, 2, 2, 3, 3], dtype=int8)

The labeled bins categorical does not contain information about the bin edges in the
data, so we can use groupby to extract some summary statistics:

In [49]: bins = pd.Series(bins, name='quartile')

In [50]: results = (pd.Series(draws)
P .groupby(bins)
ceeat .agg(['count', 'min', 'max'])
el .reset_index())

In [51]: results
Out[51]:

quartile count min max
0 Q1 250 -2.949343 -0.685484
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1 Q2 250 -0.683066 -0.010115
2 Q3 250 -0.010032 0.62889%4
3 Q4 250 0.634238 3.927528

The 'quartile' column in the result retains the original categorical information,
including ordering, from bins:

In [52]: results['quartile']

Out[52]:
o 01
1 Q2
2 Q3
304

Name: quartile, dtype: category
Categories (4, object): [Q1 < Q2 < Q3 < Q4]
Better performance with categoricals

If you do a lot of analytics on a particular dataset, converting to categorical can yield
substantial overall performance gains. A categorical version of a DataFrame column
will often use significantly less memory, too. Let’s consider some Series with 10 mil-
lion elements and a small number of distinct categories:

In [53]: N = 10000000

In [54]: draws = pd.Series(np.random.randn(N))

In [55]: labels = pd.Series(['foo', 'bar', 'baz', 'qux'] * (N // 4))
Now we convert labels to categorical:

In [56]: categories = labels.astype('category')
Now we note that labels uses significantly more memory than categories:

In [57]: labels.memory_usage()
Out[57]: 80000080

In [58]: categories.memory_usage()
Out[58]: 10000272

The conversion to category is not free, of course, but it is a one-time cost:

In [59]: %time _ = labels.astype('category')
CPU times: user 490 ms, sys: 240 ms, total: 730 ms
Wall time: 726 ms

GroupBy operations can be significantly faster with categoricals because the underly-
ing algorithms use the integer-based codes array instead of an array of strings.
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Categorical Methods

Series containing categorical data have several special methods similar to the Ser
ies.str specialized string methods. This also provides convenient access to the cate-
gories and codes. Consider the Series:

In [60]: s = pd.Series(['a', 'b', 'c', 'd'] * 2)
In [61]: cat_s = s.astype('category')

In [62]: cat_s

Out[62]:
0 a
1 b
2 [«
3 d
4 a
5 b
6 C
7 d

dtype: category
Categories (4, object): [a, b, c, d]

The special attribute cat provides access to categorical methods:

In [63]: cat_s.cat.codes
Out[63]:
0

W NERE, O WNER

0
1
2
3
4
5
6
7
d

type: int8

In [64]: cat_s.cat.categories
Out[64]: Index(['a', 'b', 'c', 'd'], dtype='object")

Suppose that we know the actual set of categories for this data extends beyond the
four values observed in the data. We can use the set_categories method to change
them:

In [65]: actual_categories = ['a', 'b', 'c', 'd', 'e']
In [66]: cat_s2 = cat_s.cat.set_categories(actual_categories)

In [67]: cat_s2

Out[67]:
0 a
1 b
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A WN
anNn oo an

.
dtype: category
Categories (5, object): [a, b, c, d, e]
While it appears that the data is unchanged, the new categories will be reflected in
operations that use them. For example, value_counts respects the categories, if
present:

In [68]: cat_s.value_counts()

out[68]:
d 2
c 2
b 2
a 2

dtype: inté64

In [69]: cat_s2.value_counts()
out[69]:
d 2

O N NN

C
b
a
e
dtype: int64

In large datasets, categoricals are often used as a convenient tool for memory savings
and better performance. After you filter a large DataFrame or Series, many of the
categories may not appear in the data. To help with this, we can use the
remove_unused_categories method to trim unobserved categories:

In [70]: cat_s3 = cat_s[cat_s.isin(['a', 'b'])]

In [71]: cat_s3

Out[71]:
0 a
1 b
4 a
5 b

dtype: category
Categories (4, object): [a, b, c, d]

In [72]: cat_s3.cat.remove_unused_categories()

out[72]:
0 a
1 b
4 a
5 b
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dtype: category
Categories (2, object): [a, b]

See Table 12-1 for a listing of available categorical methods.

Table 12-1. Categorical methods for Series in pandas

Method Description

add_categories Append new (unused) categories at end of existing categories

as_ordered Make categories ordered

as_unordered Make categories unordered

remove_categories Remove categories, setting any removed values to null

remove_unused_categories Remove any category values which do not appear in the data

rename_categories Replace categories with indicated set of new category names; cannot change the
number of categories

reorder_categories Behaves like rename_categories, but can also change the result to have ordered
categories

set_categories Replace the categories with the indicated set of new categories; can add or remove
categories

Creating dummy variables for modeling

When you're using statistics or machine learning tools, you’ll often transform catego-
rical data into dummy variables, also known as one-hot encoding. This involves creat-
ing a DataFrame with a column for each distinct category; these columns contain 1s
for occurrences of a given category and 0 otherwise.

Consider the previous example:
In [73]: cat_s = pd.Series(['a', 'b', 'c', 'd'] * 2, dtype='category')

As mentioned previously in Chapter 7, the pandas.get_dummies function converts
this one-dimensional categorical data into a DataFrame containing the dummy
variable:

In [74]: pd.get_dummies(cat_s)
Out[74]:
a b

~No vk~ WwWN RO
OO0 O0ORr 000 OO
OO r 0000 r oo
O R OO0 Rr OOonN
P OO ORr OO0 0 a
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12.2 Advanced GroupBy Use

While we've already discussed using the groupby method for Series and DataFrame in
depth in Chapter 10, there are some additional techniques that you may find of use.

Group Transforms and “Unwrapped” GroupBys

In Chapter 10 we looked at the apply method in grouped operations for performing
transformations. There is another built-in method called transform, which is similar
to apply but imposes more constraints on the kind of function you can use:

o It can produce a scalar value to be broadcast to the shape of the group

o It can produce an object of the same shape as the input group

o It must not mutate its input

Let’s consider a simple example for illustration:

In [75]: df = pd.DataFrame({'key': ['a', 'b', 'c'] * 4,
el 'value': np.arange(12.)})

In [76]: df
Out[76]:

key value
0 a 0.0
1 b 1.0
2 C 2.0
3 a 3.0
4 b 4.0
5 C 5.0
6 a 6.0
7 b 7.0
8 C 8.0
9 a 9.0
10 b 10.0
11 C 11.0

Here are the group means by key:

In [77]: g = df.groupby( 'key').value

In [78]: g.mean()
Out[78]:

key

a 4.5

b 5.5

C 6.5

Name: value, dtype: float64
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Suppose instead we wanted to produce a Series of the same shape as df[ 'value'] but
with values replaced by the average grouped by 'key'. We can pass the function
lambda x: x.mean() to transform:

In [79]: g.transform(lambda x: x.mean())

out[79]:

0 4.5
1 5.5
2 6.5
3 4.5
4 5.5
5 6.5
6 4.5
7 5.5
8 6.5
9 4.5
10 5.5
11 6.5

Name: value, dtype: float64

For built-in aggregation functions, we can pass a string alias as with the GroupBy agg
method:

In [80]: g.transform('mean’')

Out[80]:

0 4.5
1 5.5
2 6.5
3 4.5
4 5.5
5 6.5
6 4.5
7 5.5
8 6.5
9 4.5
10 5.5
11 6.5

Name: value, dtype: float64

Like apply, transform works with functions that return Series, but the result must be
the same size as the input. For example, we can multiply each group by 2 using a
lambda function:

In [81]: g.transform(lambda x: x * 2)
Out[81]:

Y
N O oo P~NO
[clclNoNoNoNoNol

AU WNREL O

=
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7 14.0
8 16.0
9 18.0
10 20.0
11 22.0

Name: value, dtype: float64

As a more complicated example, we can compute the ranks in descending order for
each group:

In [82]: g.transform(lambda x: x.rank(ascending=False))
out[82]:
4

Vo ~NOULTP,WN RO
P P NNDNWWWRADS
[clclNoNoNoNoNoNoNoNoNo

[y
(o}

11 1.0
Name: value, dtype: float64

Consider a group transformation function composed from simple aggregations:

def normalize(x):
return (x - x.mean()) / x.std()

We can obtain equivalent results in this case either using transform or apply:

In [84]: g.transform(normalize)
out[84]:

-1.161895

-1.161895

-1.161895

-0.387298

-0.387298

-0.387298

0.387298

.387298

.387298

.161895

.161895

11 1.161895

Name: value, dtype: float64

W oO~NOUVLT D WNRLR O

R RO o

=
(o]

In [85]: g.apply(normalize)

Out[85]:

0 -1.161895
1 -1.161895
2 -1.161895
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3 -0.
4 -0.
5 -0
6 0
7 0
8 0
9 1
10 1
11 1.

387298
387298

.387298
.387298
.387298
.387298
.161895
.161895

161895

Name: value, dtype: float64

Built-in aggregate functions like 'mean' or 'sum' are often much faster than a general
apply function. These also have a “fast past” when used with transform. This allows
us to perform a so-called unwrapped group operation:

In [86]:
Out[86]:
4.

VWoOoO~NOULD WNREL O

=
(o]

11 6.

unhhooubhbou hoywu

g.transform('mean')

(VA RV RV, RV, RV, RV, RV RV, BV, RV, |

5

Name: value, dtype: float64

In [87]:
In [88]:
Out[88]:
0 -1.
1 -1.
2 -1
3 -0.
4 -0.
5 -0.
6

7 0
8 0
9 1
10 1
11 1.

0.
.387298
.387298
.161895
.161895

normalized = (df['value'] - g.transform('mean')) / g.transform('std')
normalized

161895
161895

.161895

387298
387298
387298
387298

161895

Name: value, dtype: float64

While an unwrapped group operation may involve multiple group aggregations, the
overall benefit of vectorized operations often outweighs this.
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Grouped Time Resampling

For time series data, the resample method is semantically a group operation based on
a time intervalization. Here’s a small example table:

In [89]: N =1
In [90]: times

In [91]: df =

In [92]: df
Out[92]:

2017-05-20
2017-05-20
2017-05-20
2017-05-20
2017-05-20
2017-05-20
2017-05-20
2017-05-20
2017-05-20
2017-05-20
2017-05-20
2017-05-20
2017-05-20
2017-05-20
14 2017-05-20

Vo ~NOTULTDWNRLR O

N
w N R o

5

pd.

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

pd.date_range('2017-05-20 00:00', freq='1min', periods=N)

DataFrame({'time': times,

time value

00:
01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

Lo ~NOULTD, WN RO

e
w N R o

14

value': np.arange(N)})

Here, we can index by 'time' and then resample:

In [93]: df.set_index('time').resample('5min').count()

Out[93]:

time

2017-05-20 00:00:00
2017-05-20 00:05:00
2017-05-20 00:10:00

value

Suppose that a DataFrame contains multiple time series, marked by an additional
group key column:

In [94]: df2 = pd.DataFrame({'time': times.repeat(3),

In [95]: df2[:
Out[95]:
key

0 a 2017-05-20 00:00:00
1 b 2017-05-20 00:00:00

7]

'key': np.tile(['a', 'b', 'c'], N),
'value': np.arange(N * 3.)})

time value

0.0
1.0
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N

c 2017-05-20 00:00:00

3 a3 2017-05-20 00:01:00
4 b 2017-05-20 00:01:00
5 ¢ 2017-05-20 00:01:00

AU h WN
[cl oo ool

6 a 2017-05-20 00:02:00

To do the same resampling for each value of 'key', we introduce the pandas.Time
Grouper object:

In [96]: time_key = pd.TimeGrouper('5min')
We can then set the time index, group by 'key' and time_key, and aggregate:

In [97]: resampled = (df2.set_index('time')
cealt .groupby ([ 'key', time_key])

.sum())
In [98]: resampled
Out[98]:
value
key time

a 2017-05-20 00:00:00  30.
2017-05-20 00:05:00 105.
2017-05-20 00:10:00 180.

b 2017-05-20 00:00:00  35.
2017-05-20 00:05:00 110.
2017-05-20 00:10:00 185.

c 2017-05-20 00:00:00  40.
2017-05-20 00:05:00 115.
2017-05-20 00:10:00 190.

[clcNoNoNoNoNoNoNO]

In [99]: resampled.reset_index()
Out[99]:

key time
2017-05-20 00:00:00
2017-05-20 00:05:00 105
2017-05-20 00:10:00 180
2017-05-20 00:00:00 35.
2017-05-20 00:05:00 110.
2017-05-20 00:10:00 185.
2017-05-20 00:00:00 40.
2017-05-20 00:05:00 115.
2017-05-20 00:10:00 190.
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One constraint with using TimeGrouper is that the time must be the index of the Ser-
ies or DataFrame.

12.3 Techniques for Method Chaining

When applying a sequence of transformations to a dataset, you may find yourself cre-
ating numerous temporary variables that are never used in your analysis. Consider
this example, for instance:
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df = load_data()

df2 = df[df['col2'] < 0]

df2['coll_demeaned'] = df2['coll'] - df2['coll'].mean()

result = df2.groupby('key').coll_demeaned.std()
While we’re not using any real data here, this example highlights some new methods.
First, the DataFrame.assign method is a functional alternative to column assign-
ments of the form df[k] = v. Rather than modifying the object in-place, it returns a
new DataFrame with the indicated modifications. So these statements are equivalent:

# Usual non-functional way
df2 = df.copy()
df2['k'] = v

# Functional assign way

df2 = df.assign(k=v)
Assigning in-place may execute faster than using assign, but assign enables easier
method chaining:

result = (df2.assign(coll_demeaned=df2.coll - df2.col2.mean())
.groupby('key")
.coll_demeaned.std())

I used the outer parentheses to make it more convenient to add line breaks.

One thing to keep in mind when doing method chaining is that you may need to
refer to temporary objects. In the preceding example, we cannot refer to the result of
load_data until it has been assigned to the temporary variable df. To help with this,
assign and many other pandas functions accept function-like arguments, also known
as callables.

To show callables in action, consider a fragment of the example from before:

df = load_data()
df2 = df[df['col2'] < 0]

This can be rewritten as:

df = (load_data()
[lambda x: x['col2'] < 0])

Here, the result of load_data is not assigned to a variable, so the function passed into
[ ] is then bound to the object at that stage of the method chain.

We can continue, then, and write the entire sequence as a single chained expression:

result = (load_data()
[lambda x: x.col2 < 0]
.assign(coll_demeaned=1lambda x: x.coll - x.coll.mean())
.groupby('key")
.coll_demeaned.std())
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Whether you prefer to write code in this style is a matter of taste, and splitting up the
expression into multiple steps may make your code more readable.

The pipe Method

You can accomplish a lot with built-in pandas functions and the approaches to
method chaining with callables that we just looked at. However, sometimes you need
to use your own functions or functions from third-party libraries. This is where the
pipe method comes in.

Consider a sequence of function calls:

a = f(df, argl=vi1)
b = g(a, v2, arg3=v3)
c = h(b, arg4=v4)

When using functions that accept and return Series or DataFrame objects, you can
rewrite this using calls to pipe:

result = (df.pipe(f, argl=vl)
.pipe(g, v2, arg3=v3)
.pipe(h, arg4=v4))

The statement f(df) and df.pipe(f) are equivalent, but pipe makes chained invoca-
tion easier.

A potentially useful pattern for pipe is to generalize sequences of operations into
reusable functions. As an example, let’s consider substracting group means from a
column:

g = df.groupby([ 'keyl', 'key2'])
df['col1'] = df['coll'] - g.transform('mean')

Suppose that you wanted to be able to demean more than one column and easily

change the group keys. Additionally, you might want to perform this transformation
in a method chain. Here is an example implementation:

def group_demean(df, by, cols):
result = df.copy()
g = df.groupby(by)
for ¢ in cols:
result[c] = df[c] - g[c].transform('mean')
return result

Then it is possible to write:

result = (df[df.coll < 0]
.pipe(group_demean, ['keyl', 'key2'], ['coll']))
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12.4 Conclusion

pandas, like many open source software projects, is still changing and acquiring new
and improved functionality. As elsewhere in this book, the focus here has been on the
most stable functionality that is less likely to change over the next several years.

To deepen your expertise as a pandas user, I encourage you to explore the documen-
tation and read the release notes as the development team makes new open source
releases. We also invite you to join in on pandas development: fixing bugs, building
new features, and improving the documentation.
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CHAPTER 13

Introduction to Modeling Libraries
in Python

In this book, I have focused on providing a programming foundation for doing data
analysis in Python. Since data analysts and scientists often report spending a dispro-
portionate amount of time with data wrangling and preparation, the book’s structure
reflects the importance of mastering these techniques.

Which library you use for developing models will depend on the application. Many
statistical problems can be solved by simpler techniques like ordinary least squares
regression, while other problems may call for more advanced machine learning
methods. Fortunately, Python has become one of the languages of choice for imple-
menting analytical methods, so there are many tools you can explore after completing

this book.

In this chapter, I will review some features of pandas that may be helpful when you’re
crossing back and forth between data wrangling with pandas and model fitting and
scoring. I will then give short introductions to two popular modeling toolkits, stats-
models and scikit-learn. Since each of these projects is large enough to warrant its
own dedicated book, I make no effort to be comprehensive and instead direct you to
both projects’ online documentation along with some other Python-based books on
data science, statistics, and machine learning.

13.1 Interfacing Between pandas and Model Code

A common workflow for model development is to use pandas for data loading and
cleaning before switching over to a modeling library to build the model itself. An
important part of the model development process is called feature engineering in
machine learning. This can describe any data transformation or analytics that extract

383



information from a raw dataset that may be useful in a modeling context. The data
aggregation and GroupBy tools we have explored in this book are used often in a fea-
ture engineering context.

While details of “good” feature engineering are out of scope for this book, I will show
some methods to make switching between data manipulation with pandas and mod-
eling as painless as possible.

The point of contact between pandas and other analysis libraries is usually NumPy
arrays. To turn a DataFrame into a NumPy array, use the .values property:

In [10]: import pandas as pd

In [13]
Out[13]
x0

A WNERO
un A WN -

: import numpy as np

: data = pd.DataFrame({

In [14]:
out[14]:

In [15]:
Out[15]:

array([

[
[
[
[
[

x0': [1,

2, 3, 4, 51,

'x1': [0.01, -0.01, 0.25, -4.1, 0.1,
'y': [-1.5, 0., 3.6, 1.3, -2.1})

data

N

(9]
N R Wo -
o wo o uKk

data.columns
Index(['x0"',

data.values

1, -

1. , 0.0

2. , -0.01,

3. , 0.25,

4. , -4.1,

5. , 0. , -2.

'x1', 'y'], dtype='object')

5

1,
1,
1,
1,

1

N P W o
w o

To convert back to a DataFrame, as you may recall from earlier chapters, you can pass
a two-dimensional ndarray with optional column names:

In [16]: df2 = pd.DataFrame(data.values, columns=['one', 'two', 'three'])

In [17]: df2
out[17]:

one two three
0 1.0 0.01 -1.5
1 2.0 -0.01 0.0
2 3.0 0.25 3.6
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The .values attribute is intended to be used when your data is
homogeneous—for example, all numeric types. If you have hetero-
geneous data, the result will be an ndarray of Python objects:

In [18]: df3 = data.copy()
In [19]: df3['strings'] = ['a', 'b', 'c', 'd', 'e']

In [20]: df3
Out[20]:

x0 x1 strings
- a

y
.5
.0
.6
.3
.0

A WN RO
v A WN
(o]

N
(%]

N P, W o -
m an o

In [21]: df3.values
Out[21]:
array([[1, 0.01, -1.5, 'a'],
[2, -0.01, 0.0, 'b'],
[3, 0.25, 3.6, 'c'],
[4, -4.1, 1.3, 'd'],
[5, 0.0, -2.0, 'e']], dtype=object)

For some models, you may only wish to use a subset of the columns. I recommend
using loc indexing with values:

In [22]: model_cols = ['x0", 'x1']

In [23]: data.loc[:, model_cols].values

Out[23]:
array([[ 1. ,
[ 2' ks
[ 3' k]
[ 4' ks
[ 5.

s

0.01],
-0.01],
0.25],
4.1 1,
0. 1D

Some libraries have native support for pandas and do some of this work for you auto-
matically: converting to NumPy from DataFrame and attaching model parameter
names to the columns of output tables or Series. In other cases, you will have to per-
form this “metadata management” manually.

In Chapter 12 we looked at pandas’s Categorical type and the pandas.get_dummies
function. Suppose we had a non-numeric column in our example dataset:
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In [24]: data['category'] = pd.Categorical(['a', 'b', 'a', 'a', 'b'],
cealt categories=['a', 'b'])

In [25]: data
Out[25]:

x0 x1 category

y
.5
.0
.6
.3
.0
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N
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If we wanted to replace the 'category' column with dummy variables, we create
dummy variables, drop the 'category' column, and then join the result:

In [26]: dummies = pd.get_dummies(data.category, prefix='category')
In [27]: data_with_dummies = data.drop('category', axis=1).join(dummies)
In [28]: data_with_dummies

Out[28]:

X0 x1 category_a category_

b
0
1
0
0
1

AwNRr OO
v A WN
(o]

N
(W3}

N R, Woe R
O R Rk O

There are some nuances to fitting certain statistical models with dummy variables. It
may be simpler and less error-prone to use Patsy (the subject of the next section)
when you have more than simple numeric columns.

13.2 Creating Model Descriptions with Patsy

Patsy is a Python library for describing statistical models (especially linear models)
with a small string-based “formula syntax,” which is inspired by (but not exactly the
same as) the formula syntax used by the R and S statistical programming languages.

Patsy is well supported for specifying linear models in statsmodels, so I will focus on
some of the main features to help you get up and running. Patsy’s formulas are a spe-
cial string syntax that looks like:

y ~ x0 + x1

The syntax a + b does not mean to add a to b, but rather that these are terms in the
design matrix created for the model. The patsy.dmatrices function takes a formula
string along with a dataset (which can be a DataFrame or a dict of arrays) and pro-
duces design matrices for a linear model:

In [29]: data = pd.DataFrame({
et 'x0': [1, 2, 3, 4, 5],
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et 'x1': [0.01, -0.01, 0.25, -4.1, 0.],
cealt 'yv': [-1.5, 0., 3.6, 1.3, -2.]1})

In [30]: data
Out[30]:

x0 x1
0.01 -
-0.01
.25
-4.10
0.00 -2.

o wo o Uk

A wWwNRL O
v A WN R
(o}

N PR, WO -

In [31]: import patsy

In [32]: y, X = patsy.dmatrices('y ~ x0 + x1', data)
Now we have:

In [33]:y

Out[33]:

DesignMatrix with shape (5, 1)
y

B W o R
w o wun

-2.
Terms:
'y'" (column 0)

In [34]: X
out[34]:
DesignMatrix with shape (5, 3)
Intercept x0 x1
1 1 0.01
1 2 -0.01
1 3 0.25
1 4 -4.10
1 5 0.00
Terms:

'Intercept' (column 0)
'x0" (column 1)
'x1' (column 2)

These Patsy DesignMatrix instances are NumPy ndarrays with additional metadata:

In [35]: np.asarray(y)
Out[35]:
array([[-1.5],

[ 0.1,

[ 3.6],

[ 1.3,

[-2. 1D
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In [36]: np.asarray(X)

Out[36]:

array([[ 1. , 1. , 0.01],
[1. , 2. , -0.01],
[1. , 3. , 0.25],
[1. , 4. , -4.117,
(1. , 5 , 0. 1D

You might wonder where the Intercept term came from. This is a convention for
linear models like ordinary least squares (OLS) regression. You can suppress the
intercept by adding the term + 0 to the model:

In [37]: patsy.dmatrices('y ~ x0 + x1 + 0', data)[1]

Out[37]:
DesignMatrix with shape (5, 2)
x0 x1
1 0.01
2 -0.01
3 0.25
4 -4.10
5 0.00
Terms:

'x0" (column 0)
'x1' (column 1)

The Patsy objects can be passed directly into algorithms like numpy.1linalg.lstsgq,
which performs an ordinary least squares regression:

In [38]: coef, resid, _, _ = np.linalg.lstsq(X, vy)

The model metadata is retained in the design_info attribute, so you can reattach the
model column names to the fitted coefficients to obtain a Series, for example:

In [39]: coef

Out[39]:

array([[ 0.3129],

[-0.0791],
[-0.26551])

In [40]: coef = pd.Series(coef.squeeze(), index=X.design_1info.column_names)

In [41]: coef

Out[41]:

Intercept 0.312910
x0 -0.079106
x1 -0.265464

dtype: float64
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Data Transformations in Patsy Formulas

You can mix Python code into your Patsy formulas; when evaluating the formula the
library will try to find the functions you use in the enclosing scope:

In [42]: y, X = patsy.dmatrices('y ~ x0 + np.log(np.abs(x1) + 1)', data)

In [43]: X

Out[43]:

DesignMatrix with shape (5, 3)
Intercept x0 np.log(np.abs(x1) + 1)

1 1 0.00995
1 2 0.00995
1 3 0.22314
1 4 1.62924
1 5 0.00000

Terms:
'"Intercept' (column 0)
'x0"' (column 1)
'np.log(np.abs(x1) + 1)" (column 2)

Some commonly used variable transformations include standardizing (to mean 0 and

variance 1) and centering (subtracting the mean). Patsy has built-in functions for this
purpose:

In [44]: y, X = patsy.dmatrices('y ~ standardize(x0) + center(x1)', data)

In [45]: X
Out[45]:
DesignMatrix with shape (5, 3)
Intercept standardize(x0) center(x1)

1 -1.41421 0.78
1 -0.70711 0.76
1 0.00000 1.02
1 0.70711 -3.33
1 1.41421 0.77

Terms:
'Intercept' (column 0)
'standardize(x0)' (column 1)
'center(x1)' (column 2)

As part of a modeling process, you may fit a model on one dataset, then evaluate the
model based on another. This might be a hold-out portion or new data that is
observed later. When applying transformations like center and standardize, you
should be careful when using the model to form predications based on new data.
These are called stateful transformations, because you must use statistics like the
mean or standard deviation of the original dataset when transforming a new dataset.

The patsy.build_design_matrices function can apply transformations to new out-
of-sample data using the saved information from the original in-sample dataset:
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In [46]: new_data = pd.DataFrame({
et 'x0': [6, 7, 8, 9],
'x1': [3.1, -0.5, 0, 2.3],
et 'y': [1, 2, 3, 41})

In [47]: new_X = patsy.build_design_matrices([X.design_info], new_data)

In [48]: new_X
Out[48]:
[DesignMatrix with shape (4, 3)
Intercept standardize(x0) center(x1)

1 2.12132 3.87
1 2.82843 0.27
1 3.53553 0.77
1 4.24264 3.07

Terms:
'Intercept' (column 0)
'standardize(x0)' (column 1)
'center(x1)' (column 2)]

Because the plus symbol (+) in the context of Patsy formulas does not mean addition,
when you want to add columns from a dataset by name, you must wrap them in the
special I function:

In [49]: y, X = patsy.dmatrices('y ~ I(x0 + x1)', data)

In [50]: X

Out[50]:

DesignMatrix with shape (5, 2)
Intercept I(x0 + x1)

1 1.01
1 1.99
1 3.25
1 -0.10
1 5.00

Terms:
'Intercept' (column 0)
'"I(x0 + x1)' (column 1)

Patsy has several other built-in transforms in the patsy.builtins module. See the
online documentation for more.

Categorical data has a special class of transformations, which I explain next.

Categorical Data and Patsy

Non-numeric data can be transformed for a model design matrix in many different
ways. A complete treatment of this topic is outside the scope of this book and would
be best studied along with a course in statistics.
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When you use non-numeric terms in a Patsy formula, they are converted to dummy
variables by default. If there is an intercept, one of the levels will be left out to avoid
collinearity:

In [51]: data = pd.DataFrame({
et 'key1': ['a', 'a', 'b', 'b', 'a', 'b', 'a', 'b'],
cealt 'key2': [0, 1, 0, 1, 0, 1, 0, 0],
et 'vi': [1, 2, 3, 4, 5, 6, 7, 8],
'v2': [-1, 0, 2.5, -0.5, 4.0, -1.2, 0.2, -1.7]

In [52]: y, X = patsy.dmatrices('v2 ~ keyl', data)

In [53]: X
Out[53]:
DesignMatrix with shape (8, 2)
Intercept keyi1[T.b]
1 0

Y e =
RO RO R RO

Terms:
'Intercept' (column 0)
'key1l' (column 1)

If you omit the intercept from the model, then columns for each category value will
be included in the model design matrix:

In [54]: y, X = patsy.dmatrices('v2 ~ keyl + 0', data)

In [55]: X
Out[55]:
DesignMatrix with shape (8, 2)
keyi[a] key1[b]
1

O r O Fr 0o
P O R, ORFRr P, OO

Terms:
'key1l' (columns 0:2)

Numeric columns can be interpreted as categorical with the C function:

In [56]: y, X = patsy.dmatrices('v2 ~ C(key2)', data)
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In [57]: X
Out[57]:
DesignMatrix with shape (8, 2)
Intercept C(key2)[T.1]
1 0

Y
OO rr ORr O

Terms:
'Intercept' (column 0)
'C(key2)" (column 1)

When you're using multiple categorical terms in a model, things can be more compli-
cated, as you can include interaction terms of the form keyl:key2, which can be
used, for example, in analysis of variance (ANOVA) models:

In [58]: data['key2'] = data['key2'].map({0: 'zero', 1: 'one'})

In [59]: data

Out[59]:

keyl key2 v1 v2
0 a zero 1-1.0
1 a one 2 0.0
2 b zero 3 2.5
3 b one 4 -0.5
4 a zero 5 4.0
5 b one 6 -1.2
6 a zero 7 0.2
7 b zero 8 -1.7

In [60]: y, X = patsy.dmatrices('v2 ~ keyl + key2', data)

In [61]: X
Out[61]:
DesignMatrix with shape (8, 3)
Intercept keyl[T.b] key2[T.zero]
1 0 1

R R R R R R R
P ORr ORr RO
B R, OR ORr O

Terms:
'Intercept' (column 0)
'key1l' (column 1)
'key2' (column 2)
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In [62]: y, X = patsy.dmatrices('v2 ~ keyl + key2 + keyl:key2', data)

In [63]: X
Out[63]:
DesignMatrix with shape (8, 4)
Intercept keyl[T.b] key2[T.zero] keyl[T.b]:key2[T.zero]

1 0 0
1 0 0 0
1 1 1 1
1 1 0 0
1 0 1 0
1 1 0 0
1 0 1 0
1 1 1 1

Terms:
'Intercept' (column 0)
'key1l' (column 1)
'key2' (column 2)
'keyl:key2' (column 3)

Patsy provides for other ways to transform categorical data, including transforma-
tions for terms with a particular ordering. See the online documentation for more.

13.3 Introduction to statsmodels

statsmodels is a Python library for fitting many kinds of statistical models, perform-
ing statistical tests, and data exploration and visualization. Statsmodels contains more
“classical” frequentist statistical methods, while Bayesian methods and machine learn-
ing models are found in other libraries.

Some kinds of models found in statsmodels include:

« Linear models, generalized linear models, and robust linear models
o Linear mixed effects models

o Analysis of variance (ANOVA) methods

« Time series processes and state space models

o Generalized method of moments

In the next few pages, we will use a few basic tools in statsmodels and explore how to
use the modeling interfaces with Patsy formulas and pandas DataFrame objects.

Estimating Linear Models

There are several kinds of linear regression models in statsmodels, from the more
basic (e.g., ordinary least squares) to more complex (e.g., iteratively reweighted least
squares).

13.3 Introduction to statsmodels | 393



Linear models in statsmodels have two different main interfaces: array-based and
formula-based. These are accessed through these API module imports:

import statsmodels.api as sm
import statsmodels.formula.api as smf

To show how to use these, we generate a linear model from some random data:

def dnorm(mean, variance, size=1):
if isinstance(size, int):
size = size,
return mean + np.sgrt(variance) * np.random.randn(*size)

# For reproducibility
np.random.seed(12345)

N
X

100

np.c_[dnorm(0, 0.4, size=N),
dnorm(0, 0.6, size=N),
dnorm(0, 0.2, size=N)]

eps = dnorm(0, 0.1, size=N)

beta = [0.1, 0.3, 0.5]

y = np.dot(X, beta) + eps

Here, I wrote down the “true” model with known parameters beta. In this case, dnorm
is a helper function for generating normally distributed data with a particular mean
and variance. So now we have:

In [66]: X[:5]

Out[66]:

array([[-0.1295, -1.2128, 0.5042],
[ 0.3029, -0.4357, -0.2542],
[-0.3285, -0.0253, 0.1384],
[-6.3515, -0.7196, -0.2582],
[ 1.2433, -0.3738, -0.5226]])

In [67]: y[:5]
out[67]: array([ 0.4279, -0.6735, -0.0909, -0.4895, -0.1289])

A linear model is generally fitted with an intercept term as we saw before with Patsy.
The sm.add_constant function can add an intercept column to an existing matrix:

In [68]: X_model = sm.add_constant(X)

In [69]: X_model[:5]

out[69]:

array([[ 1 , -0.1295, -1.2128, 0.5042],
[ 1. , 0.3029, -0.4357, -0.2542],
[ 1. , -0.3285, -0.0253, 0.1384],
[ 1 , -0.3515, -0.7196, -0.2582],
[ 1 , 1.2433, -0.3738, -0.5226]1)
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The sm.OLS class can fit an ordinary least squares linear regression:
In [70]: model = sm.OLS(y, X)

The model's fit method returns a regression results object containing estimated
model parameters and other diagnostics:

In [71]: results = model.fit()

In [72]: results.params
Out[72]: array([ 0.1783, ©.223 , 0.501 ])

The summary method on results can print a model detailing diagnostic output of the
model:

In [73]: print(results.summary())
OLS Regression Results

Dep. Variable: y  R-squared: 0.430
Model: OLS Adj. R-squared: 0.413
Method: Least Squares F-statistic: 24.42
Date: Mon, 25 Sep 2017  Prob (F-statistic): 7.44e-12
Time: 14:06:15  Log-Likelihood: -34.305
No. Observations: 100 AIC: 74.61
Df Residuals: 97  BIC: 82.42
Df Model: 3
Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]
x1 0.1783 0.053 3.364 0.001 0.073 0.283
x2 0.2230 0.046 4,818 0.000 0.131 0.315
x3 0.5010 0.080 6.237 0.000 0.342 0.660
Omnibus: 4.662  Durbin-Watson: 2.201
Prob(Omnibus): 0.097  Jarque-Bera (JB): 4.098
Skew: 0.481  Prob(JB): 0.129
Kurtosis: 3.243  Cond. No. 1.74
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly
specified.

The parameter names here have been given the generic names x1, x2, and so on.
Suppose instead that all of the model parameters are in a DataFrame:

In [74]: data = pd.DataFrame(X, columns=['col@®', 'coll', 'col2'])
In [75]: data['y'] =y
In [76]: data[:5]

Out[76]:
colo col1 col2 y
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-0.129468 -1.212753 0.504225 0.427863
0.302910 -0.435742 -0.254180 -0.673480
-0.328522 -0.025302 0.138351 -0.090878
-0.351475 -0.719605 -0.258215 -0.489494
1.243269 -0.373799 -0.522629 -0.128941

A wWwNERL O

Now we can use the statsmodels formula API and Patsy formula strings:

In [77]: results = smf.ols('y ~ colO® + coll + col2', data=data).fit()

In [78]: results.params

out[78]:

Intercept 0.033559
colo 0.176149
coll 0.224826
col2 0.514808

dtype: float64

In [79]: results.tvalues

out[79]:

Intercept 0.952188
colo 3.319754
coll 4.850730
col2 6.303971

dtype: float64

Observe how statsmodels has returned results as Series with the DataFrame column
names attached. We also do not need to use add_constant when using formulas and
pandas objects.

Given new out-of-sample data, you can compute predicted values given the estimated
model parameters:

In [80]: results.predict(data[:5])

Out[80]:

0 -0.002327
1 -0.141904
2 0.041226
3 -0.323070
4 -0.100535
dtype: float64

There are many additional tools for analysis, diagnostics, and visualization of linear
model results in statsmodels that you can explore. There are also other kinds of linear
models beyond ordinary least squares.

Estimating Time Series Processes

Another class of models in statsmodels are for time series analysis. Among these are
autoregressive processes, Kalman filtering and other state space models, and multi-
variate autoregressive models.
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Let’s simulate some time series data with an autoregressive structure and noise:
init_x = 4

import
values = [init_x, init_x]
N = 1000

bo 0.8

b1 -0.4

noise = dnorm(0, 0.1, N)

for 1 in range(N):
new_x = values[-1] * b@ + values[-2] * bl + noise[1i]
values.append(new_x)

This data has an AR(2) structure (two lags) with parameters 0.8 and -0.4. When you
fit an AR model, you may not know the number of lagged terms to include, so you
can fit the model with some larger number of lags:

In [82]: MAXLAGS = 5
In [83]: model = sm.tsa.AR(values)

In [84]: results = model.fit(MAXLAGS)

The estimated parameters in the results have the intercept first and the estimates for
the first two lags next:

In [85]: results.params
Out[85]: array([-0.0062, ©.7845, -0.4085, -0.0136, 0.015 , 0.0143])

Deeper details of these models and how to interpret their results is beyond what I can

cover in this book, but there’s plenty more to discover in the statsmodels documenta-
tion.

13.4 Introduction to scikit-learn

scikit-learn is one of the most widely used and trusted general-purpose Python
machine learning toolkits. It contains a broad selection of standard supervised and
unsupervised machine learning methods with tools for model selection and evalua-
tion, data transformation, data loading, and model persistence. These models can be
used for classification, clustering, prediction, and other common tasks.

There are excellent online and printed resources for learning about machine learning
and how to apply libraries like scikit-learn and TensorFlow to solve real-world prob-
lems. In this section, I will give a brief flavor of the scikit-learn API style.

At the time of this writing, scikit-learn does not have deep pandas integration, though
there are some add-on third-party packages that are still in development. pandas can
be very useful for massaging datasets prior to model fitting, though.
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As an example, I use a now-classic dataset from a Kaggle competition about passen-
ger survival rates on the Titanic, which sank in 1912. We load the test and training
dataset using pandas:
In [86]: train = pd.read_csv('datasets/titanic/train.csv')
In [87]: test = pd.read_csv('datasets/titanic/test.csv')

In [88]: train[:4]

Out[88]:
PassengerId Survived Pclass \

0 1 0 3

1 2 1 1

2 3 1 3

3 4 1 1

Name Sex Age SibSp \

0 Braund, Mr. Owen Harris male 22.0 1
1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1
2 Heikkinen, Miss. Laina female 26.0 0
3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1

Parch Ticket Fare Cabin Embarked
0 0 A/5 21171 7.2500 NaN S
1 0 PC 17599 71.2833 c85 C
2 © STON/02. 3101282 7.9250 NaN S
3 0 113803 53.1000 C(C123 S

Libraries like statsmodels and scikit-learn generally cannot be fed missing data, so we
look at the columns to see if there are any that contain missing data:

In [89]: train.isnull().sum()

out[89]:

PassengerId 0
Survived 0
Pclass 0
Name 0
Sex 0
Age 177
SibSp 0
Parch 0
Ticket 0
Fare 0
Cabin 687
Embarked 2

dtype: int64

In [90]: test.isnull().sum()
out[90]:
PassengerId
Pclass

Name

Sex

Age 86

0
0
0
0
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SibSp

Parch

Ticket

Fare

Cabin 32
Embarked

dtype: int64

O NPFr OO0

In statistics and machine learning examples like this one, a typical task is to predict
whether a passenger would survive based on features in the data. A model is fitted on
a training dataset and then evaluated on an out-of-sample testing dataset.

I would like to use Age as a predictor, but it has missing data. There are a number of
ways to do missing data imputation, but I will do a simple one and use the median of
the training dataset to fill the nulls in both tables:

In [91]: impute_value = train['Age'].median()
In [92]: train['Age'] = train['Age'].fillna(impute_value)
In [93]: test['Age'] = test['Age'].fillna(impute_value)

Now we need to specify our models. I add a column IsFemale as an encoded version
of the 'Sex' column:

In [94]: train['IsFemale'] = (train['Sex'] == 'female').astype(int)

In [95]: test['IsFemale'] = (test['Sex'] == 'female').astype(int)
Then we decide on some model variables and create NumPy arrays:

In [96]: predictors = ['Pclass', 'IsFemale', 'Age']

In [97]: X_train = train[predictors].values

In [98]: X_test = test[predictors].values

In [99]: y_train = train['Survived'].values

In [100]: X_train[:5]

Out[100]:

array([[ 3., 0., 22.],
[ 1., 1., 38.1,
[ 3., 1., 26.1,
[ 1., 1., 35.1,
[ 3., 0., 35.1D

In [101]: y_train[:5]

Out[101]: array([0, 1, 1, 1, 0])
I make no claims that this is a good model nor that these features are engineered
properly. We use the LogisticRegression model from scikit-learn and create a
model instance:

13.4 Introduction to scikit-learn | 399



In [102]: from import LogisticRegression

In [103]: model = LogisticRegression()

Similar to statsmodels, we can fit this model to the training data using the model’s fit
method:

In [104]: model.fit(X_train, y_train)

out[104]:

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
penalty='12"', random_state=None, solver='liblinear', tol=0.0001,
verbose=0, warm_start=False)

Now, we can form predictions for the test dataset using model.predict:

In [105]: y_predict = model.predict(X_test)

In [106]: y_predict[:10]

Out[106]: array([0, 0, 0, 0, 1, 0, 1, 0, 1, 0])
If you had the true values for the test dataset, you could compute an accuracy per-
centage or some other error metric:

(y_true == y_predict).mean()

In practice, there are often many additional layers of complexity in model training.
Many models have parameters that can be tuned, and there are techniques such as
cross-validation that can be used for parameter tuning to avoid overfitting to the
training data. This can often yield better predictive performance or robustness on
new data.

Cross-validation works by splitting the training data to simulate out-of-sample pre-
diction. Based on a model accuracy score like mean squared error, one can perform a
grid search on model parameters. Some models, like logistic regression, have estima-
tor classes with built-in cross-validation. For example, the LogisticRegressionCV
class can be used with a parameter indicating how fine-grained of a grid search to do
on the model regularization parameter C:

In [167]: from import LogisticRegressionCV
In [108]: model_cv = LogisticRegressionCV(10)

In [109]: model_cv.fit(X_train, y_train)

Out[109]:

LogisticRegressionCV(Cs=10, class_weight=None, cv=None, dual=False,
fit_intercept=True, intercept_scaling=1.0, max_iter=100,
multi_class='ovr', n_jobs=1, penalty='12", random_state=None,
refit=True, scoring=None, solver='lbfgs', tol=0.0001, verbose=0)
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To do cross-validation by hand, you can use the cross_val_score helper function,
which handles the data splitting process. For example, to cross-validate our model
with four non-overlapping splits of the training data, we can do:

In [110]: from import cross_val_score
In [111]: model = LogisticRegression(C=10)
In [112]: scores = cross_val_score(model, X_train, y_train, cv=4)

In [113]: scores
Out[113]: array([ 0.7723, 0.8027, 0.7703, 0.7883])

The default scoring metric is model-dependent, but it is possible to choose an explicit
scoring function. Cross-validated models take longer to train, but can often yield bet-
ter model performance.

13.5 Continuing Your Education

While I have only skimmed the surface of some Python modeling libraries, there are
more and more frameworks for various kinds of statistics and machine learning
either implemented in Python or with a Python user interface.

This book is focused especially on data wrangling, but there are many others dedica-
ted to modeling and data science tools. Some excellent ones are:

o Introduction to Machine Learning with Python by Andreas Mueller and Sarah
Guido (O'Reilly)

o Python Data Science Handbook by Jake VanderPlas (O'Reilly)

o Data Science from Scratch: First Principles with Python by Joel Grus (O'Reilly)

o Python Machine Learning by Sebastian Raschka (Packt Publishing)

» Hands-On Machine Learning with Scikit-Learn and TensorFlow by Aurélien
Géron (O’Reilly)

While books can be valuable resources for learning, they can sometimes grow out of
date when the underlying open source software changes. It’s a good idea to be familiar
with the documentation for the various statistics or machine learning frameworks to
stay up to date on the latest features and API.
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CHAPTER 14
Data Analysis Examples

Now that we've reached the end of this book’s main chapters, were going to take a
look at a number of real-world datasets. For each dataset, we'll use the techniques
presented in this book to extract meaning from the raw data. The demonstrated tech-
niques can be applied to all manner of other datasets, including your own. This chap-
ter contains a collection of miscellaneous example datasets that you can use for
practice with the tools in this book.

The example datasets are found in the book’s accompanying GitHub repository.

14.1 1.USA.gov Data from Bitly

In 2011, URL shortening service Bitly partnered with the US government website
USA.gov to provide a feed of anonymous data gathered from users who shorten links
ending with .gov or .mil. In 2011, a live feed as well as hourly snapshots were available
as downloadable text files. This service is shut down at the time of this writing (2017),
but we preserved one of the data files for the book’s examples.

In the case of the hourly snapshots, each line in each file contains a common form of
web data known as JSON, which stands for JavaScript Object Notation. For example,
if we read just the first line of a file we may see something like this:

In [5]: path = 'datasets/bitly_usagov/example.txt'

In [6]: open(path).readline()

out[6]: '{ "a": "Mozilla\\/5.0 (Windows NT 6.1; WOW64) AppleWebKit\\/535.11
(KHTML, like Gecko) Chrome\\/17.0.963.78 Safari\\/535.11", "c": "US", "nk": 1,
"tz": "America\\/New_York", "gr": "MA", "g": "A6qOVH", "h": "wfLQtf", "1":
"orofrog", "al": "en-US,en;q=0.8", "hh": "1.usa.gov", "r":
"http:\\/\\/www.facebook.com\\/1\\/7AQEFzjS1\\/1.usa.gov\\/wfLQtf", "u":
"http:\\/\\/www.ncbi.nlm.nih.gov\\/pubmed\\/22415991", "t": 1331923247, "hc":

1331822918, "cy": "Danvers", "11": [ 42.576698, -70.954903 ] }\n'
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Python has both built-in and third-party libraries for converting a JSON string into a
Python dictionary object. Here well use the json module and its loads function
invoked on each line in the sample file we downloaded:

import json
path = 'datasets/bitly_usagov/example.txt'
records = [json.loads(line) for line in open(path)]

The resulting object records is now a list of Python dicts:

In [18]: records[0]
Out[18]:
{'a': '"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like Gecko)
Chrome/17.0.963.78 Safari/535.11"',
'al': 'en-US,en;q=0.8",

'c': 'US',

'cy': 'Danvers',

'g': '"A6qOVH',

'gr': 'MA',

'h': 'wfLQtf',

'hc': 1331822918,

'hh': '1.usa.gov',

'l': 'orofrog',

"I1': [42.576698, -70.954903],
'nk': 1

r': '"http://www.facebook.com/1/7AQEFzjSi/1.usa.gov/wfLQtf',
't': 1331923247,

'tz': 'America/New_York',

u': 'http://www.ncbi.nlm.nih.gov/pubmed/22415991"'}

Counting Time Zones in Pure Python

Suppose we were interested in finding the most often-occurring time zones in the
dataset (the tz field). There are many ways we could do this. First, let’s extract a list of
time zones again using a list comprehension:

In [12]: time_zones = [rec['tz'] for rec in records]

KeyError Traceback (most recent call last)
<ipython-input-12-db4fbd348dad9> in <module>()

----> 1 time_zones = [rec['tz'] for rec in records]
<ipython-input-12-db4fbd348dad9> in <listcomp>(.0)

----> 1 time_zones = [rec['tz'] for rec in records]

KeyError: 'tz'

Oops! Turns out that not all of the records have a time zone field. This is easy to han-
dle, as we can add the check if 'tz' in rec at the end of the list comprehension:

In [13]: time_zones = [rec['tz'] for rec in records if 'tz' in rec]

In [14]: time_zones[:10]
Out[14]:
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['America/New_York',
'America/Denver',
'America/New_York',
'America/Sao_Paulo',
'"America/New_York',
'America/New_York',
'Europe/Warsaw',

[N
s

"]
Just looking at the first 10 time zones, we see that some of them are unknown (empty
string). You can filter these out also, but I'll leave them in for now. Now, to produce
counts by time zone I'll show two approaches: the harder way (using just the Python
standard library) and the easier way (using pandas). One way to do the counting is to
use a dict to store counts while we iterate through the time zones:

def get_counts(sequence):
counts = {}
for x in sequence:
if x in counts:
counts[x] += 1
else:
counts[x] = 1
return counts

Using more advanced tools in the Python standard library, you can write the same
thing more briefly:

from collections import defaultdict

def get_counts2(sequence):
counts = defaultdict(int) # values will initialize to @
for x in sequence:
counts[x] += 1
return counts
I put this logic in a function just to make it more reusable. To use it on the time

zones, just pass the time_zones list:

In [17]: counts = get_counts(time_zones)

In [18]: counts['America/New_York']
Out[18]: 1251

In [19]: len(time_zones)
Out[19]: 3440

If we wanted the top 10 time zones and their counts, we can do a bit of dictionary
acrobatics:

def top_counts(count_dict, n=10):
value_key_pairs = [(count, tz) for tz, count in count_dict.items()]
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value_key_pairs.sort()
return value_key_pairs[-n:]

We have then:

In [21]: top_counts(counts)
Out[21]:
[(33, 'America/Sao_Paulo'),
(35, 'Europe/Madrid'),
(36, 'Pacific/Honolulu'),
(37, 'Asia/Tokyo'),
(74, 'Europe/London'),
(191, 'America/Denver'),
(382, 'America/Los_Angeles'),
(400, 'America/Chicago'),
(521, '),
(1251, 'America/New_York')]

If you search the Python standard library, you may find the collections.Counter
class, which makes this task a lot easier:

In [22]: from collections import Counter
In [23]: counts = Counter(time_zones)

In [24]: counts.most_common(10)

outf[24]:

[('America/New_York', 1251),
(', 521),
('America/Chicago', 400),
('America/Los_Angeles', 382),
('America/Denver', 191),
('Europe/London', 74),
('Asia/Tokyo', 37),
('Pacific/Honolulu', 36),
('Europe/Madrid', 35),
('America/Sao_Paulo', 33)]

Counting Time Zones with pandas

Creating a DataFrame from the original set of records is as easy as passing the list of
records to pandas.DataFrame:

In [25]: import pandas as pd
In [26]: frame = pd.DataFrame(records)

In [27]: frame.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3560 entries, 0 to 3559
Data columns (total 18 columns):
_heartbeat_ 120 non-null float64

a 3440 non-null object
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al 3094 non-null object

C 2919 non-null object
cy 2919 non-null object
g 3440 non-null object
gr 2919 non-null object
h 3440 non-null object
hc 3440 non-null float64
hh 3440 non-null object
kw 93 non-null object

1 3440 non-null object
11 2919 non-null object
nk 3440 non-null float64
r 3440 non-null object
t 3440 non-null float64
tz 3440 non-null object
u 3440 non-null object

dtypes: float64(4), object(14)
memory usage: 500.7+ KB

In [28]: frame['tz'][:10]

Out[28]:

0 America/New_York
1 America/Denver
2 America/New_York
3 America/Sao_Paulo
4 America/New_York
5 America/New_York
6 Europe/Warsaw
7

8

9

Name: tz, dtype: object

The output shown for the frame is the summary view, shown for large DataFrame
objects. We can then use the value_counts method for Series:

In [29]: tz_counts = frame['tz'].value_counts()

In [30]: tz_counts[:10]

Out[30]:
America/New_York 1251
521
America/Chicago 400
America/Los_Angeles 382
America/Denver 191
Europe/London 74
Asia/Tokyo 37
Pacific/Honolulu 36
Europe/Madrid 35
America/Sao_Paulo 33

Name: tz, dtype: int64
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We can visualize this data using matplotlib. You can do a bit of munging to fill in a
substitute value for unknown and missing time zone data in the records. We replace
the missing values with the fillna method and use boolean array indexing for the
empty strings:

In [31]: clean_tz = frame['tz'].fillna('Missing')
In [32]: clean_tz[clean_tz == ''] = 'Unknown'
In [33]: tz_counts = clean_tz.value_counts()

In [34]: tz_counts[:10]

Out[34]:

America/New_York 1251
Unknown 521
America/Chicago 400
America/Los_Angeles 382
America/Denver 191
Missing 120
Europe/London 74
Asia/Tokyo 37
Pacific/Honolulu 36
Europe/Madrid 35

Name: tz, dtype: inté4

At this point, we can use the seaborn package to make a horizontal bar plot (see
Figure 14-1 for the resulting visualization):

In [36]: import seaborn as sns
In [37]: subset = tz_counts[:10]

In [38]: sns.barplot(y=subset.index, x=subset.values)

America/New_York
Unknown
America/Chicago
America/Los_Angeles
America/Denver
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Europe/London -

Asia/Tokyo
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Europe/Madrid

o

200 400 600 800 1000 1200

Figure 14-1. Top time zones in the 1.usa.gov sample data
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The a field contains information about the browser, device, or application used to
perform the URL shortening:

In [39]: frame['a'][1]
Out[39]: 'GoogleMaps/RochesterNY'

In [40]: frame['a'][50]
Out[40]: 'Mozilla/5.0 (Windows NT 5.1; rv:10.0.2) Gecko/20100101 Firefox/10.0.2'

In [41]: frame['a'][51][:50] # long line
Out[41]: 'Mozilla/5.0 (Linux; U; Android 2.2.2; en-us; LG-P9'

Parsing all of the interesting information in these “agent” strings may seem like a
daunting task. One possible strategy is to split off the first token in the string (corre-

sponding roughly to the browser capability) and make another summary of the user
behavior:

In [42]: results = pd.Series([x.split()[0] for x in frame.a.dropna()])

In [43]: results[:5]
Out[43]:

0 Mozilla/5.0
1 GoogleMaps/RochesterNY
2 Mozilla/4.0
3 Mozilla/5.0
4 Mozilla/5.0
dtype: object

In [44]: results.value_counts()[:8]

outf[44]:

Mozilla/5.0 2594
Mozilla/4.0 601
GoogleMaps/RochesterNY 121
Opera/9.80 34
TEST_INTERNET_AGENT 24
GoogleProducer 21
Mozilla/6.0 5
BlackBerry8520/5.0.0.681 4

dtype: int64

Now, suppose you wanted to decompose the top time zones into Windows and non-
Windows users. As a simplification, let’s say that a user is on Windows if the string
'Windows' is in the agent string. Since some of the agents are missing, we'll exclude
these from the data:

In [45]: cframe = frame[frame.a.notnull()]
We want to then compute a value for whether each row is Windows or not:

In [47]: cframe['os'] = np.where(cframe['a'].str.contains('Windows"'),
e '"Windows', 'Not Windows')

In [48]: cframe['os'][:5]
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Out[48]:

0 Windows
1 Not Windows
2 Windows
3 Not Windows
4 Windows

Name: os, dtype: object

Then, you can group the data by its time zone column and this new list of operating
systems:

In [49]: by_tz_os = cframe.groupby(['tz', 'os'])

The group counts, analogous to the value_counts function, can be computed with
size. This result is then reshaped into a table with unstack:

In [50]: agg_counts = by_tz_os.size().unstack().fillna(0)

In [51]: agg_counts[:10]
Out[51]:
os Not Windows Windows
tz

245. 276.
Africa/Cairo
Africa/Casablanca
Africa/Ceuta
Africa/Johannesburg
Africa/Lusaka
America/Anchorage
America/Argentina/Buenos_Aires
America/Argentina/Cordoba
America/Argentina/Mendoza
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Finally, let’s select the top overall time zones. To do so, I construct an indirect index
array from the row counts in agg_counts:

# Use to sort in ascending order
In [52]: indexer = agg_counts.sum(1).argsort()

In [53]: indexer[:10]

Out[53]:
tz

24
Africa/Cairo 20
Africa/Casablanca 21
Africa/Ceuta 92
Africa/Johannesburg 87
Africa/Lusaka 53
America/Anchorage 54
America/Argentina/Buenos_Aires 57
America/Argentina/Cordoba 26
America/Argentina/Mendoza 55

dtype: int64
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I use take to select the rows in that order, then slice off the last 10 rows (largest
values):

In [54]: count_subset = agg_counts.take(indexer[-10:])

In [55]: count_subset

Out[55]:
os Not Windows Windows
tz
America/Sao_Paulo 13.0 20.0
Europe/Madrid 16.0 19.0
Pacific/Honolulu 0.0 36.0
Asia/Tokyo 2.0 35.0
Europe/London 43.0 31.0
America/Denver 132.0 59.0
America/Los_Angeles 130.0 252.0
America/Chicago 115.0 285.0
245.0 276.0
America/New_York 339.0 912.0

pandas has a convenience method called nlargest that does the same thing:

In [56]: agg_counts.sum(1l).nlargest(10)

Out[56]:
tz
America/New_York 1251.0
521.0
America/Chicago 400.0
America/Los_Angeles 382.0
America/Denver 191.0
Europe/London 74.0
Asia/Tokyo 37.0
Pacific/Honolulu 36.0
Europe/Madrid 35.0
America/Sao_Paulo 33.0

dtype: float64

Then, as shown in the preceding code block, this can be plotted in a bar plot; I'll
make it a stacked bar plot by passing an additional argument to seaborn’s barplot
function (see Figure 14-2):

# Rearrange the data for plotting
In [58]: count_subset = count_subset.stack()

In [59]: count_subset.name = 'total'
In [60]: count_subset = count_subset.reset_index()

In [61]: count_subset[:10]

Out[61]:

tz os total
0 America/Sao_Paulo Not Windows 13.0
1 America/Sao_Paulo Windows 20.0
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2 Europe/Madrid Not Windows 16.0
3 Europe/Madrid Windows 19.0
4 Pacific/Honolulu Not Windows 0.0
5  Pacific/Honolulu Windows 36.0
6 Asia/Tokyo Not Windows 2.0
7 Asia/Tokyo Windows  35.0
8 Europe/London Not Windows 43.0
9 Europe/London Windows 31.0

In [62]: sns.barplot(x='total', y="tz', hue='os', data=count_subset)
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Figure 14-2. Top time zones by Windows and non-Windows users

The plot doesn’t make it easy to see the relative percentage of Windows users in the
smaller groups, so let’s normalize the group percentages to sum to 1:

def norm_total(group):
group[ 'normed_total'] = group.total / group.total.sum()
return group

results = count_subset.groupby('tz').apply(norm_total)
Then plot this in Figure 14-3:

In [65]: sns.barplot(x='normed_total', y='tz', hue='os', data=results)
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Figure 14-3. Percentage Windows and non-Windows users in top-occurring time zones

We could have computed the normalized sum more efficiently by using the trans
form method with groupby:

In [66]: g = count_subset.groupby('tz"')

In [67]: results2 = count_subset.total / g.total.transform('sum')

14.2 MovielLens 1M Dataset

GroupLens Research provides a number of collections of movie ratings data collected
from users of MovieLens in the late 1990s and early 2000s. The data provide movie
ratings, movie metadata (genres and year), and demographic data about the users
(age, zip code, gender identification, and occupation). Such data is often of interest in
the development of recommendation systems based on machine learning algorithms.
While we do not explore machine learning techniques in detail in this book, I will
show you how to slice and dice datasets like these into the exact form you need.

The MovieLens 1M dataset contains 1 million ratings collected from 6,000 users on
4,000 movies. It's spread across three tables: ratings, user information, and movie
information. After extracting the data from the ZIP file, we can load each table into a
pandas DataFrame object using pandas.read_table:
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import pandas as pd

# Make display smaller
pd.options.display.max_rows = 10

unames = ['user_id', 'gender', 'age', 'occupation', 'zip']
users = pd.read_table('datasets/movielens/users.dat', sep='::",
header=None, names=unames)

rnames = ['user_1id', 'movie_id', 'rating', 'timestamp']
ratings = pd.read_table('datasets/movielens/ratings.dat', sep='::",
header=None, names=rnames)

mnames = ['movie_id', 'title', 'genres']
movies = pd.read_table('datasets/movielens/movies.dat', sep="::",
header=None, names=mnames)

You can verify that everything succeeded by looking at the first few rows of each
DataFrame with Python’s slice syntax:

In [69]: users[:5]

Out[69]:
user_1id gender age occupation zip
0 1 F 1 10 48067
1 2 M 56 16 70072
2 3 M 25 15 55117
3 4 M 45 7 02460
4 5 M 25 20 55455
In [70]: ratings[:5]
Out[70]:
user_id movie_id rating timestamp
0 1 1193 5 978300760
1 1 661 3 978302109
2 1 914 3 978301968
3 1 3408 4 978300275
4 1 2355 5 978824291
In [71]: movies[:5]
Out[71]:
movie_id title genres
0 1 Toy Story (1995)  Animation|Children's|Comedy
1 2 Jumanji (1995) Adventure|Children's|Fantasy
2 3 Grumpier Old Men (1995) Comedy |Romance
3 4 Waiting to Exhale (1995) Comedy |Drama
4 5 Father of the Bride Part II (1995) Comedy

In [72]: ratings

Out[72]:

user_id movie_id rating timestamp
0 1 1193 5 978300760
1 1 661 3 978302109
2 1 914 3 978301968
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3 1 3408 4 978300275

1 2355 5 978824291
1000204 6040 1091 1 956716541
1000205 6040 1094 5 956704887
1000206 6040 562 5 956704746
1000207 6040 1096 4 956715648
1000208 6040 1097 4 956715569

[1600209 rows x 4 columns]

Note that ages and occupations are coded as integers indicating groups described in
the dataset's README file. Analyzing the data spread across three tables is not a sim-
ple task; for example, suppose you wanted to compute mean ratings for a particular
movie by sex and age. As you will see, this is much easier to do with all of the data
merged together into a single table. Using pandass merge function, we first merge
ratings with users and then merge that result with the movies data. pandas infers
which columns to use as the merge (or join) keys based on overlapping names:

In [73]: data = pd.merge(pd.merge(ratings, users), movies)

In [74]: data

Out[74]:
user_id movie_id rating timestamp gender age occupation zip '\

0 1 1193 5 978300760 F 1 10 48067

1 2 1193 5 978298413 M 56 16 70072

2 12 1193 4 978220179 M 25 12 32793

3 15 1193 4 978199279 M 25 7 22903

4 17 1193 5 978158471 M 50 1 95350

1000204 5949 2198 5 958846401 M 18 17 47901

1000205 5675 2703 3 976029116 M 35 14 30030

1000206 5780 2845 1 958153068 M 18 17 92886

1000207 5851 3607 5 957756608 F 18 20 55410

1000208 5938 2909 4 957273353 M 25 1 35401
title genres

0 One Flew Over the Cuckoo's Nest (1975) Drama

1 One Flew Over the Cuckoo's Nest (1975) Drama

2 One Flew Over the Cuckoo's Nest (1975) Drama

3 One Flew Over the Cuckoo's Nest (1975) Drama

4 One Flew Over the Cuckoo's Nest (1975) Drama

1000204 Modulations (1998) Documentary

1000205 Broken Vessels (1998) Drama

1000206 White Boys (1999) Drama

1000207 One Little Indian (1973) Comedy|Drama|Western

1000208 Five Wives, Three Secretaries and Me (1998) Documentary

[1600209 rows x 10 columns]

In [75]: data.iloc[0]
Out[75]:
user_id 1
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movie_id 1193

rating 5
timestamp 978300760
gender F
age 1
occupation 10
zip 48067
title One Flew Over the Cuckoo's Nest (1975)
genres Drama

Name: 0, dtype: object

To get mean movie ratings for each film grouped by gender, we can use the
pivot_table method:

In [76]: mean_ratings = data.pivot_table('rating', index='title',
et columns="'gender', aggfunc='mean')

In [77]: mean_ratings[:5]

out[77]:

gender F M
title

$1,000,000 Duck (1971) 3.375000 2.761905
'Night Mother (1986) 3.388889 3.352941
'Til There Was You (1997) 2.675676 2.733333
'burbs, The (1989) 2.793478 2.962085

...And Justice for ALl (1979) 3.828571 3.689024

This produced another DataFrame containing mean ratings with movie titles as row
labels (the “index”) and gender as column labels. I first filter down to movies that
received at least 250 ratings (a completely arbitrary number); to do this, I then group
the data by title and use size() to get a Series of group sizes for each title:

In [78]: ratings_by_title = data.groupby('title').size()

In [79]: ratings_by_title[:10]

out[79]:

title

$1,000,000 Duck (1971) 37
'Night Mother (1986) 70
'Til There Was You (1997) 52
'burbs, The (1989) 303
...And Justice for ALl (1979) 199
1-900 (1994) 2
10 Things I Hate About You (1999) 700
101 Dalmatians (1961) 565
101 Dalmatians (1996) 364
12 Angry Men (1957) 616

dtype: int64
In [80]: active_titles = ratings_by_title.index[ratings_by title >= 250]

In [81]: active_titles
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Out[81]:

Index([''burbs, The (1989)', '10 Things I Hate About You (1999)',
'101 Dalmatians (1961)', '101 Dalmatians (1996)', '12 Angry Men (1957)',
'13th Warrior, The (1999)', '2 Days in the Valley (1996)',
'20,000 Leagues Under the Sea (1954)', '2001: A Space Odyssey (1968)',
'2010 (1984)',

'X-Men (2000)', 'Year of Living Dangerously (1982)',
'Yellow Submarine (1968)', 'You've Got Mail (1998)',
'Young Frankenstein (1974)', 'Young Guns (1988)',
'Young Guns II (1990)', 'Young Sherlock Holmes (1985)',
'Zero Effect (1998)', 'eXistenZ (1999)'],
dtype='object', name='title', length=1216)

The index of titles receiving at least 250 ratings can then be used to select rows from
mean_ratings:

# Select rows on the index
In [82]: mean_ratings = mean_ratings.loc[active_titles]

In [83]: mean_ratings

Out[83]:

gender F M
title

'burbs, The (1989) 2.793478 2.962085
10 Things I Hate About You (1999) 3.646552 3.311966
101 Dalmatians (1961) 3.791444 3.500000
101 Dalmatians (1996) 3.240000 2.911215
12 Angry Men (1957) 4.184397 4.328421
Young Guns (1988) 3.371795 3.425620
Young Guns II (1990) 2.934783 2.904025
Young Sherlock Holmes (1985) 3.514706 3.363344
Zero Effect (1998) 3.864407 3.723140
eXistenz (1999) 3.098592 3.289086

[1216 rows x 2 columns]

To see the top films among female viewers, we can sort by the F column in descend-
ing order:

In [85]: top_female_ratings = mean_ratings.sort_values(by='F', ascending=False)

In [86]: top_female_ratings[:10]

Out[86]:

gender F M
title

Close Shave, A (1995) 4.644444 4.473795
Wrong Trousers, The (1993) 4.588235 4.478261
Sunset Blvd. (a.k.a. Sunset Boulevard) (1950) 4.572650 4.464589
Wallace & Gromit: The Best of Aardman Animation... 4.563107 4.385075
Schindler's List (1993) 4.562602 4.491415
Shawshank Redemption, The (1994) 4.539075 4.560625
Grand Day Out, A (1992) 4.537879 4.293255
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To Kill a Mockingbird (1962) 4.536667 4.372611
Creature Comforts (1990) 4.513889 4.272277
Usual Suspects, The (1995) 4.513317 4.518248

Measuring Rating Disagreement

Suppose you wanted to find the movies that are most divisive between male and
female viewers. One way is to add a column to mean_ratings containing the differ-
ence in means, then sort by that:

In [87]: mean_ratings['diff'] = mean_ratings['M'] - mean_ratings['F']

Sorting by 'diff"' yields the movies with the greatest rating difference so that we can
see which ones were preferred by women:

In [88]: sorted_by diff = mean_ratings.sort_values(by='diff")

In [89]: sorted_by diff[:10]

Out[89]:

gender F M diff
title

Dirty Dancing (1987) 3.790378 2.959596 -0.830782
Jumpin' Jack Flash (1986) 3.254717 2.578358 -0.676359
Grease (1978) 3.975265 3.367041 -0.608224
Little Women (1994) 3.870588 3.321739 -0.548849
Steel Magnolias (1989) 3.901734 3.365957 -0.535777
Anastasia (1997) 3.800000 3.281609 -0.518391
Rocky Horror Picture Show, The (1975) 3.673016 3.160131 -0.512885
Color Purple, The (1985) 4.158192 3.659341 -0.498851
Age of Innocence, The (1993) 3.827068 3.339506 -0.487561
Free Willy (1993) 2.921348 2.438776 -0.482573

Reversing the order of the rows and again slicing off the top 10 rows, we get the mov-
ies preferred by men that women didn't rate as highly:

# Reverse order of rows, take first 10 rows
In [90]: sorted_by diff[::-1][:10]

out[90]:

gender F M diff
title

Good, The Bad and The Ugly, The (1966) 3.494949 4.221300 0.726351
Kentucky Fried Movie, The (1977) 2.878788 3.555147 0.676359
Dumb & Dumber (1994) 2.697987 3.336595 0.638608
Longest Day, The (1962) 3.411765 4.031447 0.619682
Cable Guy, The (1996) 2.250000 2.863787 0.613787
Evil Dead II (Dead By Dawn) (1987) 3.297297 3.909283 0.611985
Hidden, The (1987) 3.137931 3.745098 0.607167
Rocky III (1982) 2.361702 2.943503 0.581801
Caddyshack (1980) 3.396135 3.969737 0.573602
For a Few Dollars More (1965) 3.409091 3.953795 0.544704
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Suppose instead you wanted the movies that elicited the most disagreement among
viewers, independent of gender identification. Disagreement can be measured by the
variance or standard deviation of the ratings:

# Standard deviation of rating grouped by title
In [91]: rating_std_by_title = data.groupby('title')['rating'].std()

# Filter down to active_titles
In [92]: rating_std_by title = rating_std_by title.loc[active_titles]

# Order Series by value in descending order
In [93]: rating_std_by_title.sort_values(ascending=False)[:10]

Out[93]:

title

Dumb & Dumber (1994) 1.321333
Blair Witch Project, The (1999) 1.316368
Natural Born Killers (1994) 1.307198
Tank Girl (1995) 1.277695
Rocky Horror Picture Show, The (1975) 1.260177
Eyes Wide Shut (1999) 1.259624
Evita (1996) 1.253631
Billy Madison (1995) 1.249970
Fear and Loathing in Las Vegas (1998) 1.246408
Bicentennial Man (1999) 1.245533

Name: rating, dtype: float64

You may have noticed that movie genres are given as a pipe-separated (|) string. If
you wanted to do some analysis by genre, more work would be required to transform
the genre information into a more usable form.

14.3 US Baby Names 1880-2010

The United States Social Security Administration (SSA) has made available data on
the frequency of baby names from 1880 through the present. Hadley Wickham, an
author of several popular R packages, has often made use of this dataset in illustrating
data manipulation in R.

We need to do some data wrangling to load this dataset, but once we do that we will
have a DataFrame that looks like this:

In [4]: names.head(10)
Out[4]:
name sex births year

0 Mary F 7065 1880
1 Anna F 2604 1880
2 Emma F 2003 1880
3 Elizabeth F 1939 1880
4 Minnie F 1746 1880
5 Margaret F 1578 1880
6 Ida F 1472 1880
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7 Alice F 1414 1880
8 Bertha F 1320 1880
9 Sarah F 1288 1880

There are many things you might want to do with the dataset:

o Visualize the proportion of babies given a particular name (your own, or another
name) over time

o Determine the relative rank of a name

o Determine the most popular names in each year or the names whose popularity
has advanced or declined the most

« Analyze trends in names: vowels, consonants, length, overall diversity, changes in
spelling, first and last letters

o Analyze external sources of trends: biblical names, celebrities, demographic
changes

With the tools in this book, many of these kinds of analyses are within reach, so I will
walk you through some of them.

As of this writing, the US Social Security Administration makes available data files,
one per year, containing the total number of births for each sex/name combination.
The raw archive of these files can be obtained from http://www.ssa.gov/oact/baby
names/limits.html.

In the event that this page has been moved by the time you’re reading this, it can most
likely be located again by an internet search. After downloading the “National data”
file names.zip and unzipping it, you will have a directory containing a series of files
like yob1880.txt. I use the Unix head command to look at the first 10 lines of one of
the files (on Windows, you can use the more command or open it in a text editor):

In [94]: 'head -n 10 datasets/babynames/yob1880.txt
Mary,F,7065
Anna,F,2604
Emma,F,2003
Elizabeth,F,1939
Minnie,F,1746
Margaret,F,1578
Ida,F,1472
Alice,F,1414
Bertha,F,1320
Sarah,F,1288

As this is already in a nicely comma-separated form, it can be loaded into a Data-
Frame with pandas.read_csv:
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In [95]: import pandas as pd

In [96]: names1880 = pd.read_csv('datasets/babynames/yob1880.txt",
et names=[ 'name', 'sex', 'births'])

In [97]: names1880

Out[97]:

name sex births
0 Mary F 7065
1 Anna F 2604
2 Emma F 2003
3 Elizabeth F 1939
4 Minnie F 1746
1995 Woodie M 5
1996 Worthy M 5
1997 Wright M 5
1998 York M 5
1999 Zachariah M 5

[2000 rows x 3 columns]

These files only contain names with at least five occurrences in each year, so for sim-
plicity’s sake we can use the sum of the births column by sex as the total number of
births in that year:

In [98]: names1880.groupby('sex"').births.sum()
Out[98]:

sex

F 90993

M 110493

Name: births, dtype: int64

Since the dataset is split into files by year, one of the first things to do is to assemble
all of the data into a single DataFrame and further to add a year field. You can do this
using pandas. concat:

years = range(1880, 2011)

pileces = []
columns = ['name', 'sex', 'births']

for year in years:
path = 'datasets/babynames/yob%d.txt' % year
frame = pd.read_csv(path, names=columns)

frame[ 'year'] = year
pileces.append(frame)

# Concatenate everything into a single DataFrame
names = pd.concat(pieces, ignore_index=True)
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There are a couple things to note here. First, remember that concat glues the Data-
Frame objects together row-wise by default. Secondly, you have to pass
ignore_index=True because were not interested in preserving the original row num-
bers returned from read_csv. So we now have a very large DataFrame containing all
of the names data:

In [100]: names

Out[100]:

name sex births year
0 Mary F 7065 1880
1 Anna F 2604 1880
2 Emma F 2003 1880
3 Elizabeth F 1939 1880
4 Minnie F 1746 1880
1690779 Zymaire M 5 2010
1690780 Zyonne M 5 2010
1690781 Zyquarius M 5 2010
1690782 Zyran M 5 2010
1690783 Zzyzx M 5 2010

[1690784 rows x 4 columns]

With this data in hand, we can already start aggregating the data at the year and sex
level using groupby or pivot_table (see Figure 14-4):

In [101]: total_births = names.pivot_table('births', index='year',
..... : columns="sex"', aggfunc=sum)

In [102]: total_births.tail()
Out[102]:

sex F M

year

2006 1896468 2050234

2007 1916888 2069242

2008 1883645 2032310

2009 1827643 1973359

2010 1759010 1898382

In [103]: total_births.plot(title='Total births by sex and year')
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Figure 14-4. Total births by sex and year

Next, let’s insert a column prop with the fraction of babies given each name relative to
the total number of births. A prop value of 8.02 would indicate that 2 out of every
100 babies were given a particular name. Thus, we group the data by year and sex,
then add the new column to each group:

def add_prop(group):
group[ 'prop'] = group.births / group.births.sum()
return group

names = names.groupby(['year', 'sex']).apply(add_prop)

The resulting complete dataset now has the following columns:

In [105]: names

Out[105]:

name sex births year prop
0 Mary F 7065 1880 0.077643
1 Anna F 2604 1880 0.028618
2 Emma F 2003 1880 0.022013
3 Elizabeth F 1939 1880 0.021309
4 Minnie F 1746 1880 0.019188
1690779 Zymaire M 5 2010 0.000003
1690780 Zyonne M 5 2010 0.000003
1690781 Zyquarius M 5 2010 0.000003
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1690782 Zyran M 5 2010 0.000003
1690783 Zzyzx M 5 2010 0.000003
[1690784 rows x 5 columns]

When performing a group operation like this, it’s often valuable to do a sanity check,
like verifying that the prop column sums to 1 within all the groups:

In [106]: names.groupby(['year', 'sex']).prop.sum()

Out[106]:

year sex

1880 F 1.0
M 1.0

1881 F 1.0
M 1.0

1882 F 1.0

2008 M 1.0

2009 F 1.0
M 1.0

2010 F 1.0
M 1.0

Name: prop, Length: 262, dtype: float64

Now that this is done, I'm going to extract a subset of the data to facilitate further
analysis: the top 1,000 names for each sex/year combination. This is yet another
group operation:

def get_top1000(group):

return group.sort_values(by='births', ascending=False)[:1000]
grouped = names.groupby(['year', 'sex'])
top1000 = grouped.apply(get_top1000)
# Drop the group index, not needed
top1000.reset_index(inplace=True, drop=True)

If you prefer a do-it-yourself approach, try this instead:

pieces = []

for year, group in names.groupby(['year', 'sex']):
pileces.append(group.sort_values(by='births', ascending=False)[:1000])

top1000 = pd.concat(pieces, ignore_index=True)

The resulting dataset is now quite a bit smaller:

In [108]: top1000

Out[108]:

name sex births year prop
0 Mary F 7065 1880 0.077643
1 Anna F 2604 1880 0.028618
2 Emma F 2003 1880 0.022013
3 Elizabeth F 1939 1880 0.021309
4 Minnie F 1746 1880 0.019188
261872 Camilo M 194 2010 0.000102
261873 Destin M 194 2010 0.000102
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261874 Jaquan M 194 2010 0.000102
261875 Jaydan M 194 2010 0.000102
261876 Maxton M 193 2010 0.000102
[261877 rows x 5 columns]

We'll use this Top 1,000 dataset in the following investigations into the data.

Analyzing Naming Trends

With the full dataset and Top 1,000 dataset in hand, we can start analyzing various
naming trends of interest. Splitting the Top 1,000 names into the boy and girl por-
tions is easy to do first:

In [169]: boys = topl000[topl000.sex == 'M']

In [110]: girls = topl10OO[topl000.sex == 'F']

Simple time series, like the number of Johns or Marys for each year, can be plotted
but require a bit of munging to be more useful. Let’s form a pivot table of the total
number of births by year and name:

In [111]: total_births = top1000.pivot_table('births', index='year',

...... columns="name",
et aggfunc=sum)

Now, this can be plotted for a handful of names with DataFrames plot method
(Figure 14-5 shows the result):

In [112]: total_births.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 131 entries, 1880 to 2010
Columns: 6868 entries, Aaden to Zuri
dtypes: float64(6868)

memory usage: 6.9 MB

In [113]: subset = total_births[['John', 'Harry', 'Mary', 'Marilyn']]

In [114]: subset.plot(subplots=True, figsize=(12, 10), grid=False,
et title="Number of births per year")
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Figure 14-5. A few boy and girl names over time

On looking at this, you might conclude that these names have grown out of favor
with the American population. But the story is actually more complicated than that,
as will be explored in the next section.

Measuring the increase in naming diversity

One explanation for the decrease in plots is that fewer parents are choosing common
names for their children. This hypothesis can be explored and confirmed in the data.
One measure is the proportion of births represented by the top 1,000 most popular
names, which I aggregate and plot by year and sex (Figure 14-6 shows the resulting
plot):
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In [116]: table = top1000.pivot_table('prop', index='year',
: columns="sex', aggfunc=sum)

In [117]: table.plot(title='Sum of tablel000.prop by year and sex',
: yticks=np.linspace(0, 1.2, 13), xticks=range(1880, 2020, 10)

)
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Figure 14-6. Proportion of births represented in top 1000 names by sex

You can see that, indeed, there appears to be increasing name diversity (decreasing
total proportion in the top 1,000). Another interesting metric is the number of dis-
tinct names, taken in order of popularity from highest to lowest, in the top 50% of
births. This number is a bit more tricky to compute. Let’s consider just the boy names

from 2010:

In [118]: df = boys[boys.year == 2010]

In [119]: df
Out[119]:
name sex
260877 Jacob
260878 Ethan
260879 Michael
260880  Jayden
260881 William

=E=ET2=E===

births
21875
17866
17133
17030
16870

year
2010
2010
2010
2010
2010

prop
0.011523
0.009411
0.009025
0.008971
0.008887
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194 2010 0.000102
194 2010 0.000102
261874  Jaquan 194 2010 0.000102
261875 Jaydan 194 2010 0.000102
261876  Maxton M 193 2010 0.000102
[1600 rows x 5 columns]

261872  Camilo
261873 Destin

===

After sorting prop in descending order, we want to know how many of the most pop-
ular names it takes to reach 50%. You could write a for loop to do this, but a vector-
ized NumPy way is a bit more clever. Taking the cumulative sum, cumsum, of prop and
then calling the method searchsorted returns the position in the cumulative sum at
which 0.5 would need to be inserted to keep it in sorted order:

In [120]: prop_cumsum = df.sort_values(by='prop', ascending=False).prop.cumsum()

In [121]: prop_cumsum[:10]

Out[121]:

260877 0.011523
260878 0.020934
260879 0.029959
260880 0.038930
260881 0.047817
260882 0.056579
260883 0.065155
260884 0.073414
260885 0.081528
260886 0.089621

Name: prop, dtype: float64

In [122]: prop_cumsum.values.searchsorted(0.5)
Out[122]: 116

Since arrays are zero-indexed, adding 1 to this result gives you a result of 117. By con-
trast, in 1900 this number was much smaller:

In [123]: df = boys[boys.year == 1900]
In [124]: 1n1900 = df.sort_values(by='prop', ascending=False).prop.cumsum()

In [125]: 1n1900.values.searchsorted(0.5) + 1

out[125]: 25
You can now apply this operation to each year/sex combination, groupby those fields,
and apply a function returning the count for each group:

def get_quantile_count(group, q=0.5):

group = group.sort_values(by='prop', ascending=False)
return group.prop.cumsum().values.searchsorted(q) + 1

diversity = top1000.groupby(['year', 'sex']).apply(get_guantile_count)
diversity = diversity.unstack('sex')
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This resulting DataFrame diversity now has two time series, one for each sex,
indexed by year. This can be inspected in IPython and plotted as before (see
Figure 14-7):

In [128]: diversity.head()
Out[128]:

sex F M

year

1880 38 14

1881 38 14

1882 38 15

1883 39 15

1884 39 16

In [129]: diversity.plot(title="Number of popular names in top 50%")
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Figure 14-7. Plot of diversity metric by year

As you can see, girl names have always been more diverse than boy names, and they
have only become more so over time. Further analysis of what exactly is driving the
diversity, like the increase of alternative spellings, is left to the reader.
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The “last letter” revolution

In 2007, baby name researcher Laura Wattenberg pointed out on her website that the
distribution of boy names by final letter has changed significantly over the last 100
years. To see this, we first aggregate all of the births in the full dataset by year, sex, and
final letter:

# extract last letter from name column
get_last_letter = lambda x: x[-1]

last_letters = names.name.map(get_last_letter)
last_letters.name = 'last_letter'

table = names.pivot_table('births', index=last_letters,
columns=["'sex', 'year'], aggfunc=sum)

Then we select out three representative years spanning the history and print the first
few rows:

In [131]: subtable = table.reindex(columns=[1910, 1960, 2010], level='year')

In [132]: subtable.head()

Out[132]:

sex F M

year 1910 1960 2010 1910 1960 2010
last_letter

a 108376.0 691247.0 670605.0 977.0 5204.0 28438.0
b NaN 694.0 450.0 411.0 3912.0 38859.0
C 5.0 49.0 946.0 482.0 15476.0 23125.0
d 6750.0 3729.0 2607.0 22111.0 262112.0 44398.0
e 133569.0 435013.0 313833.0 28655.0 178823.0 129012.0

Next, normalize the table by total births to compute a new table containing propor-
tion of total births for each sex ending in each letter:

In [133]: subtable.sum()

Out[133]:

sex year

F 1910 396416.
1960 2022062.
2010 1759010.

M 1910 194198.
1960 2132588.
2010 1898382.

dtype: float64

[clololN ool

In [134]: letter_prop = subtable / subtable.sum()

In [135]: letter_prop

Out[135]:

sex F M

year 1910 1960 2010 1910 1960 2010
last_letter

a 0.273390 0.341853 0.381240 0.005031 0.002440 0.014980
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b NaN 0.000343 0.000256 0.002116 0.001834 0.020470
C 0.000013 0.000024 0.000538 0.002482 0.007257 0.012181
d 0.017028 0.001844 0.001482 0.113858 0.122908 0.023387
e 0.336941 0.215133 0.178415 0.147556 0.083853 0.067959
\Y NaN 0.000060 0.000117 0.000113 0.000037 0.001434
w 0.000020 0.000031 0.001182 0.006329 0.007711 0.016148
X 0.000015 0.000037 0.000727 0.003965 0.001851 0.008614
y 0.110972 0.152569 0.116828 0.077349 0.160987 0.058168
z 0.002439 0.000659 0.000704 0.000170 0.000184 0.001831

[26 rows x 6 columns]

With the letter proportions now in hand, we can make bar plots for each sex broken
down by year (see Figure 14-8):

import matplotlib.pyplot as plt

fig, axes = plt.subplots(2, 1, figsize=(10, 8))

letter_prop['M'].plot(kind="bar', rot=0, ax=axes[0], title='Male')

letter_prop['F'].plot(kind="bar', rot=0, ax=axes[1], title='Female',
legend=False)
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Figure 14-8. Proportion of boy and girl names ending in each letter
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As you can see, boy names ending in # have experienced significant growth since the
1960s. Going back to the full table created before, I again normalize by year and sex
and select a subset of letters for the boy names, finally transposing to make each col-
umn a time series:

In [138]: letter_prop = table / table.sum()
In [139]: dny_ts = letter_prop.loc[['d', 'n', 'y'], '"M'].T

In [140]: dny_ts.head()

Out[140]:

last_letter d n y
year

1880 0.083055 0.153213 0.075760
1881 0.083247 0.153214 0.077451
1882 0.085340 0.149560 0.077537
1883 0.084066 0.151646 0.079144
1884 0.086120 0.149915 0.080405

With this DataFrame of time series in hand, I can make a plot of the trends over time
again with its plot method (see Figure 14-9):

In [143]: dny_ts.plot()
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Figure 14-9. Proportion of boys born with names ending in d/n/y over time

432 | Chapter 14: Data Analysis Examples



Boy names that became girl names (and vice versa)

Another fun trend is looking at boy names that were more popular with one sex ear-
lier in the sample but have “changed sexes” in the present. One example is the name
Lesley or Leslie. Going back to the top1000 DataFrame, I compute a list of names
occurring in the dataset starting with “lesl™:

In [144]: all_names = pd.Series(top1000.name.unique())
In [145]: lesley_like = all_names[all_names.str.lower().str.contains('lesl')]

In [146]: lesley_like
Out[146]:

632 Leslie

2294 Lesley

4262 Leslee

4728 Lesli

6103 Lesly

dtype: object

From there, we can filter down to just those names and sum births grouped by name
to see the relative frequencies:

In [147]: filtered = top1000[top1000.name.isin(lesley_like)]

In [148]: filtered.groupby('name').births.sum()

Out[148]:

name

Leslee 1082
Lesley 35022
Lesli 929
Leslie 370429
Lesly 10067

Name: births, dtype: int64
Next, let’s aggregate by sex and year and normalize within year:

In [149]: table = filtered.pivot_table('births', index='year',
..... : columns="'sex', aggfunc='sum')

In [150]: table = table.div(table.sum(1), axis=0)

In [151]: table.tail()

Out[151]:

sex F M
year

2006 1.0 NaN
2007 1.0 NaN
2008 1.0 NaN
2009 1.0 NaN
2010 1.0 NaN
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Lastly, it's now possible to make a plot of the breakdown by sex over time
(Figure 14-10):
In [153]: table.plot(style={'M': 'k-', '"F': 'k--'})
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Figure 14-10. Proportion of male/female Lesley-like names over time

14.4 USDA Food Database

The US Department of Agriculture makes available a database of food nutrient infor-
mation. Programmer Ashley Williams made available a version of this database in

JSON format. The records look like this:

{

"id": 21441,

"description": "KENTUCKY FRIED CHICKEN, Fried Chicken, EXTRA CRISPY,
Wing, meat and skin with breading",

"tags": [”KFC"]’
"manufacturer": "Kentucky Fried Chicken",

"group": "Fast Foods",
"portions": [
{

"amount": 1,
"unit": "wing, with skin",
"grams": 68.0
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I8

1,

"nutrients": [

{
"value": 20.8,
"units": "g",
"description": "Protein",
"group": "Composition"

1,

-
}

Each food has a number of identifying attributes along with two lists of nutrients and
portion sizes. Data in this form is not particularly amenable to analysis, so we need to
do some work to wrangle the data into a better form.

After downloading and extracting the data from the link, you can load it into Python
with any JSON library of your choosing. I'll use the built-in Python json module:

In [154]: import json
In [155]: db = json.load(open('datasets/usda_food/database.json'))

In [156]: len(db)
Out[156]: 6636

Each entry in db is a dict containing all the data for a single food. The 'nutrients’
field is a list of dicts, one for each nutrient:

In [157]: db[0].keys()
Out[157]: dict_keys(['id', 'description', 'tags', 'manufacturer', 'group', 'porti
ons', 'nutrients'])

In [158]: db[O]['nutrients'][0]

Out[158]:

{'description': 'Protein’',
'group': 'Composition',
'units': 'q',

'value': 25.18}
In [159]: nutrients = pd.DataFrame(db[0]['nutrients'])

In [160]: nutrients[:7]

Out[160]:

description group units value
0 Protein Composition g 25.18
1 Total lipid (fat) Composition g 29.20
2 Carbohydrate, by difference Composition g 3.06
3 Ash Other g 3.28
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Energy Energy kcal 376.00
5 Water Composition g 39.28
6 Energy Energy k] 1573.00

When converting a list of dicts to a DataFrame, we can specify a list of fields to
extract. We'll take the food names, group, ID, and manufacturer:

In [161]: info_keys = ['description', 'group', 'id', 'manufacturer']
In [162]: info = pd.DataFrame(db, columns=info_keys)

In [163]: info[:5]
Out[163]:
description group id \

0 Cheese, caraway Dairy and Egg Products 1008

1 Cheese, cheddar Dairy and Egg Products 1009

2 Cheese, edam Dairy and Egg Products 1018

3 Cheese, feta Dairy and Egg Products 1019

4 Cheese, mozzarella, part skim milk Dairy and Egg Products 1028

manufacturer

A wWwNRL O

In [164]: info.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6636 entries, 0 to 6635
Data columns (total 4 columns):

description 6636 non-null object
group 6636 non-null object
id 6636 non-null int64
manufacturer 5195 non-null object

dtypes: int64(1), object(3)
memory usage: 207.5+ KB

You can see the distribution of food groups with value_counts:

In [165]: pd.value_counts(info.group)[:10]

Out[165]:

Vegetables and Vegetable Products 812
Beef Products 618
Baked Products 496
Breakfast Cereals 403
Fast Foods 365
Legumes and Legume Products 365
Lamb, Veal, and Game Products 345
Sweets 341
Pork Products 328
Fruits and Fruit Juices 328

Name: group, dtype: int64
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Now, to do some analysis on all of the nutrient data, it’s easiest to assemble the
nutrients for each food into a single large table. To do so, we need to take several
steps. First, I'll convert each list of food nutrients to a DataFrame, add a column for
the food id, and append the DataFrame to a list. Then, these can be concatenated

together with concat:

If all goes well, nutrients should look like this:

In [167]: nutrients

Out[167]:

description
0 Protein Compos
1 Total lipid (fat) Compos
2 Carbohydrate, by difference Compos
3 Ash
4 Energy E
389350 Vitamin B-12, added Vit
389351 Cholesterol
389352 Fatty acids, total saturated

389353 Fatty acids, total monounsaturated
389354 Fatty acids, total polyunsaturated
[389355 rows x 5 columns]

group
ition
ition
ition
Other
nergy

amins
Other
Other
Other
Other

units value
g 25.180
g 29.200
g 3.060
g 3.280

kcal 376.000

mcg .000

0
mg  0.000
g 0.072
g  0.028
g  0.041

id
1008
1008
1008
1008
1008

43546
43546
43546
43546
43546

I noticed that there are duplicates in this DataFrame, so it makes things easier to drop

them:

In [168]: nutrients.duplicated().sum() # number of duplicates

Out[168]: 14179

In [169]: nutrients = nutrients.drop_duplicates()

Since 'group' and 'description' are in both DataFrame objects, we can rename for

clarity:

In [170]: col_mapping = {'description' : 'food',
..... : 'group’ : 'fgroup'}

In [171]: info = info.rename(columns=col_mapping, copy=False)

In [172]: info.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6636 entries, 0 to 6635
Data columns (total 4 columns):

food 6636 non-null object
fgroup 6636 non-null object
id 6636 non-null int64

manufacturer 5195 non-null object
dtypes: int64(1), object(3)
memory usage: 207.5+ KB

In [173]: col_mapping = {'description' : 'nutrient

'
s
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et 'group' : 'nutgroup'}
In [174]: nutrients = nutrients.rename(columns=col_mapping, copy=False)

In [175]: nutrients

Out[175]:

nutrient nutgroup units value id
0 Protein Composition g 25.180 1008
1 Total lipid (fat) Composition g 29.200 1008
2 Carbohydrate, by difference Composition g 3.060 1008
3 Ash Other g 3.280 1008
4 Energy Energy kcal 376.000 1008
389350 Vitamin B-12, added Vitamins mcg 0.000 43546
389351 Cholesterol Other mg 0.000 43546
389352 Fatty acids, total saturated Other g 0.072 43546
389353 Fatty acids, total monounsaturated Other g 0.028 43546
389354 Fatty acids, total polyunsaturated Other g 0.041 43546

[375176 rows x 5 columns]
With all of this done, we're ready to merge info with nutrients:

In [176]: ndata = pd.merge(nutrients, info, on='id', how='outer")

In [177]: ndata.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 375176 entries, 0 to 375175
Data columns (total 8 columns):

nutrient 375176 non-null object
nutgroup 375176 non-null object
units 375176 non-null object
value 375176 non-null float64
id 375176 non-null int64

food 375176 non-null object
fgroup 375176 non-null object
manufacturer 293054 non-null object

dtypes: float64(1), int64(1), object(6)
memory usage: 25.8+ MB

In [178]: ndata.iloc[30000]

Out[178]:

nutrient Glycine
nutgroup Amino Acids
units g
value 0.04
id 6158
food Soup, tomato bisque, canned, condensed
fgroup Soups, Sauces, and Gravies
manufacturer

Name: 30000, dtype: object

We could now make a plot of median values by food group and nutrient type (see
Figure 14-11):

438 | Chapter 14: Data Analysis Examples



In [180]: result = ndata.groupby(['nutrient', 'fgroup'])['value'].quantile(0.5)

In [181]: result['Zinc, Zn'].sort_values().plot(kind='barh')
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Figure 14-11. Median zinc values by nutrient group

With a little cleverness, you can find which food is most dense in each nutrient:

by_nutrient = ndata.groupby(['nutgroup', 'nutrient'])

get_maximum = lambda x: x.loc[x.value.idxmax()]
get_minimum = lambda x: x.loc[x.value.idxmin()]

max_foods = by_nutrient.apply(get_maximum)[['value', 'food']]

# make the food a little smaller
max_foods.food = max_foods.food.str[:50]

The resulting DataFrame is a bit too large to display in the book; here is only the
'"Amino Acids' nutrient group:

In [183]: max_foods.loc[ 'Amino Acids']['food']

Out[183]:

nutrient

Alanine Gelatins, dry powder, unsweetened
Arginine Seeds, sesame flour, low-fat
Aspartic acid Soy protein isolate
Cystine Seeds, cottonseed flour, low fat (glandless)
Glutamic acid Soy protein isolate
Serine Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Threonine Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Tryptophan Sea lion, Steller, meat with fat (Alaska Native)
Tyrosine Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
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Valine

Soy protein isolate, PROTEIN TECHNOLOGIES INTE...

Name: food, Length: 19, dtype: object

14.5 2012 Federal Election Commission Database

The US Federal Election Commission publishes data on contributions to political
campaigns. This includes contributor names, occupation and employer, address, and
contribution amount. An interesting dataset is from the 2012 US presidential elec-
tion. A version of the dataset I downloaded in June 2012 is a 150 megabyte CSV file
P00000001-ALL.csv (see the book’s data repository), which can be loaded with pan

das.read_csv:

In [184]: fec = pd.read_csv('datasets/fec/P00O0OOOOL-ALL.csvV")

In [185]: fec.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1001731 entries, 0 to 1001730
Data columns (total 16 columns):

cmte_id

cand_1id

cand_nm

contbr_nm
contbr_city
contbr_st
contbr_zip
contbr_employer
contbr_occupation
contb_receipt_amt
contb_receipt_dt
receipt_desc
memo_cd

memo_text

form_tp

file_num

1001731 non-null object
1001731 non-null object
1001731 non-null object
1001731 non-null object
1001712 non-null object
1001727 non-null object
1001620 non-null object
988002 non-null object
993301 non-null object
1001731 non-null float64
1001731 non-null object
14166 non-null object
92482 non-null object
97770 non-null object
1001731 non-null object
1001731 non-null int64

dtypes: float64(1), int64(1), object(14)
memory usage: 122.3+ MB

A sample record in the DataFrame looks like this:

In [186]: fec.iloc[123456]

Out[186]:

cmte_id C00431445
cand_id P80003338
cand_nm Obama, Barack
contbr_nm ELLMAN, IRA
contbr_city TEMPE
receipt_desc NaN
memo_cd NaN
memo_text NaN
form_tp SA17A
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file_num 772372
Name: 123456, Length: 16, dtype: object

You may think of some ways to start slicing and dicing this data to extract informa-
tive statistics about donors and patterns in the campaign contributions. I'll show you
a number of different analyses that apply techniques in this book.

You can see that there are no political party affiliations in the data, so this would be
useful to add. You can get a list of all the unique political candidates using unique:

In [187]: unique_cands = fec.cand_nm.unique()

In [188]: unique_cands
Out[188]:
array(['Bachmann, Michelle', 'Romney, Mitt', 'Obama, Barack',
"Roemer, Charles E. 'Buddy' III", 'Pawlenty, Timothy',
'Johnson, Gary Earl', 'Paul, Ron', 'Santorum, Rick', 'Cain, Herman',
'Gingrich, Newt', 'McCotter, Thaddeus G', 'Huntsman, Jon',
'Perry, Rick'], dtype=object)

In [189]: unique_cands[2]
Out[189]: 'Obama, Barack'

One way to indicate party affiliation is using a dict:'

parties = {'Bachmann, Michelle': 'Republican',
'Cain, Herman': 'Republican’,
'Gingrich, Newt': 'Republican',
'Huntsman, Jon': 'Republican’,
'Johnson, Gary Earl': 'Republican',
'McCotter, Thaddeus G': 'Republican’,
'Obama, Barack': 'Democrat',
'"Paul, Ron': 'Republican’',
'Pawlenty, Timothy': 'Republican’,
'Perry, Rick': 'Republican',
"Roemer, Charles E. 'Buddy' III": 'Republican’,
'Romney, Mitt': 'Republican’,
'Santorum, Rick': 'Republican'}

Now, using this mapping and the map method on Series objects, you can compute an
array of political parties from the candidate names:

In [191]: fec.cand_nm[123456:123461]
Out[191]:

123456 Obama, Barack

123457 Obama, Barack

123458 Obama, Barack

123459 Obama, Barack

123460 Obama, Barack

1 This makes the simplifying assumption that Gary Johnson is a Republican even though he later became the
Libertarian party candidate.
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Name: cand_nm, dtype: object

In [192]: fec.cand_nm[123456:123461].map(parties)
Out[192]:

123456 Democrat

123457 Democrat

123458 Democrat

123459 Democrat

123460 Democrat

Name: cand_nm, dtype: object

# Add it as a column
In [193]: fec['party'] = fec.cand_nm.map(parties)

In [194]: fec['party'].value_counts()
out[194]:

Democrat 593746

Republican 407985

Name: party, dtype: int64

A couple of data preparation points. First, this data includes both contributions and
refunds (negative contribution amount):

In [195]: (fec.contb_receipt_amt > 0).value_counts()

Out[195]:
True 991475
False 10256

Name: contb_receipt_amt, dtype: int64
To simplify the analysis, I'll restrict the dataset to positive contributions:
In [196]: fec = fec[fec.contb_receipt_amt > 0]

Since Barack Obama and Mitt Romney were the main two candidates, I'll also pre-
pare a subset that just has contributions to their campaigns:

In [197]: fec_mrbo = fec[fec.cand_nm.isin(['Obama, Barack', 'Romney, Mitt'])]

Donation Statistics by Occupation and Employer

Donations by occupation is another oft-studied statistic. For example, lawyers (attor-
neys) tend to donate more money to Democrats, while business executives tend to
donate more to Republicans. You have no reason to believe me; you can see for your-
self in the data. First, the total number of donations by occupation is easy:

In [198]: fec.contbr_occupation.value_counts()[:10]

Out[198]:

RETIRED 233990
INFORMATION REQUESTED 35107
ATTORNEY 34286
HOMEMAKER 29931
PHYSICIAN 23432
INFORMATION REQUESTED PER BEST EFFORTS 21138
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ENGINEER
TEACHER
CONSULTANT
PROFESSOR

14334
13990
13273
12555

Name: contbr_occupation, dtype: int64

You will notice by looking at the occupations that many refer to the same basic job
type, or there are several variants of the same thing. The following code snippet illus-
trates a technique for cleaning up a few of them by mapping from one occupation to
another; note the “trick” of using dict.get to allow occupations with no mapping to

“pass through™:

occ_mapping = {

'INFORMATION REQUESTED PER BEST EFFORTS'

'INFORMATION REQUESTED' : 'NOT PROVIDED',

'INFORMATION REQUESTED (BEST EFFORTS)'

'C.E.0.': 'CEO'
}

# If no mapping provided, return x
f = lambda x: occ_mapping.get(x, x)

fec.contbr_occupation

= fec.contbr_occupation.map(f)

I'll also do the same thing for employers:

emp_mapping = {

'INFORMATION REQUESTED PER BEST EFFORTS'

'INFORMATION REQUESTED' : 'NOT PROVIDED',
'SELF' : 'SELF-EMPLOYED',

"SELF EMPLOYED'
}

'SELF-EMPLOYED',

# If no mapping provided, return x
f = lambda x: emp_mapping.get(x, x)

fec.contbr_employer =

fec.contbr_employer.map(f)

"NOT PROVIDED',

'"NOT PROVIDED',

'NOT PROVIDED',

Now, you can use pivot_table to aggregate the data by party and occupation, then

filter down to the subset that donated at least $2 million overall:

In [201]: by_occupation = fec.pivot_table('contb_receipt_amt',
: index='contbr_occupation',
columns="party', aggfunc="sum')

In [202]: over_2mm =

In [203]: over_2mm

by_occupation[by_occupation.sum(1) > 2000000]

Out[203]:

party Democrat Republican
contbr_occupation

ATTORNEY 11141982.97 7.477194e+06
CEO 2074974.79 4.211041e+06
CONSULTANT 2459912.71 2.544725e+06
ENGINEER 951525.55 1.818374e+06
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EXECUTIVE 1355161.05 4.138850e+06

PRESIDENT 1878509.95 .720924e+06

4
PROFESSOR 2165071.08 2.967027e+05
REAL ESTATE 528902.09 1.625902e+06
RETIRED 25305116.38 2.356124e+07
SELF-EMPLOYED 672393.40 1.640253e+06

[17 rows x 2 columns]

It can be easier to look at this data graphically as a bar plot ('barh' means horizontal
bar plot; see Figure 14-12):

In [205]: over_2mm.plot(kind='barh")
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Figure 14-12. Total donations by party for top occupations

You might be interested in the top donor occupations or top companies that donated
to Obama and Romney. To do this, you can group by candidate name and use a var-
iant of the top method from earlier in the chapter:

def get_top_amounts(group, key, n=5):
totals = group.groupby(key)['contb_receipt_amt'].sum()
return totals.nlargest(n)

Then aggregate by occupation and employer:

In [207]: grouped = fec_mrbo.groupby('cand_nm')

In [208]: grouped.apply(get_top_amounts, 'contbr_occupation', n=7)
Out[208]:
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cand_nm

contbr_occupation

Obama, Barack RETIRED

ATTORNEY
INFORMATION REQUESTED
HOMEMAKER
PHYSICIAN

Romney, Mitt  HOMEMAKER

ATTORNEY
PRESIDENT
EXECUTIVE
C.E.O.

25305116.
11141982.
4866973.
4248875.
3735124.
8147446.
5364718.
2491244,
2300947.
1968386.

38
97
96
80
94

22
82
89
03
11

Name: contb_receipt_amt, Length: 14, dtype: float64

In [209]: grouped.apply(get_top_amounts, 'contbr_employer', n=10)

Out[209]:
cand_nm

contbr_employer

Obama, Barack RETIRED

SELF-EMPLOYED

NOT EMPLOYED
INFORMATION REQUESTED
HOMEMAKER

Romney, Mitt  CREDIT SUISSE

MORGAN STANLEY
GOLDMAN SACH & (CO.
BARCLAYS CAPITAL
H.I.G. CAPITAL

22694358.
17080985.
8586308.
5053480.
2605408.
281150.
267266.
238250.
162750.
139500.

85
96
70
37
54

00
00
00
00
00

Name: contb_receipt_amt, Length: 20, dtype: float64

Bucketing Donation Amounts

A useful way to analyze this data is to use the cut function to discretize the contribu-
tor amounts into buckets by contribution size:

In [210]:

In [211]:

In [212]:
Out[212]:
411
412
413
414
415

701381
701382
701383
701384

bins = np.array([0, 1, 10, 100, 1000, 10000,
100000, 1000000, 10000000])

labels = pd.cut(fec_mrbo.contb_receipt_amt, bins)

labels

(10, 100]
(100, 1000]
(100, 1000]

(10, 100]

(10, 100]

(10, 100]
(100, 1000]

(1, 10]

(10, 100]

14.5 2012 Federal Election Commission Database
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701385 (100, 1000]
Name: contb_receipt_amt, Length: 694282, dtype: category
Categories (8, interval[int64]): [(0, 1] < (1, 10] < (10, 100] < (100, 1000] < (1
000, 10000] <
(10000, 100000] < (100000, 1000000] < (1000000,
10000000]]

We can then group the data for Obama and Romney by name and bin label to get a
histogram by donation size:

In [213]: grouped = fec_mrbo.groupby(['cand_nm', labels])

In [214]: grouped.size().unstack(0)

Out[214]:

cand_nm Obama, Barack Romney, Mitt
contb_receipt_amt

0, 1] 493.0 77.0
(1, 10] 40070.0 3681.0
(10, 100] 372280.0 31853.0
(100, 1000] 153991.0 43357.0
(1000, 10000] 22284.0 26186.0
(10000, 100000] 2.0 1.0
(100000, 1000000] 3.0 NaN
(1000000, 10000000] 4.0 NaN

This data shows that Obama received a significantly larger number of small donations
than Romney. You can also sum the contribution amounts and normalize within
buckets to visualize percentage of total donations of each size by candidate
(Figure 14-13 shows the resulting plot):

In [216]: bucket_sums = grouped.contb_receipt_amt.sum().unstack(0)
In [217]: normed_sums = bucket_sums.div(bucket_sums.sum(axis=1), axis=0)

In [218]: normed_sums

Out[218]:

cand_nm Obama, Barack Romney, Mitt
contb_receipt_amt

(0, 1] 0.805182 0.194818
(1, 10] 0.918767 0.081233
(10, 100] 0.910769 0.089231
(100, 1000] 0.710176 0.289824
(1000, 10000] 0.447326 0.552674
(10000, 100000] 0.823120 0.176880
(100000, 1000000] 1.000000 NaN
(1000000, 10000000] 1.000000 NaN

In [219]: normed_sums[:-2].plot(kind="barh')
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ma, Barack
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(10000, 100000]

I

(1000, 100001]

t amt

I

(100, 1000]

ip

(10, 100]

(1, 10]

(0, 1]

0.0 0.2 0.4 0.6 0.8

Figure 14-13. Percentage of total donations received by candidates for each donation size

I excluded the two largest bins as these are not donations by individuals.

This analysis can be refined and improved in many ways. For example, you could
aggregate donations by donor name and zip code to adjust for donors who gave many
small amounts versus one or more large donations. I encourage you to download and

explore the dataset yourself.

Donation Statistics by State
Aggregating the data by candidate and state is a routine affair:

In [220]: grouped = fec_mrbo.groupby(['cand_nm', 'contbr_st'])
In [221]: totals = grouped.contb_receipt_amt.sum().unstack(0).fillna(0)
In [222]: totals = totals[totals.sum(1) > 100000]

In [223]: totals[:10]

Out[223]:

cand_nm Obama, Barack Romney, Mitt
contbr_st

AK 281840.15 86204.24
AL 543123.48 527303.51
AR 359247.28 105556.00
AZ 1506476.98 1888436.23
CA 23824984.24 11237636.60
co 2132429.49 1506714.12
CcT 2068291.26 3499475.45

14.5 2012 Federal Election Commission Database |
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DC 4373538.80 1025137.50
DE 336669.14 82712.00
FL 7318178.58 8338458.81

If you divide each row by the total contribution amount, you get the relative percent-
age of total donations by state for each candidate:

In [224]: percent = totals.div(totals.sum(1), axis=0)

In [225]: percent[:10]

Out[225]:

cand_nm Obama, Barack Romney, Mitt
contbr_st

AK 0.765778 0.234222
AL 0.507390 0.492610
AR 0.772902 0.227098
AZ 0.443745 0.556255
CA 0.679498 0.320502
Cco 0.585970 0.414030
CcT 0.371476 0.628524
DC 0.810113 0.189887
DE 0.802776 0.197224
FL 0.467417 0.532583

14.6 Conclusion

We've reached the end of the book’s main chapters. I have included some additional
content you may find useful in the appendixes.

In the five years since the first edition of this book was published, Python has become
a popular and widespread language for data analysis. The programming skills you
have developed here will stay relevant for a long time into the future. I hope the pro-
gramming tools and libraries we've explored serve you well in your work.
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APPENDIXA
Advanced NumPy

In this appendix, I will go deeper into the NumPy library for array computing. This
will include more internal detail about the ndarray type and more advanced array
manipulations and algorithms.

This appendix contains miscellaneous topics and does not necessarily need to be read
linearly.

A.1 ndarray Object Internals

The NumPy ndarray provides a means to interpret a block of homogeneous data
(either contiguous or strided) as a multidimensional array object. The data type, or
dtype, determines how the data is interpreted as being floating point, integer, boolean,
or any of the other types we've been looking at.

Part of what makes ndarray flexible is that every array object is a strided view on a
block of data. You might wonder, for example, how the array view arr[::2, ::-1]
does not copy any data. The reason is that the ndarray is more than just a chunk of
memory and a dtype; it also has “striding” information that enables the array to move
through memory with varying step sizes. More precisely, the ndarray internally con-
sists of the following:

o A pointer to data—that is, a block of data in RAM or in a memory-mapped file
o The data type or dtype, describing fixed-size value cells in the array

« A tuple indicating the array’s shape

o A tuple of strides, integers indicating the number of bytes to “step” in order to
advance one element along a dimension

See Figure A-1 for a simple mockup of the ndarray innards.
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For example, a 10 x 5 array would have shape (10, 5):

In [10]: np.ones((10, 5)).shape

Out[16]: (10, 5)
A typical (C order) 3 x 4 x 5 array of float64 (8-byte) values has strides (160, 40,
8) (knowing about the strides can be useful because, in general, the larger the strides
on a particular axis, the more costly it is to perform computation along that axis):

In [11]: np.ones((3, 4, 5), dtype=np.float64).strides

out[11]: (160, 40, 8)
While it is rare that a typical NumPy user would be interested in the array strides,
they are the critical ingredient in constructing “zero-copy” array views. Strides can
even be negative, which enables an array to move “backward” through memory (this
would be the case, for example, in a slice like obj[::-1] or obj[:, ::-1]).

ndarray object

datal | | [ [ [ [T ][~
( dtype J[ shape J[ strides J

Figure A-1. The NumPy ndarray object

v

NumPy dtype Hierarchy

You may occasionally have code that needs to check whether an array contains inte-
gers, floating-point numbers, strings, or Python objects. Because there are multiple
types of floating-point numbers (float16 through float128), checking that the dtype
is among a list of types would be very verbose. Fortunately, the dtypes have super-
classes such as np.integer and np.floating, which can be used in conjunction with
the np.1issubdtype function:

In [12]: ints = np.ones(10, dtype=np.uint16)
In [13]: floats = np.ones(10, dtype=np.float32)

In [14]: np.issubdtype(ints.dtype, np.integer)
Out[14]: True

In [15]: np.issubdtype(floats.dtype, np.floating)
Out[15]: True

You can see all of the parent classes of a specific dtype by calling the type’s mro
method:
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In [16]: np.float64.mro()
Out[16]:

[numpy.float64,
numpy . floating,
numpy.inexact,

numpy .number,
numpy.generic,

float,

object]

Therefore, we also have:

In [17]: np.issubdtype(ints.dtype, np.number)

Out[17]: True
Most NumPy users will never have to know about this, but it occasionally comes in
handy. See Figure A-2 for a graph of the dtype hierarchy and parent-subclass
relationships.'

generic | number |—»| integer | unsignedint |
> Csignedine_|]
5| inexact |—>| floating |
oyl |
> | character —»| string_ |

I—>| unicode_ |

———| bool_
—[obiea_ |

Figure A-2. The NumPy dtype class hierarchy

A.2 Advanced Array Manipulation

There are many ways to work with arrays beyond fancy indexing, slicing, and boolean
subsetting. While much of the heavy lifting for data analysis applications is handled
by higher-level functions in pandas, you may at some point need to write a data algo-
rithm that is not found in one of the existing libraries.

1 Some of the dtypes have trailing underscores in their names. These are there to avoid variable name conflicts
between the NumPy-specific types and the Python built-in ones.
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Reshaping Arrays

In many cases, you can convert an array from one shape to another without copying
any data. To do this, pass a tuple indicating the new shape to the reshape array
instance method. For example, suppose we had a one-dimensional array of values
that we wished to rearrange into a matrix (the result is shown in Figure A-3):

In [18]: arr = np.arange(8)

In [19]: arr
Out[19]: array([6, 1, 2, 3, 4, 5, 6, 7])

In [20]: arr.reshape((4, 2))

Out[20]:
array([[o, 17,
(2, 31,
[4, 51,
(6, 711D
0|12 (3456|789 ]|10(1
arr.reshape((4, 3), order=?)
Corder (row major) Fortran order (column major)
0|12 0|48
314(5 1159
6 7138 2 (6110
9110 1 317 1M
order="C' order="F'

Figure A-3. Reshaping in C (row major) or Fortran (column major) order

A multidimensional array can also be reshaped:

In [21]: arr.reshape((4, 2)).reshape((2, 4))
Out[21]:
array([[o, 1, 2, 3],

[4, 5, 6, 711)

One of the passed shape dimensions can be -1, in which case the value used for that
dimension will be inferred from the data:
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In [22]: arr = np.arange(15)

In [23]: arr.reshape((5, -1))

Oout[23]:

array([[ 0, 1, 2],
[ 3, 4, 51,
[ 6, 7, 8],
[ 9, 10, 11],
[12, 13, 14]11)

Since an array’s shape attribute is a tuple, it can be passed to reshape, too:

In [24]: other_arr = np.ones((3, 5))

In [25]: other_arr.shape
Out[25]: (3, 5)

In [26]: arr.reshape(other_arr.shape)
out[26]:
array([[ 0, 1, 2, 3, 4],

[ 5, 6, 7, 8, 9],

[10, 11, 12, 13, 14]])

The opposite operation of reshape from one-dimensional to a higher dimension is
typically known as flattening or raveling:

In [27]: arr = np.arange(15).reshape((5, 3))

In [28]: arr

Oout[28]:

array([[ o, 1, 2],
[ 3, 4, 51,

[ 6, 7, 8],

[ 9, 10, 11],

[12, 13, 14]11)

In [29]: arr.ravel()

Out[29]: array([ ©, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14])
ravel does not produce a copy of the underlying values if the values in the result
were contiguous in the original array. The flatten method behaves like ravel except
it always returns a copy of the data:

In [30]: arr.flatten()
Out[30]: array([ ©, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])

The data can be reshaped or raveled in different orders. This is a slightly nuanced
topic for new NumPy users and is therefore the next subtopic.
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C Versus Fortran Order

NumPy gives you control and flexibility over the layout of your data in memory. By
default, NumPy arrays are created in row major order. Spatially this means that if you
have a two-dimensional array of data, the items in each row of the array are stored in
adjacent memory locations. The alternative to row major ordering is column major
order, which means that values within each column of data are stored in adjacent
memory locations.

For historical reasons, row and column major order are also know as C and Fortran
order, respectively. In the FORTRAN 77 language, matrices are all column major.

Functions like reshape and ravel accept an order argument indicating the order to
use the data in the array. This is usually set to 'C' or 'F' in most cases (there are also
less commonly used options 'A' and 'K'; see the NumPy documentation, and refer
back to Figure A-3 for an illustration of these options):

In [31]: arr = np.arange(12).reshape((3, 4))

In [32]: arr

Out[32]:

array([[ o, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8 9,10, 111D

In [33]: arr.ravel()
Out[33]: array([ ©, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11])

In [34]: arr.ravel('F")
Out[34]: array([ ¢, 4, 8, 1, 5, 9, 2, 6,10, 3, 7, 11])

Reshaping arrays with more than two dimensions can be a bit mind-bending (see
Figure A-3). The key difference between C and Fortran order is the way in which the
dimensions are walked:

C/row major order
Traverse higher dimensions first (e.g., axis 1 before advancing on axis 0).

Fortran/column major order
Traverse higher dimensions last (e.g., axis 0 before advancing on axis 1).

Concatenating and Splitting Arrays

numpy.concatenate takes a sequence (tuple, list, etc.) of arrays and joins them
together in order along the input axis:

In [35]: arrl = np.array([[1, 2, 31, [4, 5, 6]])

In [36]: arr2 = np.array([[7, 8, 9], [10, 11, 12]])

454 | Appendix A: Advanced NumPy



In [37]: np.concatenate([arrl, arr2], axis=0)
Out[37]:

array([[ 1, 2, 3],
[ 4, 5, 6],
[ 71 81 9]’

[10, 11, 12]11)

In [38]: np.concatenate([arrl, arr2], axis=1)
Out[38]:
array([[ 1, 2, 3, 7, 8, 9],

[ 4, 5, 6,10, 11, 1211

There are some convenience functions, like vstack and hstack, for common kinds of
concatenation. The preceding operations could have been expressed as:

In [39]: np.vstack((arri, arr2))
Out[39]:

array([[ 1, 2, 3],
[ 4, 5, 6],
[ 71 81 9]’

[10, 11, 12]11)

In [40]: np.hstack((arr1, arr2))

Out[40]:

array([[ 1, 2, 3, 7, 8, 9],
[ 4, 5, 6,10, 11, 1211

split, on the other hand, slices apart an array into multiple arrays along an axis:

In [41]: arr = np.random.randn(5, 2)

In [42]: arr

Out[42]:

array([[-0.2047, 0.4789],
[-0.5194, -0.5557],
[ 1.9658, 1.3934],
[ 0.0929, 0.2817],
[ 0.769 , 1.24641])

In [43]: first, second, third = np.split(arr, [1, 3])

In [44]: first
Out[44]: array([[-0.2047, ©.4789]])

In [45]: second

Out[45]:

array([[-0.5194, -0.5557],
[ 1.9658, 1.3934]1)

In [46]: third

Out[46]:

array([[ 0.0929, 0.2817],
[ 0.769 , 1.2464]11)
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The value [1, 3] passed to np.split indicate the indices at which to split the array
into pieces.

See Table A-1 for a list of all relevant concatenation and splitting functions, some of
which are provided only as a convenience of the very general-purpose concatenate.

Table A-1. Array concatenation functions

Function Description

concatenate Most general function, concatenates collection of arrays along one axis
vstack, row_stack Stack arrays row-wise (along axis 0)

hstack Stack arrays column-wise (along axis 1)

column_stack Like hstack, but converts 1D arrays to 2D column vectors first
dstack Stack arrays “depth”-wise (along axis 2)

split Split array at passed locations along a particular axis
hsplit/vsplit Convenience functions for splitting on axis 0 and 1, respectively

Stacking helpers:r_and c_

There are two special objects in the NumPy namespace, r_ and c_, that make stacking
arrays more concise:

In [47]: arr = np.arange(6)
In [48]: arrl = arr.reshape((3, 2))
In [49]: arr2 = np.random.randn(3, 2)

In [50]: np.r_[arrl, arr2]

Out[50]:
array([[ © , 1. 1,
[2 » 3. 1,
[ 4. , 5. 1,
[ 1.0072, -1.2962],
[ 0.275 , 0.2289],
[ 1.3529, 0.8864]1)
In [51]: np.c_[np.r_[arrl, arr2], arr]
Out[51]:
array([[ © , 1. , 0. 1,
[ 2. , 3. , 1. 1,
[ 4. , 5. , 2. 1,
[ 1.0072, -1.2962, 3. 1,
[ 0.275 , 0.2289, 4. 1,
[ 1.3529, 0.8864, 5. m

These additionally can translate slices to arrays:

In [52]: np.c_[1:6, -10:-5]
Out[52]:
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array([[ 1, -10],
[ 2) '9]:
[ 3: '8];
[ 4) '7]:
[ 5, -61D

See the docstring for more on what you can do with c_ and r_.

Repeating Elements: tile and repeat

Two useful tools for repeating or replicating arrays to produce larger arrays are the
repeat and tile functions. repeat replicates each element in an array some number
of times, producing a larger array:

In [53]: arr = np.arange(3)

In [54]: arr
out[54]: array([0, 1, 2])

In [55]: arr.repeat(3)
Out[55]: array([0, 0, 0, 1, 1, 1, 2, 2, 2])

The need to replicate or repeat arrays can be less common with
NumPy than it is with other array programming frameworks like
MATLAB. One reason for this is that broadcasting often fills this
need better, which is the subject of the next section.

By default, if you pass an integer, each element will be repeated that number of times.
If you pass an array of integers, each element can be repeated a different number of
times:

In [56]: arr.repeat([2, 3, 4])
Out[56]: array([0, 0, 1, 1, 1, 2, 2, 2, 2])

Multidimensional arrays can have their elements repeated along a particular axis.

In [57]: arr = np.random.randn(2, 2)

In [58]: arr

Out[58]:

array([[-2.0016, -0.3718],
[ 1.669 , -0.4386]1])

In [59]: arr.repeat(2, axis=0)
Out[59]:
array([[-2.0016, -0.3718],
[-2.0016, -0.3718],
[ 1.669 , -0.4386],
[ 1.669 , -0.4386]])
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Note that if no axis is passed, the array will be flattened first, which is likely not what
you want. Similarly, you can pass an array of integers when repeating a multidimen-
sional array to repeat a given slice a different number of times:

In [60]: arr.repeat([2, 3], axis=0)
Out[60]:
array([[-2.0016, -0.3718],
[-2.0016, -0.3718],
[ 1.669 , -0.4386],
[ 1.669 , -0.4386],
[ 1.669 , -0.4386]1])

In [61]: arr.repeat([2, 3], axis=1)

Out[61]:

array([[-2.0016, -2.0016, -0.3718, -0.3718, -0.3718],
[ 1.669 , 1.669 , -0.4386, -0.4386, -0.4386]])

tile, on the other hand, is a shortcut for stacking copies of an array along an axis.
Visually you can think of it as being akin to “laying down tiles™:

In [62]: arr

out[62]:

array([[-2.0016, -0.3718],
[ 1.669 , -0.4386]1])

In [63]: np.tile(arr, 2)

Out[63]:

array([[-2.0016, -0.3718, -2.0016, -0.3718],
[ 1.669 , -0.4386, 1.669 , -0.4386]])

The second argument is the number of tiles; with a scalar, the tiling is made row by
row, rather than column by column. The second argument to tile can be a tuple
indicating the layout of the “tiling”:

In [64]: arr

Out[64]:

array([[-2.0016, -0.3718],
[ 1.669 , -0.4386]1)

In [65]: np.tile(arr, (2, 1))
Out[65]:
array([[-2.0016, -0.3718],
[ 1.669 , -0.4386],
[-2.0016, -0.3718],
[ 1.669 , -0.4386]])

In [66]: np.tile(arr, (3, 2))

Out[66]:

array([[-2.0016, -0.3718, -2.0016, -0.3718],
[ 1.669 , -0.4386, 1.669 , -0.4386],
[-2.0016, -0.3718, -2.0016, -0.3718],
[ 1.669 , -0.4386, 1.669 , -0.4386],
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[-2.0016, -0.3718, -2.0016, -0.3718],
[ 1.669 , -0.4386, 1.669 , -0.4386]1)

Fancy Indexing Equivalents: take and put

As you may recall from Chapter 4, one way to get and set subsets of arrays is by fancy
indexing using integer arrays:

In [67]: arr = np.arange(10) * 100
In [68]: inds = [7, 1, 2, 6]

In [69]: arr[inds]
Out[69]: array([700, 100, 200, 600])

There are alternative ndarray methods that are useful in the special case of only mak-
ing a selection on a single axis:

In [70]: arr.take(inds)
Out[70]: array([700, 100, 200, 600])

In [71]: arr.put(inds, 42)

In [72]: arr
Out[72]: array([ 0, 42, 42, 300, 400, 500, 42, 42, 800, 900])

In [73]: arr.put(inds, [40, 41, 42, 43])

In [74]: arr
out[74]: array([ 0, 41, 42, 300, 400, 500, 43, 40, 800, 900])

To use take along other axes, you can pass the axis keyword:

In [75]: inds = [2, 0, 2, 1]
In [76]: arr = np.random.randn(2, 4)

In [77]: arr

Out[77]:

array([[-0.5397, 0.477 , 3.2489, -1.0212],
[-0.5771, 0.1241, 0.3026, 0.5238]])

In [78]: arr.take(inds, axis=1)

Out[78]:

array([[ 3.2489, -0.5397, 3.2489, 0.477 ],
[ 0.3026, -0.5771, 0.3026, 0.1241]])

put does not accept an axis argument but rather indexes into the flattened (one-
dimensional, C order) version of the array. Thus, when you need to set elements
using an index array on other axes, it is often easiest to use fancy indexing.
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A.3 Broadcasting

Broadcasting describes how arithmetic works between arrays of different shapes. It
can be a powerful feature, but one that can cause confusion, even for experienced
users. The simplest example of broadcasting occurs when combining a scalar value
with an array:

In [79]: arr = np.arange(5)

In [80]: arr
Out[80]: array([0, 1, 2, 3, 4])

In [81]: arr * 4

Out[81]: array([ 0, 4, 8, 12, 16])
Here we say that the scalar value 4 has been broadcast to all of the other elements in
the multiplication operation.

For example, we can demean each column of an array by subtracting the column
means. In this case, it is very simple:

In [82]: arr = np.random.randn(4, 3)

In [83]: arr.mean(0)
out[83]: array([-0.3928, -0.3824, -0.8768])

In [84]: demeaned = arr - arr.mean(0)

In [85]: demeaned

Out[85]:

array([[ 0.3937, 1.7263, 0.1633],
[-0.4384, -1.9878, -0.9839],
[-0.468 , 0.9426, -0.3891],
[ 0.5126, -0.6811, 1.2097]11)

In [86]: demeaned.mean(0)

Out[86]: array([-0., 0., -0.1)
See Figure A-4 for an illustration of this operation. Demeaning the rows as a broad-
cast operation requires a bit more care. Fortunately, broadcasting potentially lower
dimensional values across any dimension of an array (like subtracting the row means
from each column of a two-dimensional array) is possible as long as you follow the
rules.

This brings us to:
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The Broadcasting Rule

Two arrays are compatible for broadcasting if for each trailing dimension (i.e., starting
from the end) the axis lengths match or if either of the lengths is 1. Broadcasting is
then performed over the missing or length 1 dimensions.

4,3) 3,) 4,3)

0lo]o 102(3]: 11213

1111 ' 23| 4
+ =

2212 | 3|45

30133 v 4|56

Figure A-4. Broadcasting over axis 0 with a 1D array

Even as an experienced NumPy user, I often find myself having to pause and draw a
diagram as I think about the broadcasting rule. Consider the last example and sup-
pose we wished instead to subtract the mean value from each row. Since arr.mean(0)
has length 3, it is compatible for broadcasting across axis 0 because the trailing
dimension in arr is 3 and therefore matches. According to the rules, to subtract over
axis 1 (i.e., subtract the row mean from each row), the smaller array must have shape
(4, 1):

In [87]: arr

Out[87]:

array([[ 0.0009, 1.3438, -0.7135],
[-0.8312, -2.3702, -1.8608],
[-0.8608, 0.5601, -1.2659],
[ 0.1198, -1.0635, 0.33291])

In [88]: row_means = arr.mean(1)

In [89]: row_means.shape
out[89]: (4,)

In [90]: row_means.reshape((4, 1))
Out[90]:
array([[ 0.2104],

[-1.6874],

[-0.5222],

[-0.2036]1)

Advanced NumPy | 461



In [91]: demeaned = arr - row_means.reshape((4, 1))

In [92]: demeaned.mean(1)
Out[92]: array([ 0., -0., 0., 0.])

See Figure A-5 for an illustration of this operation.

(4,3) 41 (4,3)
0(0]0O 1 11111
11111 2 313(3

+ =
2 (2|2 3 515](5
313(3 4 71717
......................... ’

Figure A-5. Broadcasting over axis 1 of a 2D array

See Figure A-6 for another illustration, this time adding a two-dimensional array to a
three-dimensional one across axis 0.

(3,4,2) 4,2) (3,4,2)

0|1 H] 0|1 02 H]

2|3 U] 2|3 4|6 L]
+ =

4|5 L 4|5 8 |10

6 |7 6 (71 (12|14

Figure A-6. Broadcasting over axis 0 of a 3D array

Broadcasting Over Other Axes

Broadcasting with higher dimensional arrays can seem even more mind-bending, but
it is really a matter of following the rules. If you don’t, you’ll get an error like this:
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In [93]: arr - arr.mean(1)

ValueError Traceback (most recent call last)
<ipython-input-93-7b87b85a20b2> in <module>()

----> 1 arr - arr.mean(1)

ValueError: operands could not be broadcast together with shapes (4,3) (4,)

It's quite common to want to perform an arithmetic operation with a lower dimen-
sional array across axes other than axis 0. According to the broadcasting rule, the
“broadcast dimensions” must be 1 in the smaller array. In the example of row
demeaning shown here, this meant reshaping the row means to be shape (4, 1)
instead of (4,):

In [94]: arr - arr.mean(1).reshape((4, 1))

out[94]:

array([[-0.2095, 1.1334, -0.9239],

[ 0.8562, -0.6828, -0.1734],

[-0.3386, 1.0823, -0.7438],
[ 0.3234, -0.8599, 0.5365]])

In the three-dimensional case, broadcasting over any of the three dimensions is only

a matter of reshaping the data to be shape-compatible. Figure A-7 nicely visualizes the
shapes required to broadcast over each axis of a three-dimensional array.

A common problem, therefore, is needing to add a new axis with length 1 specifically
for broadcasting purposes. Using reshape is one option, but inserting an axis
requires constructing a tuple indicating the new shape. This can often be a tedious
exercise. Thus, NumPy arrays offer a special syntax for inserting new axes by index-
ing. We use the special np.newaxtis attribute along with “full” slices to insert the new
axis:

In [95]: arr = np.zeros((4, 4))
In [96]: arr_3d = arr[:, np.newaxis, :]

In [97]: arr_3d.shape
Out[97]: (4, 1, 4)

In [98]: arr_1d = np.random.normal(size=3)

In [99]: arr_1d[:, np.newaxis]
Out[99]:
array([[-2.3594],

[-6.1995],

[-1.542 11)

In [100]: arr_1d[np.newaxis, :]
Out[100]: array([[-2.3594, -0.1995, -1.542 1])
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Full array shape: (8, 5, 3) Axis 2: (8, 5, 1

Axis @: (5, 3)
@, 5, 3

Axis 1: (8, 1, 3)

Figure A-7. Compatible 2D array shapes for broadcasting over a 3D array

Thus, if we had a three-dimensional array and wanted to demean axis 2, say, we
would need to write:

In [101]: arr = np.random.randn(3, 4, 5)
In [102]: depth_means = arr.mean(2)

In [103]: depth_means

Out[103]:

array([[-0.4735, 0.3971, -0.0228, 0.2001],
[-6.3521, -0.281 , -0.071 , -0.1586],
[ 0.6245, 0.6047, 0.4396, -0.2846]])

In [104]: depth_means.shape
Out[104]: (3, 4)

In [105]: demeaned = arr - depth_means[:, :, np.newaxis]

In [106]: demeaned.mean(2)

Out[106]:

array([[ 0., 0., -0., -0.],
[ 0., 0., -0., 0.1,
[ 0., 0., -0., -0.1])

You might be wondering if there’s a way to generalize demeaning over an axis without
sacrificing performance. There is, but it requires some indexing gymnastics:
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def demean_axis(arr, axis=0):
means = arr.mean(axis)

# This generalizes things like [:, :, np.newaxis] to N dimensions
indexer = [slice(None)] * arr.ndim

indexer[axis] = np.newaxis

return arr - means[indexer]

Setting Array Values by Broadcasting

The same broadcasting rule governing arithmetic operations also applies to setting
values via array indexing. In a simple case, we can do things like:

In [107]: arr = np.zeros((4, 3))
In [108]: arr[:] = 5

In [109]: arr
out[109]:
array([[ 5., 5., 5.]
[ 5., 5., 5.1,
[ 5., 5., 5.]
[ 5., 5., 5.]
However, if we had a one-dimensional array of values we wanted to set into the col-
umns of the array, we can do that as long as the shape is compatible:

In [110]: col = np.array([1.28, -0.42, 0.44, 1.6])
In [111]: arr[:] = col[:, np.newaxis]

In [112]: arr
Out[112]:

array([[ 1.28, 1.28, 1.28],
[-0.42, -0.42, -0.42],
[ 0.44, 0.44, 0.44],
[1.6, 1.6, 1.6 1D

In [113]: arr[:2] = [[-1.37], [0.509]]

In [114]: arr

Out[114]:

array([[-1.37 , -1.37 , -1.37 1,
[ 0.509, 0.509, 0.509],
[ 0.44 , 0.44 , 0.44 ],
[1.6 , 1.6 , 1.6 11
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A.4 Advanced ufunc Usage

While many NumPy users will only make use of the fast element-wise operations pro-
vided by the universal functions, there are a number of additional features that occa-
sionally can help you write more concise code without loops.

ufunc Instance Methods

Each of NumPy’s binary ufuncs has special methods for performing certain kinds of
special vectorized operations. These are summarized in Table A-2, but I'll give a few
concrete examples to illustrate how they work.

reduce takes a single array and aggregates its values, optionally along an axis, by per-
forming a sequence of binary operations. For example, an alternative way to sum ele-
ments in an array is to use np.add. reduce:

In [115]: arr = np.arange(10)

In [116]: np.add.reduce(arr)
Out[116]: 45

In [117]: arr.sum()

Out[117]: 45
The starting value (0 for add) depends on the ufunc. If an axis is passed, the reduction
is performed along that axis. This allows you to answer certain kinds of questions in a
concise way. As a less trivial example, we can use np.logical_and to check whether
the values in each row of an array are sorted:

In [118]: np.random.seed(12346) # for reproducibility
In [119]: arr = np.random.randn(5, 5)
In [120]: arr[::2].sort(1) # sort a few rows

In [121]: arr[:, :-1] < arr[:, 1:]
Out[121]:
array([[ True, True, True, True],
[False, True, False, False],
[ True, True, True, True],
[ True, False, True, True],
[ True, True, True, True]], dtype=bool)

In [122]: np.logical_and.reduce(arr[:, :-1] < arr[:, 1:], axis=1)
Out[122]: array([ True, False, True, False, True], dtype=bool)

Note that logical_and.reduce is equivalent to the all method.

accumulate is related to reduce like cumsum is related to sum. It produces an array of
the same size with the intermediate “accumulated” values:
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In [123]: arr = np.arange(15).reshape((3, 5))

In [124]: np.add.accumulate(arr, axis=1)
out[124]:
array([[ 0, 1, 3, 6, 10],

[ 5, 11, 18, 26, 35],

[10, 21, 33, 46, 60]])

outer performs a pairwise cross-product between two arrays:

In [125]: arr = np.arange(3).repeat([1, 2, 2])

In [126]: arr
Out[126]: array([0, 1, 1, 2, 2])

In [127]: np.multiply.outer(arr, np.arange(5))

out[127]:

array([[o, 0, 0, 0, 0],
[e, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[e, 2, 4, 6, 8],
[0, 2, 4, 6, 8]])

The output of outer will have a dimension that is the sum of the dimensions of the
inputs:

In [128]: x, y = np.random.randn(3, 4), np.random.randn(5)
In [129]: result = np.subtract.outer(x, y)

In [130]: result.shape
out[130]: (3, 4, 5)

The last method, reduceat, performs a “local reduce,” in essence an array groupby
operation in which slices of the array are aggregated together. It accepts a sequence of
“bin edges” that indicate how to split and aggregate the values:

In [131]: arr = np.arange(10)

In [132]: np.add.reduceat(arr, [0, 5, 8])
Out[132]: array([10, 18, 17])

The results are the reductions (here, sums) performed over arr[0:5], arr[5:8], and
arr[8:]. As with the other methods, you can pass an axis argument:

In [133]: arr = np.multiply.outer(np.arange(4), np.arange(5))

In [134]: arr

Out[134]:

array([[ 0, ©, 0, 0, o],
[e, 1, 2, 3, 4],
[ e, 2, 4, 6, 8],
[ e, 3, 6, 9, 121D
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In [135]: np.add.reduceat(arr, [0, 2, 4], axis=1)

Out[135]:

array([[ 0, 0o, 0],
[ 1, 5, 4],
[ 2, 10, 8],

[ 3, 15, 121D

See Table A-2 for a partial listing of ufunc methods.

Table A-2. ufunc methods

Method Description

reduce(x) Aggregate values by successive applications of the operation

accumulate(x) Aggregate values, preserving all partial aggregates

reduceat(x, bins) “Local” reduce or “group by”; reduce contiguous slices of data to produce aggregated array

outer(x, y) Apply operation to all pairs of elements in x and y; the resulting array has shape x . shape +
y.shape

Writing New ufuncs in Python

There are a number of facilities for creating your own NumPy ufuncs. The most gen-
eral is to use the NumPy C API, but that is beyond the scope of this book. In this
section, we will look at pure Python ufuncs.

numpy . frompyfunc accepts a Python function along with a specification for the num-
ber of inputs and outputs. For example, a simple function that adds element-wise
would be specified as:

In [136]: def add_elements(x, y):
et return X + vy

In [137]: add_them = np.frompyfunc(add_elements, 2, 1)

In [138]: add_them(np.arange(8), np.arange(8))

Out[138]: array([0, 2, 4, 6, 8, 10, 12, 14], dtype=object)
Functions created using frompyfunc always return arrays of Python objects, which
can be inconvenient. Fortunately, there is an alternative (but slightly less featureful)
function, numpy . vectorize, that allows you to specify the output type:

In [139]: add_them = np.vectorize(add_elements, otypes=[np.float64])
In [140]: add_them(np.arange(8), np.arange(8))
Out[140]: array([ 0., 2., 4., 6., 8., 10., 12., 14.])

These functions provide a way to create ufunc-like functions, but they are very slow
because they require a Python function call to compute each element, which is a lot
slower than NumPy’s C-based ufunc loops:
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In [141]: arr = np.random.randn(10000)

In [142]: %timeilt add_them(arr, arr)
4.12 ms +- 182 us per loop (mean +- std. dev. of 7 runs, 100 loops each)

In [143]: %timeilt np.add(arr, arr)

6.89 us +- 504 ns per loop (mean +- std. dev. of 7 runs, 100000 loops each)
Later in this chapter we’ll show how to create fast ufuncs in Python using the Numba
project.

A.5 Structured and Record Arrays

You may have noticed up until now that ndarray is a homogeneous data container;
that is, it represents a block of memory in which each element takes up the same
number of bytes, determined by the dtype. On the surface, this would appear to not
allow you to represent heterogeneous or tabular-like data. A structured array is an
ndarray in which each element can be thought of as representing a struct in C (hence
the “structured” name) or a row in a SQL table with multiple named fields:

In [144]: dtype = [('x', np.float64), ('y', np.int32)]
In [145]: sarr = np.array([(1.5, 6), (np.pi, -2)], dtype=dtype)

In [146]: sarr

Out[146]:

array([( 1.5 , 6), ( 3.1416, -2)],

dtype=[('x", '<f8'), ('y', '<14")])

There are several ways to specify a structured dtype (see the online NumPy documen-
tation). One typical way is as a list of tuples with (field_name, field_data_type).
Now, the elements of the array are tuple-like objects whose elements can be accessed
like a dictionary:

In [147]: sarr[0]
Out[147]: ( 1.5, 6)

In [148]: sarr[0]['y']
Out[148]: 6

The field names are stored in the dtype.names attribute. When you access a field on
the structured array, a strided view on the data is returned, thus copying nothing:

In [149]: sarr['x"]
Out[149]: array([ 1.5 , 3.1416])

Nested dtypes and Multidimensional Fields

When specifying a structured dtype, you can additionally pass a shape (as an int or
tuple):
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In [150]: dtype = [('x', np.int64, 3), ('y', np.int32)]
In [151]: arr = np.zeros(4, dtype=dtype)

In [152]: arr
out[152]:
array([([0, 0, 0], ©), ([0, 0, 0], 0), ([0, 0, 0], 0), ([0, 0, O], )],
dtype=[('x", '<i8', (3,)), ('y', '<i4")])
In this case, the x field now refers to an array of length 3 for each record:
In [153]: arr[0]['x"]
Out[153]: array([0, 0, 0])
Conveniently, accessing arr['x'] then returns a two-dimensional array instead of a
one-dimensional array as in prior examples:
In [154]: arr['x']
out[154]:
array([[o, 0, 0],
[0 s 0 E 0] E
[O s O E 0] E
[0, o, o]
This enables you to express more complicated, nested structures as a single block of
memory in an array. You can also nest dtypes to make more complex structures. Here
is an example:

In [155]: dtype = [('x', [('a"', 'f8"), ('b", 'f4")]), ('y', np.int32)]
In [156]: data = np.array([((1, 2), 5), ((3, 4), 6)], dtype=dtype)

In [157]: data['x"']

Out[157]:

array([( 1., 2.), ( 3., 4.1,
deype=[('a’, '<f8"), ('b’, '<f4")])

In [158]: data['y']
Out[158]: array([5, 6], dtype=int32)

In [159]: data['x']['a']

Out[159]: array([ 1., 3.1)
pandas DataFrame does not support this feature directly, though it is similar to hier-
archical indexing.

Why Use Structured Arrays?

Compared with, say, a pandas DataFrame, NumPy structured arrays are a compara-
tively low-level tool. They provide a means to interpreting a block of memory as a
tabular structure with arbitrarily complex nested columns. Since each element in the
array is represented in memory as a fixed number of bytes, structured arrays provide
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a very fast and efficient way of writing data to and from disk (including memory
maps), transporting it over the network, and other such uses.

As another common use for structured arrays, writing data files as fixed-length
record byte streams is a common way to serialize data in C and C++ code, which is
commonly found in legacy systems in industry. As long as the format of the file is
known (the size of each record and the order, byte size, and data type of each ele-
ment), the data can be read into memory with np.fromfile. Specialized uses like this
are beyond the scope of this book, but it’s worth knowing that such things are

possible.

A.6 More About Sorting

Like Python’s built-in list, the ndarray sort instance method is an in-place sort,
meaning that the array contents are rearranged without producing a new array:

In [160]: arr = np.random.randn(6)
In [161]: arr.sort()

In [162]: arr

Out[162]: array([-1.082 , 0.3759, 0.8014, 1.1397, 1.2888, 1.8413])
When sorting arrays in-place, remember that if the array is a view on a different
ndarray, the original array will be modified:

In [163]: arr = np.random.randn(3, 5)

In [164]: arr

out[164]:

array([[-0.3318, -1.4711, 0.8705, -0.0847, -1.1329],
[-1.0111, -0.3436, 2.1714, 0.1234, -0.0189],
[ 0.1773, 0.7424, 0.8548, 1.038 , -0.329 1)

In [165]: arr[:, 0].sort() # Sort first column values in-place

In [166]: arr

Out[166]:

array([[-1.0111, -1.4711, 0.8705, -0.0847, -1.1329],
[-0.3318, -0.3436, 2.1714, 0.1234, -0.0189],
[ 0.1773, 0.7424, 0.8548, 1.038 , -0.329 1)

On the other hand, numpy.sort creates a new, sorted copy of an array. Otherwise, it
accepts the same arguments (such as kind) as ndarray.sort:

In [167]: arr = np.random.randn(5)

In [168]: arr
Out[168]: array([-1.1181, -0.2415, -2.0051, 0.7379, -1.0614])

Advanced NumPy | 471



In [169]: np.sort(arr)
Out[169]: array([-2.0051, -1.1181, -1.0614, -0.2415, 0.7379])

In [170]: arr
Out[170]: array([-1.1181, -0.2415, -2.0051, 0.7379, -1.0614])

All of these sort methods take an axis argument for sorting the sections of data along
the passed axis independently:

In [171]: arr = np.random.randn(3, 5)

In [172]: arr

Out[172]:

array([[ 0.5955, -0.2682, 1.3389, -0.1872, 0.9111],
[-06.3215, 1.0054, -0.5168, 1.1925, -0.1989],
[ 0.3969, -1.7638, 0.6071, -0.2222, -0.2171]])

(o]

In [173]: arr.sort(axis=1)

In [174]: arr

Out[174]:

array([[-0.2682, -0.1872, ©0.5955, 0.9111, 1.3389],
[-0.5168, -0.3215, -0.1989, 1.0054, 1.1925],
[-1.7638, -0.2222, -0.2171, 0.3969, 0.60711])

You may notice that none of the sort methods have an option to sort in descending
order. This is a problem in practice because array slicing produces views, thus not
producing a copy or requiring any computational work. Many Python users are
familiar with the “trick” that for a list values, values[::-1] returns a list in reverse
order. The same is true for ndarrays:

In [175]: arr[:, ::-1]

Out[175]:

array([[ 1.3389, 0.9111, 0.5955, -0.1872, -0.2682],

[ 1.1925, 1.0054, -0.1989, -0.3215, -0.5168],
[ 0.6071, 0.3969, -0.2171, -0.2222, -1.7638]])

Indirect Sorts: argsort and lexsort

In data analysis you may need to reorder datasets by one or more keys. For example, a
table of data about some students might need to be sorted by last name, then by first
name. This is an example of an indirect sort, and if you've read the pandas-related
chapters you have already seen many higher-level examples. Given a key or keys (an
array of values or multiple arrays of values), you wish to obtain an array of integer
indices (I refer to them colloquially as indexers) that tells you how to reorder the data
to be in sorted order. Two methods for this are argsort and numpy.lexsort. As an
example:

In [176]: values = np.array([5, 0, 1, 3, 2])

In [177]: indexer = values.argsort()

472 | Appendix A: Advanced NumPy



In [178]: indexer
Out[178]: array([1, 2, 4, 3, 0])
In [179]: values[indexer]
Out[179]: array([0, 1, 2, 3, 5])
As a more complicated example, this code reorders a two-dimensional array by its
first row:
In [180]: arr = np.random.randn(3, 5)
In [181]: arr[0] = values
In [182]: arr
Out[182]:
array([[ 5. , 0. , 1. s 3. ., 2. 1,
[-0.3636, -0.1378, 2.1777, -0.4728, 0.8356],
[-0.2089, 0.2316, 0.728 , -1.3918, 1.9956]1])
In [183]: arr[:, arr[0].argsort()]
Out[183]:
array([[ ©. , 1. , 2. s 3. , 5. 1,

[-0.1378, 2.1777, 0.8356, -0.4728, -0.3636],
[ 0.2316, 0.728 , 1.9956, -1.3918, -0.2089]])

lexsort is similar to argsort, but it performs an indirect lexicographical sort on multi-
ple key arrays. Suppose we wanted to sort some data identified by first and last

names:

In [184]:
In [185]:
In [186]:

In [187]:
Out[187]:

In [188]:
Out[188]:

first_name = np.array(['Bob', 'Jane', 'Steve', 'Bill', 'Barbara'])
last_name = np.array(['Jones', 'Arnold', 'Arnold', 'Jones', 'Walters'])
sorter = np.lexsort((first_name, last_name))

sorter
array([1, 2, 3, 0, 4])

zip(last_name[sorter], first_name[sorter])
<zip at 0x7fa203edalc8>

lexsort can be a bit confusing the first time you use it because the order in which the
keys are used to order the data starts with the last array passed. Here, last_name was
used before first_name.

pandas methods like Series’s and DataFrame’s sort_values method
are implemented with variants of these functions (which also must
take into account missing values).
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Alternative Sort Algorithms

A stable sorting algorithm preserves the relative position of equal elements. This can
be especially important in indirect sorts where the relative ordering is meaningful:

In [189]: values = np.array(['2:first', '2:second', '1:first', 'l:second',
..... : "1:third'])

In [190]: key = np.array([2, 2, 1, 1, 1])
In [191]: indexer = key.argsort(kind='mergesort')

In [192]: indexer
Out[192]: array([2, 3, 4, 0, 1])

In [193]: values.take(indexer)

Out[193]:

array(['1:first', '1l:second', '1:third', '2:first', '2:second'],

dtype="<U8")

The only stable sort available is mergesort, which has guaranteed 0(n log n) perfor-
mance (for complexity buffs), but its performance is on average worse than the
default quicksort method. See Table A-3 for a summary of available methods and
their relative performance (and performance guarantees). This is not something that
most users will ever have to think about, but it’s useful to know that it’s there.

Table A-3. Array sorting methods

Kind Speed Stable Work space Worst case

'quicksort' 1 No 0 0(n”2)
'mergesort' 2 Yes n/?2 0o(n log n)
'heapsort' 3 No 0 0o(n log n)

Partially Sorting Arrays

One of the goals of sorting can be to determine the largest or smallest elements in an
array. NumPy has optimized methods, numpy.partition and np.argpartition, for
partitioning an array around the k-th smallest element:

In [194]: np.random.seed(12345)
In [195]: arr = np.random.randn(20)

In [196]: arr

Out[196]:

array([-0.2047, ©0.4789, -0.5194, -0.5557, 1.9658, 1.3934, 0.0929,
0.2817, 0.769 , 1.2464, 1.0072, -1.2962, 0.275 , 0.2289,
1.3529, 0.8864, -2.0016, -0.3718, 1.669 , -0.4386])

In [197]: np.partition(arr, 3)
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Out[197]:

array([-2.0016, -1.2962, -0.5557, -0.5194, -0.3718, -0.4386, -0.2047,
0.2817, 0.769 , 0.4789, 1.0072, 0.0929, 0.275 , 0.2289,
1.3529, 0.8864, 1.3934, 1.9658, 1.669 , 1.2464]1)

After you call partition(arr, 3), the first three elements in the result are the small-

est three values in no particular order. numpy.argpartition, similar to numpy.arg
sort, returns the indices that rearrange the data into the equivalent order:

In [198]: indices = np.argpartition(arr, 3)

In [199]: indices

Out[199]:

array([16, 11, 3, 2, 17, 19, ©o, 7, 8, 1, 10, 6, 12, 13, 14, 15, 5,
4, 18, 9])

In [200]: arr.take(indices)

Out[200]:

array([-2.0016, -1.2962, -0.5557, -0.5194, -0.3718, -0.4386, -0.2047,
0.2817, 0.769 , 0.4789, 1.0072, 0.0929, 0.275 , 0.2289,
1.3529, 0.8864, 1.3934, 1.9658, 1.669 , 1.2464])

numpy.searchsorted: Finding Elements in a Sorted Array

searchsorted is an array method that performs a binary search on a sorted array,
returning the location in the array where the value would need to be inserted to
maintain sortedness:

In [201]: arr = np.array([0, 1, 7, 12, 15])

In [202]: arr.searchsorted(9)
Out[202]: 3

You can also pass an array of values to get an array of indices back:

In [203]: arr.searchsorted([0, 8, 11, 16])
Out[203]: array([0, 3, 3, 5])

You might have noticed that searchsorted returned 0 for the 0 element. This is
because the default behavior is to return the index at the left side of a group of equal
values:

In [204]: arr = np.array([0, 0, 0, 1, 1, 1, 1])

In [205]: arr.searchsorted([0, 1])
Out[205]: array([0, 3])

In [206]: arr.searchsorted([0, 1], side='right")
Out[206]: array([3, 7])
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As another application of searchsorted, suppose we had an array of values between
0 and 10,000, and a separate array of “bucket edges” that we wanted to use to bin the
data:

In [207]: data = np.floor(np.random.uniform(0, 10000, size=50))

In [208]: bins

np.array([0, 100, 1000, 5000, 10000])

In [209]: data

Out[209]:

array([ 9940., 6768., 7908., 1709., 268., 8003., 9037., 246.,
4917., 5262., 5963., 519., 8950., 7282., 8183., 5002.,
8101., 959., 2189., 2587., 4681., 4593., 7095., 1780.,
5314., 1677., 7688., 9281., 6094., 1501., 4896., 3773.,
8486., 9110., 3838., 3154., 5683., 1878., 1258., 6875.,
7996., 5735., 9732., 6340., 8884., 4954., 3516., 7142.,
5039., 2256.])

To then get a labeling of which interval each data point belongs to (where 1 would
mean the bucket [0, 100)), we can simply use searchsorted:

In [210]: labels = bins.searchsorted(data)

In [211]: labels
Out[211]:

array([4, 4, 4, 3, 2, 4, 4, 2, 3, 4, 4, 2, 4, 4, 4, 4, 4, 2, 3, 3, 3, 3, 4,
3,4, 3,4, 4, 4, 3, 3, 3, 4, 4, 3, 3, 4, 3, 3, 4, 4, 4, 4, 4, 4, 3,
3, 4, 4, 3])

This, combined with pandas’s groupby, can be used to bin data:

In [212]: pd.Series(data).groupby(labels).mean()
Out[212]:

2 498.000000

3 3064.277778

4 7389.035714

dtype: float64

A.7 Writing Fast NumPy Functions with Numba

Numba is an open source project that creates fast functions for NumPy-like data
using CPUs, GPUs, or other hardware. It uses the LLVM Project to translate Python
code into compiled machine code.

To introduce Numba, let’s consider a pure Python function that computes the expres-
sion (x - y).mean() using a for loop:

import numpy as np

def mean_distance(x, y):
nx = len(x)
result = 0.0
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count = 0

for 1 in range(nx):
result += x[1] - y[i]
count += 1

return result / count

This function is very slow:

In [209]: x = np.random.randn(10000000)
In [210]: y = np.random.randn(10000000)

In [211]: %timeilt mean_distance(x, y)
1 loop, best of 3: 2 s per loop

In [212]: %timeit (x - y).mean()

100 loops, best of 3: 14.7 ms per loop
The NumPy version is over 100 times faster. We can turn this function into a com-
piled Numba function using the numba. jit function:

In [213]: import as

In [214]: numba_mean_distance = nb.jit(mean_distance)

We could also have written this as a decorator:

def mean_distance(x, y):

nx = len(x)

result = 0.0

count = 0

for 1 in range(nx):
result += x[1] - y[i]
count += 1

return result / count

The resulting function is actually faster than the vectorized NumPy version:

In [215]: %timeilt numba_mean_distance(x, y)

100 loops, best of 3: 10.3 ms per loop
Numba cannot compile arbitrary Python code, but it supports a significant subset of
pure Python that is most useful for writing numerical algorithms.

Numba is a deep library, supporting different kinds of hardware, modes of compila-
tion, and user extensions. It is also able to compile a substantial subset of the NumPy
Python API without explicit for loops. Numba is able to recognize constructs that
can be compiled to machine code, while substituting calls to the CPython API for
functions that it does not know how to compile. Numba’s jit function has an option,
nopython=True, which restricts allowed code to Python code that can be compiled to
LLVM without any Python C API calls. jit(nopython=True) has a shorter alias
numba.njit.
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In the previous example, we could have written:

from import float64, njit

(float64(float64[:], float64[:]1))
def mean_distance(x, y):
return (x - y).mean()
I encourage you to learn more by reading the online documentation for Numba. The
next section shows an example of creating custom NumPy ufunc objects.

Creating Custom numpy.ufunc Objects with Numba

The numba.vectorize function creates compiled NumPy ufuncs, which behave like
built-in ufuncs. Let’s consider a Python implementation of numpy . add:

from import vectorize

def nb_add(x, y):
return x + y

Now we have:

In [13]: x = np.arange(10)

In [14]: nb_add(x, x)
Out[14]: array([ ©., 2., 4., 6., 8., 10., 12., 14., 16., 18.])

In [15]: nb_add.accumulate(x, 0)
Out[15]: array([ ©O., 1., 3., 6., 10., 15., 21., 28., 36., 45.])

A.8 Advanced Array Input and Qutput

In Chapter 4, we became acquainted with np.save and np.load for storing arrays in
binary format on disk. There are a number of additional options to consider for more
sophisticated use. In particular, memory maps have the additional benefit of enabling
you to work with datasets that do not fit into RAM.

Memory-Mapped Files

A memory-mapped file is a method for interacting with binary data on disk as though
it is stored in an in-memory array. NumPy implements a memmap object that is
ndarray-like, enabling small segments of a large file to be read and written without
reading the whole array into memory. Additionally, a memmap has the same methods
as an in-memory array and thus can be substituted into many algorithms where an
ndarray would be expected.
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To create a new memory map, use the function np.memmap and pass a file path, dtype,

shape, and file mode:

In [214]: mmap = np.memmap( 'mymmap', dtype='float64', mode='w+',

In [215]: mmap
Out[215]:
memmap ([ [
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Slicing a memmap returns views on the data on disk:

In [216]: section = mmap[:5]

If you assign data to these, it will be buffered in memory (like a Python file object),
but you can write it to disk by calling flush:

In [217]: section[:] = np.random.randn(5, 10000)

In [218]: mmap.flush()

In [219]: mmap
Out[219]:

memmap([[ ©0.7584, -0.6605,
[-1.2113, -1.0375,
[-0.1419, -0.3375,

ey

[ 0. , o.
[ 0. , 0.
[ 0. , o.

In [220]: del mmap

0.8626,
0.7093,
0.4329,

(o]
-

.

.

L]

0.6046,
-1.4117,
1.2914,

-0.6212, 2.0542],
-0.1719, -0.8957],
-0.752 , -0.44 1],

0. , 0. 1,
0. , 0. 1,
0. , 0. 1D

Whenever a memory map falls out of scope and is garbage-collected, any changes will
be flushed to disk also. When opening an existing memory map, you still have to spec-
ify the dtype and shape, as the file is only a block of binary data with no metadata on

disk:

In [221]: mmap = np.memmap('mymmap', dtype='float64', shape=(10000, 10000))

In [222]: mmap
Out[222]:

memmap([[ ©0.7584, -0.6605,
[-1.2113, -1.0375,
[-0.1419, -0.3375,

ey

[ 0. , 0.

0.8626,
0.7093,
0.4329,

.

L]

.

0.6046,
-1.4117,
1.2914,

-0.6212, 2.0542],
-0.1719, -0.8957],
-0.752 , -0.44 1],

0. , 0. 1,
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[ 0. , 0. , 0. s eees O , 0. , 0. 1,

[ o , 0. , 0. s ee., 0. , 0. , 0. 1M
Memory maps also work with structured or nested dtypes as described in a previous
section.

HDF5 and Other Array Storage Options

PyTables and h5py are two Python projects providing NumPy-friendly interfaces for
storing array data in the efficient and compressible HDF5 format (HDF stands for
hierarchical data format). You can safely store hundreds of gigabytes or even terabytes
of data in HDF5 format. To learn more about using HDF5 with Python, I recommend
reading the pandas online documentation.

A.9 Performance Tips

Getting good performance out of code utilizing NumPy is often straightforward, as
array operations typically replace otherwise comparatively extremely slow pure
Python loops. The following list briefly summarizes some things to keep in mind:

+ Convert Python loops and conditional logic to array operations and boolean
array operations

« Use broadcasting whenever possible
« Use arrays views (slicing) to avoid copying data

« Utilize ufuncs and ufunc methods

If you can’t get the performance you require after exhausting the capabilities provided
by NumPy alone, consider writing code in C, Fortran, or Cython. I use Cython fre-
quently in my own work as an easy way to get C-like performance with minimal
development.

The Importance of Contiguous Memory

While the full extent of this topic is a bit outside the scope of this book, in some
applications the memory layout of an array can significantly affect the speed of com-
putations. This is based partly on performance differences having to do with the
cache hierarchy of the CPU; operations accessing contiguous blocks of memory (e.g.,
summing the rows of a C order array) will generally be the fastest because the mem-
ory subsystem will buffer the appropriate blocks of memory into the ultrafast L1 or
L2 CPU cache. Also, certain code paths inside NumPy’s C codebase have been opti-
mized for the contiguous case in which generic strided memory access can be
avoided.

480 | Appendix A: Advanced NumPy



To say that an array’s memory layout is contiguous means that the elements are stored
in memory in the order that they appear in the array with respect to Fortran (column
major) or C (row major) ordering. By default, NumPy arrays are created as C-
contiguous or just simply contiguous. A column major array, such as the transpose of
a C-contiguous array, is thus said to be Fortran-contiguous. These properties can be
explicitly checked via the flags attribute on the ndarray:

In [225]: arr_c = np.ones((1000, 1000), order='C")
In [226]: arr_f = np.ones((1000, 1000), order='F")

In [227]: arr_c.flags

Out[227]:
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False

In [228]: arr_f.flags

out[228]:
C_CONTIGUOUS : False
F_CONTIGUOUS : True
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False

In [229]: arr_f.flags.f_contiguous

Out[229]: True
In this example, summing the rows of these arrays should, in theory, be faster for
arr_c than arr_f since the rows are contiguous in memory. Here I check for sure
using %timeit in IPython:

In [230]: %timeilt arr_c.sum(1)
784 us +- 10.4 us per loop (mean +- std. dev. of 7 runs, 1000 loops each)

In [231]: %timeit arr_f.sum(1)
934 us +- 29 us per loop (mean +- std. dev. of 7 runs, 1000 loops each)

When you’re looking to squeeze more performance out of NumPy, this is often a
place to invest some effort. If you have an array that does not have the desired mem-
ory order, you can use copy and pass either 'C' or 'F':

In [232]: arr_f.copy('C').flags
out[232]:
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
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WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False

When constructing a view on an array, keep in mind that the result is not guaranteed
to be contiguous:

In [233]: arr_c[:50].flags.contiguous
Out[233]: True

In [234]: arr_c[:, :50].flags
out[234]:
C_CONTIGUOUS : False
F_CONTIGUOUS : False
OWNDATA : False
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False
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APPENDIX B
More on the IPython System

In Chapter 2 we looked at the basics of using the IPython shell and Jupyter notebook.
In this chapter, we explore some deeper functionality in the IPython system that can
either be used from the console or within Jupyter.

B.1 Using the Command History

IPython maintains a small on-disk database containing the text of each command
that you execute. This serves various purposes:

« Searching, completing, and executing previously executed commands with mini-
mal typing
o Persisting the command history between sessions

« Logging the input/output history to a file

These features are more useful in the shell than in the notebook, since the notebook
by design keeps a log of the input and output in each code cell.

Searching and Reusing the Command History

The IPython shell lets you search and execute previous code or other commands.
This is useful, as you may often find yourself repeating the same commands, such as a
%run command or some other code snippet. Suppose you had run:

In[7]: %run first/second/third/data_script.py

and then explored the results of the script (assuming it ran successfully) only to find
that you made an incorrect calculation. After figuring out the problem and modifying
data_script.py, you can start typing a few letters of the %run command and then press
either the Ctrl-P key combination or the up arrow key. This will search the command
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history for the first prior command matching the letters you typed. Pressing either
Ctrl-P or the up arrow key multiple times will continue to search through the history.
If you pass over the command you wish to execute, fear not. You can move forward
through the command history by pressing either Ctrl-N or the down arrow key. After
doing this a few times, you may start pressing these keys without thinking!

Using Ctrl-R gives you the same partial incremental searching capability provided by
the readline used in Unix-style shells, such as the bash shell. On Windows, readline
functionality is emulated by IPython. To use this, press Ctrl-R and then type a few
characters contained in the input line you want to search for:

In [1]: a_command = foo(x, y, z)

(reverse-i-search) com': a_command = foo(x, y, z)

Pressing Ctrl-R will cycle through the history for each line matching the characters
you've typed.

Input and Output Variables

Forgetting to assign the result of a function call to a variable can be very annoying.
An IPython session stores references to both the input commands and output Python
objects in special variables. The previous two outputs are stored in the _ (one under-
score) and __ (two underscores) variables, respectively:

In [24]: 2 ** 27
Out[24]: 134217728

In [25]: _

Out[25]: 134217728
Input variables are stored in variables named like _iX, where X is the input line num-
ber. For each input variable there is a corresponding output variable _X. So after input
line 27, say, there will be two new variables _27 (for the output) and _127 for the
input:

In [26]: foo = 'bar'

In [27]: foo
Out[27]: 'bar'

In [28]: _i27
Out[28]: u'foo'

In [29]: _27

Out[29]: 'bar'

484 | Appendix B: More on the [Python System



Since the input variables are strings they can be executed again with the Python exec
keyword:

In [30]: exec(_127)
Here _127 refers to the code input in In [27].

Several magic functions allow you to work with the input and output history. %hist is
capable of printing all or part of the input history, with or without line numbers.
%reset is for clearing the interactive namespace and optionally the input and output
caches. The %xdel magic function is intended for removing all references to a particu-
lar object from the IPython machinery. See the documentation for both of these mag-
ics for more details.

When working with very large datasets, keep in mind that IPy-

thon’s input and output history causes any object referenced there

| to not be garbage-collected (freeing up the memory), even if you

\ delete the variables from the interactive namespace using the del
keyword. In such cases, careful usage of %xdel and %reset can help
you avoid running into memory problems.

B.2 Interacting with the Operating System

Another feature of IPython is that it allows you to seamlessly access the filesystem
and operating system shell. This means, among other things, that you can perform
most standard command-line actions as you would in the Windows or Unix (Linux,
macOS) shell without having to exit IPython. This includes shell commands, chang-
ing directories, and storing the results of a command in a Python object (list or
string). There are also simple command aliasing and directory bookmarking features.

See Table B-1 for a summary of magic functions and syntax for calling shell com-
mands. I'll briefly visit these features in the next few sections.

Table B-1. IPython system-related commands

lemd Execute cmd in the system shell

output = !cmd args Run cmd and store the stdout in output

%alias alias_name cmd Define an alias for a system (shell) command

%bookmark Utilize IPython’s directory bookmarking system

%cd directory Change system working directory to passed directory

%pwd Return the current system working directory

%pushd directory Place current directory on stack and change to target directory
%popd Change to directory popped off the top of the stack

%dirs Return a list containing the current directory stack
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%dhist Print the history of visited directories
%env Return the system environment variables as a dict
%matplotlib Configure matplotlib integration options

Shell Commands and Aliases

Starting a line in IPython with an exclamation point !, or bang, tells IPython to exe-
cute everything after the bang in the system shell. This means that you can delete files
(using rm or del, depending on your OS), change directories, or execute any other
process.

You can store the console output of a shell command in a variable by assigning the
expression escaped with ! to a variable. For example, on my Linux-based machine
connected to the internet via ethernet, I can get my IP address as a Python variable:

In [1]: ip_info = !ifconfig wlan@ | grep "inet

In [2]: ip_info[0].strip()
Out[2]: 'inet addr:10.0.0.11 Bcast:10.0.0.255 Mask:255.255.255.0'

The returned Python object ip_info is actually a custom list type containing various
versions of the console output.

IPython can also substitute in Python values defined in the current environment
when using !. To do this, preface the variable name by the dollar sign $:

In [3]: foo = 'test*'

In [4]: !1s S$foo
test4.py test.py test.xml

The %alias magic function can define custom shortcuts for shell commands. As a
simple example:

In [1]: %alias 11 1s -1

In [2]: 11 /usr

total 332

drwxr-xr-x 2 root root 69632 2012-01-29 20:36 bin/
drwxr-xr-x 2 root root 4096 2010-08-23 12:05 games/
drwxr-xr-x 123 root root 20480 2011-12-26 18:08 include/
drwxr-xr-x 265 root root 126976 2012-01-29 20:36 1ib/
drwxr-xr-x 44 root root 69632 2011-12-26 18:08 1ib32/
lrwxrwxrwx 1 root root 3 2010-08-23 16:02 1ib64 -> 1ib/
drwxr-xr-x 15 root root 4096 2011-10-13 19:03 local/
drwxr-xr-x 2 root root 12288 2012-01-12 09:32 sbin/
drwxr-xr-x 387 root root 12288 2011-11-04 22:53 share/
drwxrwsr-x 24 root src 4096 2011-07-17 18:38 src/
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You can execute multiple commands just as on the command line by separating them
with semicolons:

In [558]: %alias test_alias (cd examples; 1s; cd ..)

In [559]: test_alias

macrodata.csv spx.csv tips.csv
You'll notice that IPython “forgets” any aliases you define interactively as soon as the
session is closed. To create permanent aliases, you will need to use the configuration
system.

Directory Bookmark System

IPython has a simple directory bookmarking system to enable you to save aliases for
common directories so that you can jump around very easily. For example, suppose

you wanted to create a bookmark that points to the supplementary materials for this
book:

In [6]: %bookmark py4da /home/wesm/code/pydata-book

Once you've done this, when we use the %cd magic, we can use any bookmarks we've
defined:

In [7]: cd py4da

(bookmark:py4da) -> /home/wesm/code/pydata-book

/home /wesm/code/pydata-book
If a bookmark name conflicts with a directory name in your current working direc-
tory, you can use the -b flag to override and use the bookmark location. Using the -1
option with %bookmark lists all of your bookmarks:

In [8]: %bookmark -1
Current bookmarks:
py4da -> /home/wesm/code/pydata-book-source

Bookmarks, unlike aliases, are automatically persisted between IPython sessions.

B.3 Software Development Tools

In addition to being a comfortable environment for interactive computing and data
exploration, IPython can also be a useful companion for general Python software
development. In data analysis applications, it’s important first to have correct code.
Fortunately, IPython has closely integrated and enhanced the built-in Python pdb
debugger. Secondly you want your code to be fast. For this IPython has easy-to-use
code timing and profiling tools. I will give an overview of these tools in detail here.
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Interactive Debugger

IPython’s debugger enhances pdb with tab completion, syntax highlighting, and con-
text for each line in exception tracebacks. One of the best times to debug code is right
after an error has occurred. The %debug command, when entered immediately after
an exception, invokes the “post-mortem” debugger and drops you into the stack
frame where the exception was raised:

AssertionError Traceback (most recent call last)
/home /wesm/code/pydata-book/examples/ipython_bug.py in <module>()

13 throws_an_exception()

14

---> 15 calling_things()

/home /wesm/code/pydata-book/examples/ipython_bug.py in calling_things()
11 def calling_things():

12 works_fine()
---> 13 throws_an_exception()
14

15 calling_things()

/home /wesm/code/pydata-book/examples/ipython_bug.py in throws_an_exception()

7 a=>5
8 b=2¢

---->9 assert(a + b == 10)
10

11 def calling_things():
AssertionError:

In [3]: %debug
> /home/wesm/code/pydata-book/examples/ipython_bug.py(9)throws_an_exception()

8 b==¢6
----> 9 assert(a + b == 10)
10

ipdb>

Once inside the debugger, you can execute arbitrary Python code and explore all of
the objects and data (which have been “kept alive” by the interpreter) inside each
stack frame. By default you start in the lowest level, where the error occurred. By
pressing u (up) and d (down), you can switch between the levels of the stack trace:

ipdb> u

> /home/wesm/code/pydata-book/examples/ipython_bug.py(13)calling_things()
12 works_fine()

---> 13 throws_an_exception()
14
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Executing the %pdb command makes it so that IPython automatically invokes the
debugger after any exception, a mode that many users will find especially useful.

It’s also easy to use the debugger to help develop code, especially when you wish to set
breakpoints or step through the execution of a function or script to examine the state
at each stage. There are several ways to accomplish this. The first is by using %run
with the -d flag, which invokes the debugger before executing any code in the passed
script. You must immediately press s (step) to enter the script:

In [5]: run -d examples/ipython_bug.py

Breakpoint 1 at /home/wesm/code/pydata-book/examples/ipython_bug.py:1
NOTE: Enter 'c' at the ipdb> prompt to start your script.

> <string>(1)<module>()

ipdb> s
--call--
> /home/wesm/code/pydata-book/examples/ipython_bug.py(1)<module>()
1---> 1 def works_fine():
2 a=>5
3 b==¢6
After this point, it's up to you how you want to work your way through the file. For
example, in the preceding exception, we could set a breakpoint right before calling
the works_fine method and run the script until we reach the breakpoint by pressing
c (continue):
ipdb> b 12
ipdb> ¢
> /home/wesm/code/pydata-book/examples/ipython_bug.py(12)calling_things()
11 def calling_things():

2--> 12 works_fine()
13 throws_an_exception()

At this point, you can step into works_fine() or execute works_fine() by pressing n
(next) to advance to the next line:

ipdb> n
> /home/wesm/code/pydata-book/examples/ipython_bug.py(13)calling_things()
2 12 works_fine()
---> 13 throws_an_exception()
14

Then, we could step into throws_an_exception and advance to the line where the
error occurs and look at the variables in the scope. Note that debugger commands
take precedence over variable names; in such cases, preface the variables with ! to
examine their contents:

ipdb> s

--Call--

> /home/wesm/code/pydata-book/examples/ipython_bug.py(6)throws_an_exception()
5
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----> 6 def throws_an_exception():
7 a=>5

ipdb> n
> /home/wesm/code/pydata-book/examples/ipython_bug.py(7)throws_an_exception()
6 def throws_an_exception():

.ee> 7 a=>5
8 b=2¢6

ipdb> n

> /home/wesm/code/pydata-book/examples/ipython_bug.py(8)throws_an_exception()
7 a=>5

---->8 b==¢6
9 assert(a + b == 10)

ipdb> n

> /home/wesm/code/pydata-book/examples/ipython_bug.py(9)throws_an_exception()
8 b=2¢6

---->9 assert(a + b == 10)
10

ipdb> !a

5

ipdb> !b

6

Developing proficiency with the interactive debugger is largely a matter of practice
and experience. See Table B-2 for a full catalog of the debugger commands. If you are
accustomed to using an IDE, you might find the terminal-driven debugger to be a bit
unforgiving at first, but that will improve in time. Some of the Python IDEs have
excellent GUI debuggers, so most users can find something that works for them.

Table B-2. (I)Python debugger commands

h(elp) Display command list

help command Show documentation for command

c(ontinue) Resume program execution

q(uit) Exit debugger without executing any more code

b(reak) number Set breakpoint at number in current file

b path/to/file.py:number Setbreakpoint at line number in specified file

s(tep) Step into function call

n(ext) Execute current line and advance to next line at current level
u(p)/d(own) Move up/down in function call stack

a(rgs) Show arguments for current function

debug statement Invoke statement statement in new (recursive) debugger
1(ist) statement Show current position and context at current level of stack
w(here) Print full stack trace with context at current position
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Other ways to make use of the debugger

There are a couple of other useful ways to invoke the debugger. The first is by using a
special set_trace function (named after pdb.set_trace), which is basically a “poor
man’s breakpoint” Here are two small recipes you might want to put somewhere for
your general use (potentially adding them to your IPython profile as I do):

from import Pdb

def set_trace():
Pdb(color_scheme="'Linux"').set_trace(sys._getframe().f_back)

def debug(f, *args, **kwargs):
pdb = Pdb(color_scheme="'Linux")
return pdb.runcall(f, *args, **kwargs)

The first function, set_trace, is very simple. You can use a set_trace in any part of
your code that you want to temporarily stop in order to more closely examine it (e.g.,
right before an exception occurs):

In [7]: run examples/ipython_bug.py
> /home/wesm/code/pydata-book/examples/ipython_bug.py(16)calling_things()

15 set_trace()
---> 16 throws_an_exception()
17

Pressing ¢ (continue) will cause the code to resume normally with no harm done.

The debug function we just looked at enables you to invoke the interactive debugger
easily on an arbitrary function call. Suppose we had written a function like the fol-
lowing and we wished to step through its logic:
def f(x, y, z=1):
tmp = X +y
return tmp / z
Ordinarily using f would look like f(1, 2, z=3). To instead step into f, pass f as the
first argument to debug followed by the positional and keyword arguments to be
passed to f:
In [6]: debug(f, 1, 2, z=3)
> <ipython-input>(2)f()
1 def f(x, vy, z):

—eee> 2 tmp = X + y
3 return tmp / z

ipdb>

I find that these two simple recipes save me a lot of time on a day-to-day basis.
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Lastly, the debugger can be used in conjunction with %run. By running a script with
%run -d, you will be dropped directly into the debugger, ready to set any breakpoints
and start the script:

In [1]: %run -d examples/ipython_bug.py

Breakpoint 1 at /home/wesm/code/pydata-book/examples/ipython_bug.py:1
NOTE: Enter 'c' at the ipdb> prompt to start your script.

> <string>(1)<module>()

ipdb>
Adding -b with a line number starts the debugger with a breakpoint set already:

In [2]: %run -d -b2 examples/ipython_bug.py

Breakpoint 1 at /home/wesm/code/pydata-book/examples/ipython_bug.py:2
NOTE: Enter 'c' at the ipdb> prompt to start your script.

> <string>(1)<module>()

ipdb> ¢

> /home/wesm/code/pydata-book/examples/ipython_bug.py(2)works_fine()
1 def works_fine():

1--->2 a=>5
3 b==¢6

ipdb>

Timing Code: %time and %timeit

For larger-scale or longer-running data analysis applications, you may wish to meas-
ure the execution time of various components or of individual statements or function
calls. You may want a report of which functions are taking up the most time in a com-
plex process. Fortunately, IPython enables you to get this information very easily
while you are developing and testing your code.

Timing code by hand using the built-in time module and its functions time.clock
and time.time is often tedious and repetitive, as you must write the same uninterest-
ing boilerplate code:

import

start = time.time()

for 1 in range(iterations):

# some code to run here
elapsed_per = (time.time() - start) / iterations

Since this is such a common operation, IPython has two magic functions, %time and
%timeit, to automate this process for you.

%time runs a statement once, reporting the total execution time. Suppose we had a
large list of strings and we wanted to compare different methods of selecting all
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strings starting with a particular prefix. Here is a simple list of 600,000 strings and
two identical methods of selecting only the ones that start with 'foo':

# a very large list of strings
strings = ['foo', 'foobar', 'baz', 'qux',
'python', 'Guido Van Rossum'] * 100000

methodl = [x for x in strings if x.startswith('foo')]

method2 = [x for x in strings if x[:3] == 'foo']

It looks like they should be about the same performance-wise, right? We can check
for sure using %time:

In [561]: %time methodl = [x for x in strings if x.startswith('foo')]
CPU times: user 0.19 s, sys: 0.00 s, total: 0.19 s
Wall time: 0.19 s

In [562]: %time method2 = [x for x in strings if x[:3] == 'foo']
CPU times: user 0.09 s, sys: 0.00 s, total: 0.09 s
Wall time: 0.09 s

The Wall time (short for “wall-clock time”) is the main number of interest. So, it
looks like the first method takes more than twice as long, but it’s not a very precise
measurement. If you try %time-ing those statements multiple times yourself, you'll
find that the results are somewhat variable. To get a more precise measurement, use
the %timeit magic function. Given an arbitrary statement, it has a heuristic to run a
statement multiple times to produce a more accurate average runtime:

In [563]: %timeit [x for x im strings if x.startswith('foo')]
10 loops, best of 3: 159 ms per loop

In [564]: %timeilt [x for x in strings if x[:3] == 'foo']

10 loops, best of 3: 59.3 ms per loop
This seemingly innocuous example illustrates that it is worth understanding the per-
formance characteristics of the Python standard library, NumPy, pandas, and other
libraries used in this book. In larger-scale data analysis applications, those milli-
seconds will start to add up!

%timeit is especially useful for analyzing statements and functions with very short
execution times, even at the level of microseconds (millionths of a second) or nano-
seconds (billionths of a second). These may seem like insignificant amounts of time,
but of course a 20 microsecond function invoked 1 million times takes 15 seconds
longer than a 5 microsecond function. In the preceding example, we could very
directly compare the two string operations to understand their performance
characteristics:

In [565]: x = 'foobar'
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In [566]: y = 'foo'

In [567]: %timeilt x.startswith(y)
1000000 loops, best of 3: 267 ns per loop

In [568]: %timeit x[:3] ==y
10000000 loops, best of 3: 147 ns per loop

Basic Profiling: %prun and %run -p

Profiling code is closely related to timing code, except it is concerned with determin-
ing where time is spent. The main Python profiling tool is the cProfile module,
which is not specific to IPython at all. cProfile executes a program or any arbitrary
block of code while keeping track of how much time is spent in each function.

A common way to use cProfile is on the command line, running an entire program
and outputting the aggregated time per function. Suppose we had a simple script that
does some linear algebra in a loop (computing the maximum absolute eigenvalues of
a series of 100 x 100 matrices):

import as
from import eigvals

def run_experiment(niter=100):
K = 100
results = []
for _ in xrange(niter):
mat = np.random.randn(K, K)
max_eigenvalue = np.abs(eigvals(mat)).max()
results.append(max_eigenvalue)
return results
some_results = run_experiment()
print 'Largest one we saw: %s' % np.max(some_results)

You can run this script through cProfile using the following in the command line:
python -m cProfile cprof_example.py

If you try that, you'll find that the output is sorted by function name. This makes it a
bit hard to get an idea of where the most time is spent, so it’s very common to specify
a sort order using the -s flag:

$ python -m cProfile -s cumulative cprof_example.py

Largest one we saw: 11.923204422
15116 function calls (14927 primitive calls) in 0.720 seconds

Ordered by: cumulative time
ncalls tottime percall cumtime percall filename:lineno(function)

1 0.001 0.001 0.721 0.721 cprof_example.py:1(<module>)
100 0.003 0.000 0.586 0.006 linalg.py:702(eigvals)
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200 0.572 0.003 0.572 0.003 {numpy.linalg.lapack_lite.dgeev}
1 0.002 0.002 0.075 0.075 __init__.py:106(<module>)
100 0.059 0.001 0.059 0.001 {method 'randn')
1 0.000 0.000 0.044 0.044 add_newdocs.py:9(<module>)
2 0.001  0.001  0.037  0.019 __init__.py:1(<module>)
2 0.003 0.002 0.030 0.015 __init__.py:2(<module>)
1 0.000 0.000 0.030 0.030 type_check.py:3(<module>)
1 0.001 0.001 0.021 0.021 __init__.py:15(<module>)
1 0.013 0.013 0.013 0.013 numeric.py:1(<module>)
1 0.000 0.000 0.009 0.009 __init__.py:6(<module>)
1 0.001 0.001 0.008 0.008 __init__.py:45(<module>)
262 0.005 0.000 0.007 0.000 function_base.py:3178(add_newdoc)
100 0.003 0.000 0.005 0.000 linalg.py:162(_assertFinite)

Only the first 15 rows of the output are shown. It’s easiest to read by scanning down
the cumtime column to see how much total time was spent inside each function. Note
that if a function calls some other function, the clock does not stop running. cProfile
records the start and end time of each function call and uses that to produce the
timing.

In addition to the command-line usage, cProfile can also be used programmatically
to profile arbitrary blocks of code without having to run a new process. IPython has a
convenient interface to this capability using the %prun command and the -p option to
%run. %prun takes the same “command-line options” as cProfile but will profile an
arbitrary Python statement instead of a whole .py file:

In [4]: %prun -1 7 -s cumulative run_experiment()
4203 function calls in 0.643 seconds

Ordered by: cumulative time
List reduced from 32 to 7 due to restriction <7>

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.643 0.643 <string>:1(<module>)

1 0.001 0.001 0.643 0.643 cprof_example.py:4(run_experiment)
100 0.003 0.000 0.583 0.006 linalg.py:702(eigvals)
200 0.569 0.003 0.569 0.003 {numpy.linalg.lapack_lite.dgeev}
100 0.058 0.001 0.058 0.001 {method 'randn'}
100 0.003 0.000 0.005 0.000 linalg.py:162(_assertFinite)
200 0.002 0.000 0.002 0.000 {method 'all' of 'numpy.ndarray'}

Similarly, calling %run -p -s cumulative cprof_example.py has the same effect as
the command-line approach, except you never have to leave IPython.

In the Jupyter notebook, you can use the %%prun magic (two % signs) to profile an
entire code block. This pops up a separate window with the profile output. This can
be useful in getting possibly quick answers to questions like, “Why did that code
block take so long to run?”
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There are other tools available that help make profiles easier to understand when you
are using IPython or Jupyter. One of these is SnakeViz, which produces an interactive
visualization of the profile results using d3.js.

Profiling a Function Line by Line

In some cases the information you obtain from %prun (or another cProfile-based
profile method) may not tell the whole story about a function’s execution time, or it
may be so complex that the results, aggregated by function name, are hard to inter-
pret. For this case, there is a small library called 1ine_profiler (obtainable via PyPI
or one of the package management tools). It contains an IPython extension enabling
a new magic function %lprun that computes a line-by-line-profiling of one or more
functions. You can enable this extension by modifying your IPython configuration
(see the IPython documentation or the section on configuration later in this chapter)
to include the following line:

# A list of dotted module names of IPython extensions to load.
c.TerminalIPythonApp.extensions = ['line_profiler']

You can also run the command:
%load_ext line_profiler

line_profiler can be used programmatically (see the full documentation), but it is
perhaps most powerful when used interactively in IPython. Suppose you had a mod-
ule prof_mod with the following code doing some NumPy array operations:

from import randn

def add_and_sum(x, y):
added = x + y
summed = added.sum(axis=1)
return summed

def call_function():
x = randn(1000, 1000)
y = randn(1000, 1000)
return add_and_sum(x, y)

If we wanted to understand the performance of the add_and_sum function, %prun
gives us the following:

In [569]: %run prof_mod
In [570]: x = randn(3000, 3000)
In [571]: y = randn(3000, 3000)

In [572]: %prun add_and_sum(x, y)
4 function calls in 0.049 seconds

496 | Appendix B: More on the [Python System



Ordered by: internal time

ncalls tottime percall cumtime
1 0.036 0.036 0.046
1 0.009 0.009 0.009
1 0.003 0.003 0.049

percall filename:lineno(function)

0.046 prof_mod.py:3(add_and_sum)
0.009 {method 'sum' of 'numpy.ndarray'}
0.049 <string>:1(<module>)

This is not especially enlightening. With the line_profiler IPython extension acti-
vated, a new command %lprun is available. The only difference in usage is that we
must instruct %lprun which function or functions we wish to profile. The general

syntax is:

%lprun -f funcl -f func2 statement_to_profile

In this case, we want to profile add_and_sum, so we run:

In [573]: %lprun -f add_and_sum add_and_sum(x, y)

Timer unit: 1le-06 s
File: prof_mod.py

Function: add_and_sum at line 3

Total time: 0.045936 s

def add_and_sum(x, y):

summed = added.sum(axis=1)

Line # Hits Time Per Hit % Time Line Contents
3
4 1 36510 36510.0 79.5 added = x + vy
5 1 9425 9425.0 20.5
6 1 1 1.0 0.0 return summed

This can be much easier to interpret. In this case we profiled the same function we
used in the statement. Looking at the preceding module code, we could call
call_function and profile that as well as add_and_sum, thus getting a full picture of
the performance of the code:

In [574]: %lprun -f add_and_sum -f call_function call_function()

Timer unit: 1le-06 s
File: prof_mod.py

Function: add_and_sum at line 3

Total time: 0.005526 s

def add_and_sum(x, y):

summed = added.sum(axis=1)

x = randn(1000, 1000)
y = randn(1000, 1000)

Line # Hits Time Per Hit % Time Line Contents
3
4 1 4375 4375.0 79.2 added = x + vy
5 1 1149 1149.0 20.8
6 1 2 2.0 0.0 return summed
File: prof_mod.py
Function: call_function at line 8
Total time: 0.121016 s
Line # Hits Time Per Hit % Time Line Contents
8 def call_function():
9 1 57169 57169.0 47.2
10 1 58304 58304.0 48.2
11 1 5543 5543.0 4.6

return add_and_sum(x, y)
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As a general rule of thumb, I tend to prefer %prun (cProfile) for “macro” profiling
and %lprun (line_profiler) for “micro” profiling. It's worthwhile to have a good
understanding of both tools.

The reason that you must explicitly specify the names of the func-
tions you want to profile with %lprun is that the overhead of “trac-
ing” the execution time of each line is substantial. Tracing
functions that are not of interest has the potential to significantly
alter the profile results.

B.4 Tips for Productive Code Development Using IPython

Writing code in a way that makes it easy to develop, debug, and ultimately use inter-
actively may be a paradigm shift for many users. There are procedural details like
code reloading that may require some adjustment as well as coding style concerns.

Therefore, implementing most of the strategies described in this section is more of an
art than a science and will require some experimentation on your part to determine a
way to write your Python code that is effective for you. Ultimately you want to struc-
ture your code in a way that makes it easy to use iteratively and to be able to explore
the results of running a program or function as effortlessly as possible. I have found
software designed with IPython in mind to be easier to work with than code intended
only to be run as as standalone command-line application. This becomes especially
important when something goes wrong and you have to diagnose an error in code
that you or someone else might have written months or years beforehand.

Reloading Module Dependencies

In Python, when you type import some_l1ib, the code in some_11b is executed and all
the variables, functions, and imports defined within are stored in the newly created
some_lib module namespace. The next time you type import some_lib, you will get
a reference to the existing module namespace. The potential difficulty in interactive
IPython code development comes when you, say, %run a script that depends on some
other module where you may have made changes. Suppose I had the following code
in test_script.py:

import

x =5

y =[1, 2, 3, 4]

result = some_lib.get_answer(x, y)
If you were to execute %run test_script.py then modify some_lib.py, the next time
you execute %run test_script.py you will still get the old version of some_lib.py
because of Python’s “load-once” module system. This behavior differs from some
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other data analysis environments, like MATLAB, which automatically propagate code
changes.! To cope with this, you have a couple of options. The first way is to use the
reload function in the importlib module in the standard library:

import
import

importlib.reload(some_lib)

This guarantees that you will get a fresh copy of some_lib.py every time you run
test_script.py. Obviously, if the dependencies go deeper, it might be a bit tricky to be
inserting usages of reload all over the place. For this problem, IPython has a special
dreload function (not a magic function) for “deep” (recursive) reloading of modules.
If T were to run some_lib.py then type dreload(some_lib), it will attempt to reload
some_l1ib as well as all of its dependencies. This will not work in all cases, unfortu-
nately, but when it does it beats having to restart IPython.

Code Design Tips
There’s no simple recipe for this, but here are some high-level principles I have found
effective in my own work.

Keep relevant objects and data alive

It’s not unusual to see a program written for the command line with a structure some-
what like the following trivial example:

from import g
def f(x, y):

return g(x + vy)
def main():

X =6

y =7.5

result = x +y

if __name__ ==
main()

_main__

Do you see what might go wrong if we were to run this program in IPython? After its
done, none of the results or objects defined in the main function will be accessible in
the IPython shell. A better way is to have whatever code is in main execute directly in

the module’s global namespace (or in the if __name__ == '__main__': block, if you

1 Since a module or package may be imported in many different places in a particular program, Python caches a
module’s code the first time it is imported rather than executing the code in the module every time. Other-
wise, modularity and good code organization could potentially cause inefficiency in an application.
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want the module to also be importable). That way, when you %run the code, you’ll be
able to look at all of the variables defined in main. This is equivalent to defining top-
level variables in cells in the Jupyter notebook.

Flat is better than nested

Deeply nested code makes me think about the many layers of an onion. When testing
or debugging a function, how many layers of the onion must you peel back in order
to reach the code of interest? The idea that “flat is better than nested” is a part of the
Zen of Python, and it applies generally to developing code for interactive use as well.
Making functions and classes as decoupled and modular as possible makes them eas-
ier to test (if you are writing unit tests), debug, and use interactively.

Overcome a fear of longer files

If you come from a Java (or another such language) background, you may have been
told to keep files short. In many languages, this is sound advice; long length is usually
a bad “code smell,” indicating refactoring or reorganization may be necessary. How-
ever, while developing code using IPython, working with 10 small but interconnected
files (under, say, 100 lines each) is likely to cause you more headaches in general than
two or three longer files. Fewer files means fewer modules to reload and less jumping
between files while editing, too. I have found maintaining larger modules, each with
high internal cohesion, to be much more useful and Pythonic. After iterating toward
a solution, it sometimes will make sense to refactor larger files into smaller ones.

Obviously, I don't support taking this argument to the extreme, which would to be to
put all of your code in a single monstrous file. Finding a sensible and intuitive mod-
ule and package structure for a large codebase often takes a bit of work, but it is espe-
cially important to get right in teams. Each module should be internally cohesive, and
it should be as obvious as possible where to find functions and classes responsible for
each area of functionality.

B.5 Advanced IPython Features

Making full use of the IPython system may lead you to write your code in a slightly
different way, or to dig into the configuration.

Making Your Own Classes IPython-Friendly

IPython makes every effort to display a console-friendly string representation of any
object that you inspect. For many objects, like dicts, lists, and tuples, the built-in
pprint module is used to do the nice formatting. In user-defined classes, however,
you have to generate the desired string output yourself. Suppose we had the following
simple class:
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class Message:
def __init__(self, msg):
self.msg = msg
If you wrote this, you would be disappointed to discover that the default output for
your class isn’t very nice:

In [576]: x = Message('I have a secret')

In [577]: x
Out[577]: <__main__.Message instance at 0x60ebbd8>

IPython takes the string returned by the __repr__ magic method (by doing output =
repr(obj)) and prints that to the console. Thus, we can add a simple __repr__
method to the preceding class to get a more helpful output:

class Message:
def __init__(self, msg):
self.msg = msg

def __repr__(self):
return 'Message: %s' % self.msg

In [579]: x = Message('I have a secret')

In [580]: x
Out[580]: Message: I have a secret

Profiles and Configuration

Most aspects of the appearance (colors, prompt, spacing between lines, etc.) and
behavior of the IPython and Jupyter environments are configurable through an
extensive configuration system. Here are some things you can do via configuration:

« Change the color scheme

o Change how the input and output prompts look, or remove the blank line after
Out and before the next In prompt

« Execute an arbitrary list of Python statements (e.g., imports that you use all the
time or anything else you want to happen each time you launch IPython)

« Enable always-on IPython extensions, like the %1prun magic in line_profiler
« Enabling Jupyter extensions

o Define your own magics or system aliases

Configurations for the IPython shell are specified in special ipython_config.py files,
which are usually found in the .ipython/ directory in your user home directory. Con-
figuration is performed based on a particular profile. When you start IPython nor-
mally, you load up, by default, the default profile, stored in the profile_default

More on the IPython System | 501



directory. Thus, on my Linux OS the full path to my default IPython configuration
file is:

/home /wesm/.ipython/profile_default/ipython_config.py
To initialize this file on your system, run in the terminal:
ipython profile create

I'll spare you the gory details of what’s in this file. Fortunately it has comments
describing what each configuration option is for, so I will leave it to the reader to
tinker and customize. One additional useful feature is that it’s possible to have multi-
ple profiles. Suppose you wanted to have an alternative IPython configuration tailored
for a particular application or project. Creating a new profile is as simple as typing
something like the following:

ipython profile create secret_project

Once you've done this, edit the config files in the newly created profile_secret_project
directory and then launch IPython like so:

$ ipython --profile=secret_project
Python 3.5.1 | packaged by conda-forge | (default, May 20 2016, 05:22:56)
Type "copyright", "credits" or "license" for more information.

IPython 5.1.0 -- An enhanced Interactive Python.
-> Introduction and overview of IPython's features.
%qutckref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.

IPython profile: secret_project

As always, the online IPython documentation is an excellent resource for more on
profiles and configuration.

Configuration for Jupyter works a little differently because you can use its notebooks
with languages other than Python. To create an analogous Jupyter config file, run:

jupyter notebook --generate-config

This writes a default config file to the .jupyter/jupyter_notebook_config.py directory in
your home directory. After editing this to suit your needs, you may rename it to a
different file, like:

$ mv ~/.jupyter/jupyter_notebook_config.py ~/.jupyter/my_custom_config.py
When launching Jupyter, you can then add the - -config argument:

jupyter notebook --config=~/.jupyter/my_custom_config.py
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B.6 Conclusion

As you work through the code examples in this book and grow your skills as a Python
programmer, I encourage you to keep learning about the IPython and Jupyter ecosys-
tems. Since these projects have been designed to assist user productivity, you may dis-
cover tools that enable you to do your work more easily than using the Python
language and its computational libraries by themselves.

You can also find a wealth of interesting Jupyter notebooks on the nbviewer website.
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! (exclamation point), 486
!= operator, 38, 100, 108
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% (percent sign), 28, 495
%matplotlib magic function, 254
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\ (backslash), 41, 216
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~ operator, 101

A

%a datetime format, 321

%A datetime format, 321

a(rgs) debugger command, 490
abs function, 107, 121

accumulate method, 466
accumulations, 159

add binary function, 107

add method, 66, 149
add_categories method, 372
add_constant function, 394
add_patch method, 266
add_subplot method, 255

aggfunc method, 315

aggregate (agg) method, 297, 374
aggregations (reductions), 111
%alias magic function, 485-486

all method, 113, 466

and keyword, 21, 43, 101

annotate function, 265

annotating in matplotlib, 265-267
anonymous (lambda) functions, 73
any built-in function, 21

any method, 113, 122, 206
Apache Parquet format, 186

APIs, pandas interacting with, 187
append method, 55, 136

append mode for files, 82

apply method, 152, 164, 302-312, 373-376
applymap method, 153
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arange function, 14, 90

arccos function, 107

arccosh function, 107

arcsin function, 107

arcsinh function, 107

arctan function, 107

arctanh function, 107

argmax method, 112, 121, 160

argmin method, 112, 160

argpartition method, 474

argsort method, 472, 475

arithmetic operations
between DataFrame and Series, 149
between objects with different indexes, 146
on date and time periods, 339-347
with fill values, 148
with NumPy arrays, 93

array function, 88, 90

arrays (see ndarray object)

arrow function, 265

as keyword, 36

asarray function, 90

asfreq method, 340, 352

assign method, 379

associative arrays (see dicts)

asterisk (*), 24

astype method, 92

as_ordered methdo, 372

as_ordered method, 367

as_unordered method, 372

attributes
for data types, 469
for ndarrays, 89, 453, 463, 481
hidden, 22
in DataFrame data structure, 130
in Python, 35, 161
in Series data structure, 127

automagic feature, 29

%automagic magic function, 29

average method, 156

axes
broadcasting over, 462
concatenating along, 227, 236-241
renaming indexes for, 201
selecting indexes with duplicate labels, 157
swapping in arrays, 103

AxesSubplot object, 256, 262

axis method, 159

B

%b datetime format, 321
%B datetime format, 321
b(reak) debugger command, 490
backslash (\), 41, 216
bang (!), 486
bar method, 272
bar plots, 272-277
barh method, 272
barplot function, 277
base frequency, 330
beolz binary format, 184
beta function, 119
binary data formats
about, 183
binary mode for files, 82-83
HDF5 format, 184-186
Microsoft Excel files, 186-187
binary moving window functions, 359
binary operators and comparisons in Python,
36, 65
binary searches of lists, 57
binary universal functions, 106, 107
binding, defined, 33, 236
binning continuous data, 203
binomial function, 119
bisect module, 57
Bitly dataset example, 403-413
Blosc compression library, 184
Bokeh tool, 285
%bookmark magic function, 485, 487
bookmarking directories in IPython, 487
bool data type, 39, 43, 91
bool function, 43
boolean arrays, 113
boolean indexing, 99-102
braces {}, 61, 65
break keyword, 47
broadcasting, ndarrays and, 94, 457, 460-465
bucket analysis, 305
build_design_matrices function, 389
builtins module, 390
bytes data type, 39, 43

C

%C datetime format, 321

C order (row major order), 454, 481
c(ontinue) debugger command, 490
calendar module, 318
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Cartesian product, 77, 230
casefold method, 213
cat method, 218
categorical data
basic overview, 363-372
facet grids and, 283
Patsy library and, 390-393
Categorical object, 203, 305, 363-372
%cd magic function, 485, 487
ceil function, 107
center method, 219
chaining methods, 378-380
chisquare function, 119
clear method, 66
clipboard, executing code from, 26
close method, 80, 83
closed attribute, 83
lemd command, 485
collections module, 64
colon (3), 31
color selection in matplotlib, 259
column major order (Fortran order), 454, 481
columns method, 315
column_stack function, 456
combinations function, 77
combine_first method, 227, 242
combining data (see merging data)
command history
input and output variables, 484
reusing, 483
searching, 483
using in IPython, 483-485
commands
debugger, 490
magic functions, 28-29
updating packages, 10
comments in Python, 31
compile method, 214
complex128 data type, 91
complex256 data type, 91
complex64 data type, 91
concat function, 227, 235, 237-241, 300
concatenate function, 236, 454
concatenating
along an axis, 227, 236-241
lists, 56
strings, 41
conda update command, 10
conditional logic as array operations, 109

configuration for IPython, 501-502
configuring matplotlib, 268
contains method, 218

contiguous memory, 480-482
continue keyword, 47

continuing education, 401

control flow in Python, 46-50
coordinated universal time (UTC), 335
copy method, 95, 132

copysign function, 107

corr aggregation function, 359
corr method, 161

correlation, 160-162, 310
corrwith method, 162

cos function, 107

cosh function, 107

count method, 40, 54, 160, 212-213, 218, 296
cov method, 161

covariance, 160-162

%cpaste magic function, 26, 29
cProfile module, 494-496
cross-tabulation, 315

crosstab function, 316
cross_val_score function, 401
CSV files, 168, 175-178

csv module, 176

Ctrl-A keyboard shortcut, 27
Ctrl-B keyboard shortcut, 27
Ctrl-C keyboard shortcut, 26, 27
Ctrl-D keyboard shortcut, 16
Ctrl-E keyboard shortcut, 27
Ctrl-F keyboard shortcut, 27
Ctrl-K keyboard shortcut, 27
Ctrl-L keyboard shortcut, 27
Ctrl-N keyboard shortcut, 27, 484
Ctrl-P keyboard shortcut, 27, 483
Ctrl-R keyboard shortcut, 27, 484
Ctrl-Shift-V keyboard shortcut, 27
Ctrl-U keyboard shortcut, 27
cummax method, 160

cummin method, 160

cumprod method, 112, 160
cumsum method, 112, 160, 466
curly braces {}, 61, 65

currying, 74

cut function, 203, 305

c_ object, 456
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D
%d datetime format, 46, 319
%D datetime format, 46, 320
d(own) debugger command, 490
data aggregation
about, 296
column-wise, 298-301
multiple function application, 298-301
returning data without row indexes, 301
data alignment, pandas library and, 146-151
data analysis with Python
about, 2, 15-16
glue code, 2
MovieLens 1M dataset example, 413-419
restrictions to consider, 3
US baby names dataset example, 419-434
US Federal Election Commission database
example, 440-448
USA.gov data from Bitly example, 403-413
USDA food database example, 434-439
“two-language” problem, 3
data cleaning and preparation (see data wran-
gling)
data loading (see reading data)
data manipulation (see data wrangling)
data munging (see data wrangling)
data selection
for axis indexes with duplicate labels, 157
in pandas library, 140-145
time series data, 323
data structures
about, 51
dict comprehensions, 67
dicts, 61-65
for pandas library, 124-136
list comprehensions, 67-69
lists, 54-59
set comprehensions, 68
sets, 65-67
tuples, 51-54
data transformation (see transforming data)
data types
attributes for, 469
defined, 90, 449
for date and time data, 318
for ndarrays, 90-93
in Python, 38-46
nested, 469
NumPy hierarchy, 450

parent classes of, 450
data wrangling
combining and merging datasets, 227-242
defined, 14
handling missing data, 191-197
hierarchical indexing, 221-226, 243
pivoting data, 246-250
reshaping data, 243
string manipulation, 211-219
transforming data, 197-211
working with delimited formats, 176-178
databases
DataFrame joins, 227-232
pandas interacting with, 188
storing data in, 247
DataFrame data structure
about, 4, 128-134, 470
database-stye joins, 227-232
indexing with columns, 225
JSON data and, 180
operations between Series and, 149
optional function arguments, 168
plot method arguments, 271
possible data inputs to, 134
ranking data in, 155
sorting considerations, 153, 473
summary statistics methods for, 161
DataOffset object, 338
datasets
combining and merging, 227-242
MovieLens 1M example, 413-419
US baby names example, 419-434
US Federal Election Commission database
example, 440-448
USA.gov data from Bitly example, 403-413
USDA food database example, 434-439
date data type, 44, 319
date offsets, 330, 333-334
date ranges, generating, 328-330
dates and times
about, 44
converting between strings and datetime,
319-321
data types and tools, 318
formatting specifications, 319, 321
generating date ranges, 328-330
period arithmetic and, 339-347
datetime data type
about, 44, 318-319
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converting between strings and, 319-321
format specification for, 319
datetime module, 44, 318
datetime64 data type, 322
DatetimeIndex class, 322, 328, 337
dateutil package, 320
date_range function, 328-330
daylight saving time (DST), 335
debug function, 491
%debug magic function, 80, 488
debugger, IPython, 488-492
decode method, 42
def keyword, 69, 74
default values for dicts, 63
defaultdict class, 64
del keyword, 62, 132
del method, 132
delete method, 136
delimited formats, working with, 176-178
dense method, 156
density plots, 277-279
deque (double-ended queue), 55
describe method, 160, 297
design matrix, 386
det function, 117

development tools for IPython (see software

development tools for IPython)
%dhist magic function, 486
diag function, 117
Dialect class, 177
dict comprehensions, 67
dict function, 63
dictionary-encoded representation, 365
dicts (data structures)
about, 61
creating from sequences, 63
DataFrame data structure as, 129
default values, 63
grouping with, 294
Series data structure as, 125
valid key types, 64
diff method, 160
difference method, 66, 136
difference_update method, 66
dimension tables, 364
directories, bookmarking in IPython, 487
%dirs magic function, 485
discretization, 203
distplot method, 279

div method, 149
divide function, 107
divmod function, 106
dmatrices function, 386
dnorm function, 394
dot function, 104, 116-117
downsampling, 348, 349-351
dreload function, 499
drop method, 136, 138
dropna method, 192-193, 306, 315
drop_duplicates method, 197
DST (daylight saving time), 335
dstack function, 456
dtype (see data types)
dtype attribute, 88, 92
duck typing, 35
dummy variables, 208-211, 372, 386, 391
dumps function, 179
duplicate data
axis indexes with duplicate labels, 157
removing, 197
time series with duplicate indexes, 326
duplicated method, 197
dynamic references in Python, 33

E

edit-compile-run workflow, 6
education, continuing, 401

eig function, 118

elif statement, 46

else statement, 46

empty function, 89-90

empty namespace, 25
empty_like function, 90
encode method, 42

end-of-line (EOL) markers, 80
endswith method, 213, 218
enumerate function, 59

%env magic function, 486

EOL (end-of-line) markers, 80
equal function, 108

error handling in Python, 77-80
escape characters, 41

ewm function, 358

Excel files (Microsoft), 186-187
ExcelFile class, 186

exception handling in Python, 77-80
exclamation point (!), 486
execute-explore workflow, 6
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exit command, 16 fit method, 395, 400

exp function, 107 fixed frequency, 317
expanding function, 356 flags attribute, 481
exponentially-weighted functions, 358 flatten method, 453
extend method, 56 float data type, 39, 43
extract method, 218 float function, 43
eye function, 90 float128 data type, 91
float16 data type, 91
F float32 data type, 91
%F datetime format, 46, 320 float64 data type, 91

fabs function, 107 floor function, 107
facet grids, 283 floordiv method, 149
FacetGrid class, 285 floor_divide function, 107

factorplot built-in function, 283 flow control in Python, 46-50
fancy indexing, 102, 459 flush methc.)d, 83,479

FDIC bank failures list, 180 fmfax funct.1on, 107

Feather binary file format, 168, 184 fmin function, 107

feature engineering, 383 for loops, 47, 68

Federal Election Commission database exam- format method, 41

ple, 440-448 formatting
Figure object, 255 dates and times, 319, 321

file management strings, 41 .
binary data formats, 183-187 Fortran order (column major order), 454, 481
commonly used file methods, 82 frequencies
base, 330

design tips, 500 ¢ ) .
file input and output with arrays, 115 basic fo.r time series, 329
JSON data, 178-180 converting between, 327, 348-354

memory-mapped files, 478 date offsets and, 330

opening files, 80 ﬁxe.d, 317 .

Python file modes, 82 period conversion, 340

reading and writing data in text format, quarterly PerlOd frequencies, 342
167-176 fromfile function, 471

saving plots to files, 267 frompyfunc function, 468

Web scraping, 180-183 from_codes method, 367

working with delimited formats, 176-178 full function, 90

full_like function, 90

filling in data .
arithmetic methods with fill values, 148 functions, 69 . .
filling in missing data, 195-197, 200 (see also universal functions)
with group-specific values, 306 about,.69 .

fillna method, 192, 195-197, 200, 306, 352 accessing variables, 70

fill_value method, 315 anonymous, 73

filtering as objects, 72-73

currying, 74
errors and exception handling, 77
exponentially-weighted, 358

in pandas library, 140-145
missing data, 193
outliers, 205

find method, 212-213 generators and, 75-80
findall method, 214, 216, 218 grouping with, 295
finditer method, 216 in Python, 32

first method, 156, 296 lambda, 73
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magic, 28-29 grouping with functions, 295

namespaces and, 70 grouping with Series, 294
object introspection, 23 iterating over groups, 291
partial argument application, 74 optimized methods, 296
profiling line by line, 496-498 selecting columns, 293
returning multiple values, 71 selecting subset of columns, 293
sequence, 59-61 groups method, 215

transforming data using, 198

type inference in, 168

writing fast NumPy functions with Numba, %H datetime format. 46. 319
476-478 mar

h(elp) deb d, 490
functools module, 74 (clp) debugger comman

hasattr function, 35
hash function, 64

G hash maps (see dicts)
gamma function, 119 hash mark (#), 31
generators hashability, 64
about, 75 HDF5 (hierarchical data format 5), 184-186,
generator expressions for, 76 480
itertools module and, 76 HDFStore class, 184
get method, 63, 218 head method, 129
GET request (HTTP), 187 heapsort method, 474
getattr function, 35 hierarchical data format (HDF5), 480
getroot method, 182 hierarchical indexing
get_chunk method, 175 about, 221-224
get_dummies function, 208, 372, 385 in pandas, 170
get_indexer method, 164 reordering and sorting levels, 224
get_value method, 145 reshaping data with, 243
GIL (global interpreter lock), 3 summary statistics by level, 225
global keyword, 71 with DataFrame columns, 225
glue for code, Python as, 2 %hist magic function, 29
greater function, 108 hist method, 277
greater_equal function, 108 histograms, 277-279
Greenwich Mean Time, 335 hsplit function, 456
group keys, suppressing, 304 hstack function, 455
group operations HTML files, 180-183
about, 287, 373 HTTP requests, 187
cross-tabulation, 315 Hugunin, Jim, 86
data aggregation, 296-302 Hunter, John D,, 5, 253

GroupBy mechanics, 288-296
pivot tables, 287, 313-316 |

split-apply-combine, 288, 302-312 %I datetime format, 46, 319
unwrapped, 376

identity function, 90
group weighted average, 310 y

IDE:s (Integrated Development Environments),

groupby function, 77 11
groupby method, 368, 476 idxmax method, 160
GroupBy object idxmin method, 160

about,. 288'2?1 if statement, 46
grouping by index level, 295 iloc operator, 143, 207

grouping with dicts, 294 immutable objects, 38, 367
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import conventions
for matplotlib, 253
for modules, 14, 36
for Python, 14, 36, 88
importlib module, 499
imshow function, 109
in keyword, 56, 212
in-place sorts, 57, 471
inld method, 114, 115
indentation in Python, 30
index method, 212-213, 315
Index objects, 134-136
indexes and indexing
axis indexes with duplicate labels, 157
boolean indexing, 99-102
fancy indexing, 102, 459
for ndarrays, 94-98
for pandas library, 140-145, 157
grouping by index level, 295
hierarchical indexing, 170, 221-226, 243
Index objects, 134-136
integer indexing, 145
merging on index, 232-235
renaming axis indexes, 201
time series data, 323
time series with duplicate indexes, 326
timedeltas and, 318
indexing operator, 58
indicator variables, 208-211
indirect sorts, 472
inner join type, 229
input variables, 484
insert method, 55, 136
insort function, 57
int data type, 39, 43
int function, 43
int16 data type, 91
int32 data type, 91
int64 data type, 91
int8 data type, 91
integer arrays, indexing, 102, 459
integer indexing, 145
Integrated Development Environments (IDEs),
11
interactive debugger, 488-492
interpreted languages, 2, 16
interrupting running code, 26
intersectld method, 115
intersection method, 65-66, 136

intersection_update method, 66

intervals of time, 317

inv function, 118

.ipynb file extension, 20

IPython
%run command and, 17
%run command in, 25-26
about, 6
advanced features, 500-502
bookmarking directories, 487
code development tips, 498-500
command history in, 483-485
exception handling in, 79
executing code from clipboard, 26
figures and subplots, 255
interacting with operating system, 485-487
keyboard shortcuts for, 27
magic commands in, 28-29
matplotlib integration, 29
object introspection, 23-24
running Jupyter notebook, 18-20
running shell, 17-18
shell commands in, 486
software development tools, 487-498
tab completion in, 21-23

ipython command, 17-18

is keyword, 38

is not keyword, 38

isalnum method, 218

isalpha method, 218

isdecimal method, 218

isdigit method, 218

isdisjoint method, 66

isfinite function, 107

isin method, 136, 163

isinf function, 107

isinstance function, 34

islower method, 218

isnan function, 107

isnull method, 126, 192

isnumeric method, 218

issubdtype function, 450

issubset method, 66

issuperset method, 66

isupper method, 218

is_monotonic property, 136

is_unique property, 136, 157, 326

iter function, 35

__iter__ magic method, 35
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iterator protocol, 35, 75-77 strongly typed language, 33

itertools module, 76 variables and argument passing, 32
last method, 296
leading data, 332
ng
jit function, 477 left join type, 229
join method, 212-213, 218, 235 legend method, 264
join operations, 227-232 legend selection in matplotlib, 261-265
JSON (JavaScript Object Notation), 178-180, len function, 295
403 len method, 218

less function, 108

json method, 187
less_equal function, 108

Jupyter notebook e g
%load magic function, 25 evel keyword, 296
about, 6 level method, 159

levels
grouping by index levels, 295
sorting, 224
summary statistics by, 225

plotting nuances, 256
running, 18-20
jupyter notebook command, 19

K lexsort method, 473
libraries (see specific libraries)
p
KDE (kernel density estimate) plots, 278 line plots, 269-271

kernels, defined, 6, 18 line style selection in matplotlib, 260
key-value pairs, 61 linear algebra, 116-118

keyboard shortcuts for IPython, 27 linear regression, 312, 393-396
KeyboardInterrupt exception, 26 Linux, setting up Python on, 9
KeyError exception, 66 list comprehensions, 67-69

keys method, 62 list function, 37, 54
keyword arguments, 32, 70 lists (data structures)
kurt method, 160 about, 54
adding and removing elements, 55
L combining, 56
1(ist) debugger command, 490 concatenating, 56
labels maintaining sorted lists, 57
axis indexes with duplicate labels, 157 slicing, 58
selecting in matplotlib, 261-263 sorting, 57
lagging data, 332 lists (data structures)binary searches, 57
lambda (anonymous) functions, 73 ljust method, 213
language semantics for Python load function, 115, 478
about, 30 %load magic function, 25
attributes, 35 loads function, 179
binary operators and comparisons, 36, 65 loc operator, 130, 143, 265, 385
comments, 31 local namespace, 70, 123
duck typing, 35 localizing data to time zones, 335
function and object method calls, 32 log function, 107
import conventions, 36 log10 function, 107
indentation not braces, 30 logl1p function, 107
methods, 35 log2 function, 107
mutable and immutable objects, 38 logical_and function, 108, 466
object model, 31 logical_not function, 107
references, 32-34 logical_or function, 108
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logical_xor function, 108
LogisticRegression class, 399
LogisticRegressionCV class, 400
long format, 246

lower method, 199, 213, 218
%lprun magic function, 496
Istrip method, 213, 219

Istsq function, 118

Ixml library, 180-183

M

%m datetime format, 46, 319
%M datetime format, 46, 319
mad method, 160
magic functions, 28-29
(see also specific magic functions)
%debug magic function, 29
%magic magic function, 29
many-to-many merge, 229
many-to-one join, 228
map built-in function, 68, 73
map method, 153, 199, 202
mapping
transforming data using, 198
universal functions, 151-156
margins method, 315
margins, defined, 313
marker selection in matplotlib, 260
match method, 164, 214, 216, 219
Math Kernel Library (MKL), 117
matplotlib library
about, 5, 253
annotations in, 265-267
color selection in, 259
configuring, 268
creating image plots, 109
figures in, 255-259
import convention, 253
integration with IPython, 29
label selection in, 261-263
legend selection in, 261-265
line style selection in, 260
marker selection in, 260
saving plots to files, 267
subplots in, 255-259, 265-267
tick mark selection in, 261-263
%matplotlib magic function, 30, 486
matrix operations in NumPy, 104, 116
max method, 112, 156, 160, 296

maximum function, 107
mean method, 112, 160, 289, 296
median method, 160, 296
melt method, 249
memmap object, 478
memory management
C versus Fortran order, 454
continguous memory, 480-482
NumPy-based algorithms and, 87
memory-mapped files, 478
merge function, 227-232
mergesort method, 474
merging data
combining data with overlap, 241
concatenating along an axis, 236-241
database-stye DataFrame joins, 227-232
merging on index, 232-235
meshgrid function, 108
methods
categorical, 370-372
chaining, 378-380
defined, 32
for boolean arrays, 113
for strings, 211-213
for summary statistics, 162-165
for tuples, 54
hidden, 22
in Python, 32, 35
object introspection, 23
optimized for GroupBy, 296
statistical, 111-112
ufunc instance methods, 466-468
vectorized string methods in pandas,
216-219
Microsoft Excel files, 186-187
min method, 112, 156, 160, 296
minimum function, 107
missing data
about, 191
filling in, 195-197, 200
filling with group-specific values, 306
filtering out, 193
marked by sentinel values, 171, 191
sorting considerations, 154
mixture-of-normals estimate, 278
MKL (Math Kernel Library), 117
mod function, 107
modf function, 106-107
modules
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import conventions for, 14, 36
reloading dependencies, 498
MovieLens 1M dataset example, 413-419
moving window functions
about, 354-357
binary, 359
exponentially-weighted functions, 358
user-defined, 361
mro method, 450
MSFT attribute, 161
mul method, 149
multiply function, 107
munging (see data wrangling)
mutable objects, 38

N
n(ext) debugger command, 490
NA data type, 192
name attribute, 127, 130
names attribute, 100, 469
namespaces
empty, 25
functions and, 70
in Python, 34
NumPy, 88
NaN (Not a Number), 107, 126, 191
NaT (Not a Time), 321
ndarray object
about, 85, 87-88
advanced input and output, 478-480
arithmetic with, 93
array-oriented programming, 108-115
as structured arrays, 469-471
attributes for, 89, 453, 463, 481
boolean indexing, 99-102
broadcasting and, 94, 457, 460-465
C versus Fortan order, 454
C versus Fortran order, 481
concatenating arrays, 454
creating, 88-90
creating PeriodIndex from arrays, 345
data types for, 90-93
fancy indexing, 102, 459
file input and output, 115
finding elements in sorted arrays, 475
indexes for, 94-98
internals overview, 449-451
linear algebra and, 116-118
partially sorting arrays, 474

pseudorandom number generation, 118-119
random walks example, 119-122
repeating elements in, 457
reshaping arrays, 103, 452
slicing arrays, 94-98
sorting considerations, 113, 471
splitting arrays, 455
storage options, 480
swapping axes in, 103
transposing arrays, 103

ndim attribute, 89

nested code, 500

nested data types, 469

nested list comprehensions, 68-69

nested tuples, 53

New York MTA (Metropolitan Transportation
Authority), 181

newaxis attribute, 463

“no-op” statement, 48

None data type, 39, 44, 192

normal function, 119

not keyword, 56

notfull method, 192

notnull method, 126

not_equal function, 108

.npy file extension, 115

.npz file extension, 115

null value, 39, 44, 178

Numba
creating custom ufunc objects with, 478
writing fast NumPy functions with, 476-478

numeric data types, 39

NumPy library
about, 4, 85-87
advanced array input and output, 478-480
advanced array manipulation, 451-459
advanced ufunc usage, 466-469
array-oriented programming, 108-115
arrays and broadcasting, 460-465
file input and output with arrays, 115
linear algebra and, 116-118
ndarray object internals, 449-451
ndarray object overview, 87-105
performance tips, 480-482
pseudorandom number generation, 118-119
random walks example, 119-122
sorting considerations, 113, 471-476
structured and record arrays, 469-471
ufunc overview, 105-108
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writing fast functions with Numba, 476-478

0

object data type, 91

object introspection, 23-24

object model, 31

objectify function, 181-183

objects (see Python objects)

OHLC (Open-High-Low-Close) resampling,
351

ohlc aggregate function, 351

Oliphant, Travis, 86

OLS (ordinary least squares) regression, 312,
388

OLS class, 395

Olson database, 335

ones function, 89-90

ones_like function, 90

open built-in function, 80, 83

openpyxl package, 186

operating system, IPython interacting with,
485-487

or keyword, 43, 101

OS X, setting up Python on, 9

outer method, 467

outliers, detecting and filtering, 205

output join type, 229

output variables, 484

P

%p datetime format, 321

packages, installing or updating, 10

pad method, 219

%page magic function, 29

pairplot function, 281

pairs plot, 281

pandas library, 4
(see also data wrangling)
about, 4, 123
arithmetic and data alignment, 146-151
as time zone naive, 335
binary data formats, 183-187
categorical data and, 363-372
data structures for, 124-136
drop method, 138
filtering in, 140-145
function application and mapping, 151
group operations and, 373-378
indexes in, 140-145, 157

integer indexing, 145
interacting with databases, 188
interacting with Web APIs, 187
interfacing with model code, 383
JSON data, 178-180
method chaining, 378-380
nested data types and, 470
plotting with, 268-285
ranking data in, 153-156
reading and writing data in text format,
167-176
reductions in, 158-165
reindex method, 136-138
selecting data in, 140-145
sorting considerations, 153-156, 473, 476
summary statistics in, 158-165
vectorized string methods in, 216-219
Web scraping, 180-183
working with delimited formats, 176-178
pandas-datareader package, 160
parentheses (), 32, 51
parse method, 186, 320
partial argument application, 74
partial function, 74
partition method, 474
pass statement, 48
%paste magic function, 26, 29
patches, defined, 266
Patsy library
about, 386
categorical data and, 390-393
creating model descriptions with, 386-388
data transformations in Patsy formulas, 389
pct_change method, 160, 311
%pdb magic function, 29, 80, 489
percent sign (%), 28, 495
percentileofscore function, 361
Pérez, Fernando, 6
period (.), 21
Period class, 339
PeriodIndex class, 340, 345
periods of dates and times
about, 339
converting frequencies, 340
converting timestamps to/from, 344
creating PeriodIndex from arrays, 345
fixed periods, 317
quarterly period frequencies, 342
resampling with, 353
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period_range function, 340, 343
Perktold, Josef, 8
permutation function, 119, 206
permutations function, 77
pickle module, 183
pinv function, 118
pip tool, 10, 180
pipe method, 380
pivot method, 247
pivot tables, 287, 313-316
pivoting data, 246-250
pivot_table method, 313
plot function, 259
plot method, 269-271
Plotly tool, 285
plotting
with matplotlib, 253-268
with pandas and seaborn, 268-285
point plots, 280
pop method, 55, 62-63, 66
%popd magic function, 485
positional arguments, 32, 70
pound sign (#), 31
pow method, 149
power function, 107
pprint module, 500
predict method, 400
preparation, data (see data wrangling)
private attributes, 22
private methods, 22
prod method, 160, 296
product function, 77
profiles for IPython, 501-502
profiling code in IPython, 494-496
profiling functions line by line, 496-498
%prun magic function, 29, 495-496
pseudocode, 14, 30
pseudorandom number generation, 118-119
%pushd magic function, 485
put method, 459
%pwd magic function, 485
.py file extension, 16, 36
pyplot module, 261
Python
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control flow, 46-50
data analysis with, 2-3, 15-16
essential libraries, 4-8
historical background, 11
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installation and setup, 8-12
interpreter for, 16
language semantics, 30-38
scalar types, 38-46
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converting to strings, 40
defined, 31
formatting, 18
functions as, 72-73
key-value pairs, 61

pytz library, 335

Q

q(uit) debugger command, 490
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quarterly period frequencies, 342
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R
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random module, 118-122
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reading data

in Microsoft Excel files, 186-187

in text format, 167-175
readline functionality, 484
readlines method, 82
read_clipboard function, 167
read_csv function, 80, 167, 172, 274, 298
read_excel function, 167, 186
read_feather function, 168
read_fwf function, 167
read_hdf function, 167, 185
read_html function, 167, 180-183
read_json function, 167, 179
read_msgpack function, 167
read_pickle function, 167, 183
read_sas function, 168
read_sql function, 168, 190
read_stata function, 168
read_table function, 167, 172, 176
reduce method, 466
reduceat method, 467
reductions (aggregations), 111
references in Python, 32-34
regplot method, 281
regress function, 312
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string manipulation and, 213-216
reindex method, 136-138, 145, 157, 352
reload function, 499
remove method, 56, 66
remove_categories method, 372
remove_unused_categories method, 372
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reorder_categories method, 372
repeat function, 457
repeat method, 219
replace method, 200, 212-213, 219
requests package, 187
resample method, 327, 348-351, 377
resampling

defined, 348
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with periods, 353
%reset magic function, 29, 485
reset_index method, 250, 302

reshape method, 103, 452
*rest syntax, 54
return statement, 69
reusing command history, 483
reversed function, 61
rfind method, 213
rfloordiv method, 149
right join type, 229
rint function, 107
rjust method, 213
rmul method, 149
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rollforward method, 333
rolling function, 355, 357
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%run magic function
about, 29
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interactive debugger and, 489, 492
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S
%S datetime format, 46, 319
s(tep) debugger command, 490
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save function, 115, 478
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savez function, 115
savez_compressed function, 116
scalar types in Python, 38-46, 93
scatter plot matrix, 281
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scope of functions, 70
scripting languages, 2
Seabold, Skipper, 8
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search method, 214, 216
searching
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command history, 483
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Python)
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sentinel value, 171, 191
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serialization (see storing data)
Series data structure
about, 4, 124-128
duplicate indexes example, 157
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JSON data and, 180
operations between DataFrame and, 149
plot method arguments, 271
ranking data in, 155
sorting considerations, 154, 473
summary statistics methods for, 161
set comprehensions, 68
set function, 65, 277
set literals, 65
set operations, 65-67, 114
setattr function, 35
setdefault method, 64
setdiffld method, 115
sets (data structures), 65-67
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set_categories method, 372
set_index method, 248
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set_trace function, 491
set_value method, 145
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set_xlim method, 266
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set_xticks method, 262
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shift method, 332, 351
shifting time series data, 332-334
shuffle function, 119
side effects, 38
sign function, 107, 206
sin function, 107
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skew method, 160
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slicing
lists, 58
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strings, 41
Smith, Nathaniel, 8
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software development tools for IPython
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basic profiling, 494-496
interactive debugger, 488-492
profiling functions line by line, 496-498
timing code, 492-493
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sort method, 57, 60, 74, 113
sorted function, 57, 60
sorting considerations
finding elements in sorted arrays, 475
hierarchical indexing, 224
in-place sorts, 57, 471
indirect sorts, 472
missing data, 154
NumPy library, 113, 471-476
pandas library, 153-156, 473, 476
partially sorting arrays, 474
stable sorting, 474
sort_index method, 153
sort_values method, 154, 473
spaces, structuring code with, 30
split concatenation function, 456
split function, 455
split method, 178, 211, 213-214, 216, 219
split-apply-combine
about, 288
applying, 302-312
filling missing values with group-specific
values, 306
group weighted average and correlation, 310
group-wise linear regression, 312
quantile and bucket analysis, 305
random sampling and permutation, 308
suppressing group keys, 304
SQL (structured query language), 287
SQLAlchemy project, 190
sqlite3 module, 188
sqrt function, 107
square brackets [], 52, 54
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square function, 107
SSA (Social Security Administration), 419
stable sorting, 474
stack method, 243
stacked format, 246
stacking operation, 227, 236
start index, 58
startswith method, 213, 218
Stata file format, 168
statistical methods, 111-112
statsmodels library
about, 8, 393
estimating linear models, 393-396
estimating time series processes, 396
OLS regression and, 312
std method, 112, 160, 296
step index, 59
stop index, 58
storing data
in binary format, 183-187
in databases, 247
ndarray object, 480
str data type, 39, 43
str function, 40, 43, 319
strftime method, 45, 319
strides/strided view, 449
strings
concatenating, 41
converting between datetime and, 319-321
converting Python objects to, 40
data types for, 39-42
formatting, 41
manipulating, 211-219
methods for, 211-213
regular expressions and, 213-216
slicing, 41
vectorized methods in pandas, 216-219
string_ data type, 91
strip method, 211, 213, 219
strongly typed language, 33
strptime function, 45, 320
structured arrays, 469-471
structured data, 1
sub method, 149, 215, 216
subn method, 216
subplots
about, 255-259
drawing on, 265-267
subplots method, 257

subplots_adjust method, 258
subsetting time series data, 323
subtract function, 107
sum method, 112, 158, 160, 296, 466
summary method, 395
summary statistics
about, 158-160
by level, 225
correlation and covariance, 160-162
methods for, 162-165
svd function, 118
swapaxes method, 105
swapping axes in arrays, 103
symmetric_difference method, 66
symmetric_difference_update method, 66
syntactic sugar, 14
sys module, 81, 175

T
T attribute, 103
tab completion in IPython, 21-23
tabs, structuring code with, 30
take method, 207, 364, 459
tan function, 107
tanh function, 107
Taylor, Jonathan, 8
tell method, 81, 83
ternary expressions, 49
text editors, 11
text files
reading, 167-175
text mode for files, 82-83
writing to, 167-176
text function, 265
TextParser class, 174
tick mark selection in matplotlib, 261-263
tile function, 457
time data type, 44, 319
%time magic function, 29, 492
time module, 318
time series data
about, 317
basics overview, 322-323
date offsets and, 330, 333-334
estimating time series processes, 396
frequences and, 329
frequencies and, 330, 348-354
indexing and, 323
moving window functions, 354-362
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periods in, 339-347
resampling, 348-354
selecting, 323
shifting, 332-334
subsetting, 323
time zone handling, 335-339
with duplicate indexes, 326
time zones
about, 335
converting data to, 336
localizing data to, 335
operations between different, 339
operations with timestamp objects, 338
USA.gov dataset example, 404-413
time, programmer versus CPU, 3
timedelta data type, 318-319
TimeGrouper object, 378
%timeit magic function, 29, 481, 492
Timestamp object, 322, 333, 338
timestamps
converting periods to/from, 344
defined, 317
operations with time-zone-aware objects,
338
timezone method, 335
timing code, 492-493
top function, 303
to_csv method, 175
to_datetime method, 320
to_excel method, 187
to_json method, 180
to_period method, 344
to_pickle method, 183
to_timestamp method, 345
trace function, 117
transform method, 373-376
transforming data
about, 197
computing indicator/dummy variables,
208-211
detecting and filtering outliers, 205
discretization and binning, 203
in Patsy formulas, 389
permutation and random sampling, 206
removing duplicates, 197
renaming axis indexes, 201
replacing values, 200
using functions or mapping, 198
transpose method, 103

transposing arrays, 103
truncate method, 325
try/except blocks, 77-79
tuples (data structures)
about, 51
methods for, 54
nested, 53
unpacking, 53
“two-language” problem, 3
type casting, 43
type inference in functions, 168
TypeError exception, 78
tzinfo data type, 319
tz_convert method, 336

U

%U datetime format, 46, 320

u(p) debugger command, 490

ufuncs (see universal functions)

uint16 data type, 91

uint32 data type, 91

uint64 data type, 91

uint8 data type, 91

unary universal functions, 106, 107

underscore (_), 22, 54, 451

undescore (_), 484

Unicode standard, 40, 42, 83

unicode_ data type, 91

uniform function, 119

union method, 65-66, 136

unionld method, 115

unique method, 114-115, 136, 162, 164, 363

universal functions
applying and mapping, 151
comprehensive overview, 105-108
creating custom objects with Numba, 478
instance methods, 466-468
writing in Python, 468

unpacking tuples, 53

unstack method, 243

unwrapped group operation, 376

update method, 63, 66

updating packages, 10

upper method, 213, 218

upsampling, 348, 352

US baby names dataset example, 419-434

US Federal Election Commission database
example, 440-448

USA.gov dataset example, 403-413
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USDA food database example, 434-439
UTC (coordinated universal time), 335
UTEF-8 encoding, 83

v

ValueError exception, 77, 92
values attribute, 133
values method, 62, 315
values property, 384
value_count method, 203
value_counts method, 162, 274, 363
var method, 112, 160, 296
variables

dummy, 208-211, 372, 386, 391

function scope and, 70

in Python, 32-34

indicator, 208-211

input, 484

output, 484

shell commands and, 486
vectorization, 93
vectorize function, 468, 478
vectorized string methods in pandas, 216-219
visualization tools, 285
vsplit function, 456
vstack function, 455

w
%w datetime format, 46, 319
%W datetime format, 46, 320
w(here) debugger command, 490
Waskom, Michael, 269
Wattenberg, Laura, 430
Web APIs, pandas interacting with, 187
Web scraping, 180-183
where function, 109, 241
while loops, 48
whitespace
regular expression describing, 214

structuring code with, 30
trimming around figures, 267
%who magic function, 29
%whos magic function, 29
%who_ls magic function, 29
Wickham, Hadley, 184, 288, 419
wildcard expressions, 24
Williams, Ashley, 434
Windows, setting up Python on, 9
with statement, 81
wrangling (see data wrangling)
write method, 82
write-only mode for files, 82
writelines method, 82-83
writing data in text format, 167-176

X

%x datetime format, 321

%X datetime format, 321
%xdel magic function, 29, 485
xlim method, 262

xlrd package, 186

XLS files, 186

XLSX files, 186

XML files, 180-183

%xmode magic function, 79

Y

%Y datetime format, 45, 319
%y datetime format, 45, 319
yield keyword, 75

L

%z datetime format, 46, 320
"zero-copy" array views, 450
zeros function, 89-90
zeros_like function, 90

zip function, 60
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